Recent Heavy Flavour results from CMS

Stefano Lacaprara on behalf of CMS collaboration

stefano.lacaprara@pd.infn.it

INFN Padova

XXIV Cracow EPIPHANY Conference on Advances in Heavy Flavour Physics, Cracow, 9 Jan 2018

B-physics at CMS

- In addition to high p_T physics (SM, Higgs, searches) CMS can give significant contribution to beauty and heavy flavour physics
- in some field able to compete with a dedicated experiment as LHCb
- Key elements:
 - ► large production x-section at LHC
 - excellent tracking and muon id performances
 - ► flexible trigger system able to collect data at high luminosity and large pile up

This presentation

I will report some of the (not-so) recent results for the CMS collaboration in Heavy Flavour: focus on most recent results, not a complete review, personal bias in place. More complete information about HF-physics results can be found at <u>CMS public results webpage</u>

CMS performance

Quarkonia production

- Single quarkonium production
- \bullet Prompt Double Υ observation

3 Properties

- Lifetime measurement
- $\bullet~\Lambda_b$ polarization

4 Spectroscopy

- Search for $X^+(5568)
 ightarrow {\sf B}^0_{\sf s} \pi^+$
- 6 Rare decays and angular analysis
 B⁰_s → μμ
 b → sμμ

① CMS performance

Quarkonia production

- Single quarkonium production
- Prompt Double Υ observation

3 Properties

- Lifetime measurement
- Λ_b polarization

④ Spectroscopy

- Search for $X^+(5568)
 ightarrow {\sf B}^0_{
 m s} \pi^+$
- 5 Rare decays and angular analysis • $B_s^0 \rightarrow \mu \mu$ • $b \rightarrow s \mu \mu$

CMS performance

Quarkonia production

- Single quarkonium production
- \bullet Prompt Double Υ observation

3 Properties

- Lifetime measurement
- Λ_b polarization

④ Spectroscopy

- Search for $X^+(5568)
 ightarrow {\sf B}^0_{
 m s} \pi^+$
- 5 Rare decays and angular analysis • $B_s^0 \rightarrow \mu \mu$ • $b \rightarrow s \mu \mu$

[arXiv:1710.11002 (sub. to PLB)] Quarkonia production

$$\frac{d^2\sigma}{d\rho_{\mathsf{T}}dy} \cdot \mathcal{B}(q\bar{q} \to \mu\mu) = \frac{\mathcal{N}^{(q\bar{q})}(\rho_{\mathsf{T}}, y)}{\mathcal{L}\Delta\rho_{\mathsf{T}}\Delta y} \cdot \left\langle \frac{1}{(\varepsilon\mathcal{A})(\rho_{\mathsf{T}}, y)} \right\rangle$$

$$\varepsilon_{\mu\mu}(\mathbf{p}_{\mathsf{T}}, y) = \varepsilon_{\mu}(\mathbf{p}_{\mathsf{T}1}, \eta_1) \cdot \varepsilon_{\mu}(\mathbf{p}_{\mathsf{T}2}, \eta_2) \cdot \rho(\mathbf{p}_{\mathsf{T}}, \eta) \cdot \varepsilon_{trk}^2$$

from tag & probe

for $\mu\mu$ efficiency

Tracking

VeV

0

$$\mathcal{A} = \frac{N_{kin}^{gen}(p_{T}, y)}{N^{gen}(p_{T}, y)} \text{ from MC simulation}$$

 $N_{\text{prompt}}^{(q\bar{q})}$ in a 2D bin (p_{T}, y) from UML fit of $M_{\mu\mu}$ (and $c\tau$ for ψ). 2.3 fb⁻¹(13 TeV) 2.3 fb⁻¹ (13 TeV) ≩ 6000 20 < p, < 21 GeV 20 < p_ < 21 GeV y < 0.3 |y| < 0.3 500 Total fit Background Total fit - Prompt signal 400 Nonprompt signal Background 300 2000 1000 Other Providence of the Provid .1 3.15 3.2 3.25 µ⁺u⁺ invariant mass [GeV] Decay length (cm 2.7 fb⁻¹(13 TeV) 2.7 fb⁻¹ (13 TeV) 22.5 < p < 25 GeV 22.5 < p < 25 GeV 450 400 W = 03 |y| < 0.3 Total fit
 Background Total fit Prompt signal 300 Nonprompt signal a.7 3.8 3.9 μ⁺u` invariant mass [GeV] Decay length [cm] 2.7 fb⁻¹ (13 TeV) 22 < p. < 24 GeV |y| < 0.6 - Total R ---- Background

Comparison with NLO NRQCD prediction and 7 TeV results

good agreement

- NRQCD
 - under(over)estimates J/ ψ (ψ (2S)), within uncert.
- ratio 13/7 TeV changing slowly with p_T, expected from evolution of pdf

Double J/ ψ already seen ^[LHCb: PLB 707 (2012) 5259, ATLAS: EPJ C 77 (2017) 76, CMS: JHEP 09 (2014) 094], double Υ not yet

- HLT: 3μ : 1 pair with $8.5 < M_{\mu\mu} < 11 \text{ GeV}$
- $p_{\mathsf{T}}^{\mu} >$ 3.5 GeV, $|\eta| <$ 2.4
- vertexing (on $2\mu \& 4\mu$);
- fiducial region: $|y^{\Upsilon}| < 2.0$

Signal extracted with 2D ext-UML of M⁽¹⁾_{μμ} and M⁽²⁾_{μμ}
 M⁽¹⁾_{μμ} (M⁽²⁾_{μμ}) higher (lower)-mass Υ candidate

 if (Υ(1S) Υ(2S)): Υ(2S) appears in M⁽¹⁾_{μμ}

 N_{Υ(1S)Υ(1S)} = 38 ± 7 (≫ 5σ)
 N_{Υ(1S)Υ(2S)} = 13⁺⁶₋₅ (~ 2.6σ)

Fiducial cross section, assuming isotropical decay of both $\Upsilon(1S)$: $\sigma_{fid} = \frac{N_{\Upsilon(1S)\Upsilon(1S)}}{\mathcal{LB}^2(\Upsilon(1S) \to \mu\mu)} \frac{1}{\langle \mathcal{A} \varepsilon \rangle} = 68.8 \pm 12.7(\text{stat}) \pm 7.4(\text{syst}) \pm 2.8(B) \ pb$ with different extreme polarization $\sigma_{fid} = ^{+36\%}_{-38\%}$ $\mathcal{A} \varepsilon$ on a event-by-event basis, using measured Υ and μ momenta (data embedding into simulation)

• 2.2 $<\sigma_{\rm eff}$ < 6.6 mb

- \blacktriangleright corresponding to $f_{DPS}\approx 10-30\%$ from residual of SPS prediction
- not enough stats to measure f_{DPS} from $\Delta y_{\Upsilon(1S)\Upsilon(1S)}$.
- \checkmark heavy quarkonia measurement $(2-8 \; mb)$ (mostly from gg)
- **×** smaller than that from multi-jet studies $12 20 \ mb$ (mostly from $q\bar{q}$ and qg)

• might indicate distance between g's smaller than that of q's or q-g

CMS performance

Quarkonia production

- Single quarkonium production
- Prompt Double Υ observation

3 Properties

- Lifetime measurement
- $\bullet~\Lambda_b$ polarization

④ Spectroscopy

- Search for $X^+(5568) \rightarrow \mathsf{B}^0_{\mathsf{s}}\pi^+$
- 5 Rare decays and angular analysis
 B⁰_s → μμ
 b → sμμ

Motivation:

- Precision lifetime measurement play important role in non-perturbative QCD
 - description by Heavy Quark Expansion (HQE) model
 - perturbative expansion of interaction of single heavy quark with light ones
- B_c^+ weak decay through either b or c decay (shorter τ) or via annihilation (predicted to contribute 10% of decay width)
 - lifetime measurement can be used to test its decay model
 - ▶ some discrepancies between $\tau_{B_a^+}$: LHCb > Tevatron.
- CMS measured lifetime of b-hadrons decaying to J/ $\psi(
 ightarrow \mu\mu) + X$: 8 TeV, 19.7 fb $^{-1}$
- States considered:
 - $\begin{array}{c} \mathsf{B}^{0} \quad \mathsf{B}^{0} \rightarrow \mathsf{J}/\psi \,\mathsf{K}^{*}, \ \mathsf{B}^{0} \rightarrow \mathsf{J}/\psi \,\mathsf{K}^{0}_{\mathsf{S}} \\ \mathsf{B}^{0}_{\mathsf{S}} \quad \mathsf{B}^{0}_{\mathsf{S}} \rightarrow \mathsf{J}/\psi \,\pi \,\pi, \ \mathsf{B}^{0}_{\mathsf{S}} \rightarrow \mathsf{J}/\psi \,\phi \\ \mathsf{A} \quad \mathsf$
 - $\begin{array}{cc} \Lambda_{\rm b} & \Lambda_{\rm b} \to {\rm J}/\psi \Lambda \\ {\rm B}_{\rm c}^+ & {\rm B}_{\rm c}^+ \to {\rm J}/\psi \pi \end{array}$
 - Reference channel $B^+ \rightarrow J/\psi K^+$

Methods: *ct* proper decay lenght

decay mode	CMS results	PDG2016						
$B^0 o J\!/\!\psiK^*$	$c au_{_{\mathbf{R}}0}=453.0\pm1.6(stat)\pm1.5(syst)$	$455.7\pm1.2~\mu{ m m}$						
$B^0\toJ\!/\!\psiK^0_S$	$c au_{ m B^0} = 457.8 \pm 2.7(m stat) \pm 2.7(m syst)$							
Good agreement between the two final states and with world average								

Results: B_s⁰ lifetimes

decay	mode	CMS results	PDG2016	G2016	
$B^0_{s} ightarrow$	$J/\psi\pi\pi$	$ au_{H}$ = 504.3 \pm 10.5(stat) \pm 3.7(syst)	$509\pm12~\mu{ m m}$		
$B^0_s \to$	$J/\psi\phi$	$ au_{\it eff} =$ 443.9 \pm 2.0(stat) \pm 1.2(syst)	$443\pm2.4~\mu{ m m}$		

- J/ $\psi \pi \pi$ dominated by $B_s^0 \rightarrow J/\psi f(980)$: CP-odd τ_H
- J/ $\psi\phi$ mixture of CP-odd and even, effective lifetime $\tau_{\it eff}$
 - complementary to measurement of weak mixing phase $\varphi_{S}^{[CMS, PLB 757(2016)97]}$
- $\bullet\,$ combination of τ_{H} and $\tau_{e\!f\!f}$ gives: $c\tau_{L}=419\pm6.4\,$ $\mu{\rm m},$ compatible with WA

Results: Λ_b lifetime

- for B_c^+ used $\Delta\Gamma$ (LHCb approach^[PLB 742(2015) 29]);
 - \blacktriangleright difference of total width ${\sf B}_{\sf c}^+ \to {\sf J}/\psi\pi^+$ and ${\sf B}^+ \to {\sf J}/\psi\,{\sf K}^+$
 - $c\tau_{
 m B^+} = 490 \pm 0.8 ({
 m stat}) \, \mu{
 m m}$ PDG2016: $491.4 \pm 1.2 \, \mu{
 m m}$
- large background, smaller lifetime: the ratio method reduces syst uncert, as the resolution cancel out.

$$\mathcal{R}(t) = \frac{N_{\mathsf{B}_{\mathsf{C}}^+}}{N_{\mathsf{B}^+}} = \frac{e^{-t/\tau_{\mathsf{B}_{\mathsf{C}}^+}} \otimes G(t)}{e^{-t/\tau_{\mathsf{B}^+}} \otimes G(t)} \frac{\varepsilon_{\mathsf{B}_{\mathsf{C}}^+}}{\varepsilon_{\mathsf{B}^+}} \approx \mathcal{R}_{\varepsilon}(t) e^{-\Delta\Gamma t} \text{ with } \Delta\Gamma = 1/\tau_{\mathsf{B}_{\mathsf{C}}^+} - 1/\tau_{\mathsf{B}^+}$$

S.Lacaprara (INFN Padova)

 $\Delta\Gamma$ extracted via a binned χ^2 -fit to $\mathcal{R}(t)$, corrected for efficiency ratio, with an exponential function.

- HQET predicts large fraction of b polarization to be retained after hadronization ^[hep-ph/0702191.]
- $\Lambda_{\rm b}$ polarization P measured in decay $\Lambda_{\rm b} \rightarrow J/\psi(\rightarrow \mu\mu)\Lambda(\rightarrow p\pi^{-})$
 - both prompt and non-prompt decay;
 - 7(8) TeV with 5.2(19.8) fb⁻¹
 - both Λ_b and $\overline{\Lambda_b}$ decay: from CP $P = -\overline{P}$
 - $lpha_1$ parity-violating decay asymmetry
 - α_2 longitudinal polarization of Λ
 - $\gamma_0\,$ related to ${\rm J}/\psi\,$ polarization
 - α_{Λ} is the asym parameter of $\Lambda \rightarrow p\pi^{-}$ decay (fixed to 0.642 \pm 0.013)
- $\alpha_1, \alpha_2, \gamma_0$ related to T_{ij} helicity amplitudes of Λ and J/ ψ [Kramer-Sima, NPB 50 (1996) 125]

helicity formalism:

$$\frac{d^{5}\Gamma}{d\Omega_{5}}(\Omega) \approx \sum_{i=1}^{8} u_{i}\left(\alpha_{1}, \alpha_{2}, \gamma_{0}\right) v_{i}\left(\boldsymbol{P}, \alpha_{\Lambda}\right) w_{i}\left(\Omega\right).$$

- \bullet Good agreement with LHCb $^{\rm [PLB\ 724\ (2013)\ 27]}$ and ATLAS $^{\rm [PRD\ 89\ (2014)\ 092009]}$
- P consistent with pQCD prediction 10% ^[PLB 649 (2007) 152], but disfavour $P \sim 20\%^{[PLB 614 (2005) 165]}$
- $lpha_1$ predicted 0.78 from HQET <code>[arXiv:hep-ph/0412116]</code> disfavoured, other models ok \sim [-0.2, -0.1]
- α_2 : positive helicity for Λ suppressed, as predicted ^[PRD 88 (2013) 114018]

CMS performance

Quarkonia production

- Single quarkonium production
- Prompt Double Υ observation

3 Properties

- Lifetime measurement
- Λ_b polarization

4 Spectroscopy

- Search for $X^+(5568)
 ightarrow {\sf B}^0_{\sf s} \pi^+$
- 5 Rare decays and angular analysis
 B⁰_s → μμ
 b → sμμ

Summary

Search for $X^+(5568) \rightarrow \mathsf{B}^0_{\varsigma}\pi^+$

Search performed at CMS [CERN-EP-2017-287, sub. to PRL] based on ~50k $B_{\epsilon}^{0} \rightarrow J/\psi \phi$ decays CMS 19.7 fb⁻¹ (8 TeV) $N_{-0} = 49277 \pm 278$ Data Fit = 5366.54 ± 0.06 MeV S --- Signal 8000 ---- Background = 18.6 ± 0.5 MeV $= 0.47 \pm 0.02$

Search for $X^+(5568)$: invariant mass scan

Search for $X^+(5568)$: impact of ΔR cut and results

CMS performance

Quarkonia production

- Single quarkonium production
- Prompt Double Υ observation

3 Properties

- Lifetime measurement
- Λ_b polarization

④ Spectroscopy

• Search for $X^+(5568) \rightarrow \mathsf{B}^0_{\mathsf{s}}\pi^+$

6 Rare decays and angular analysis • B⁰_s → μμ • b → sμμ

Summary

$B \rightarrow \mu \mu$: CMS results

$B \rightarrow \mu \mu$: Projection for Run2

'Simple' scaling of current analysis in CMS-FTR-13-022
 not including 'better' methodology

	L (fb ⁻¹)	No. of B_s^0	No. of B ⁰	$\delta \mathcal{B}/\mathcal{B}(B_s{}^0 \to \mu^+\mu^-)$	$\delta {\cal B}/{\cal B}({ m B}^0 o \mu^+\mu^-)$	B ⁰ sign.	$\delta \frac{\mathcal{B}(\mathrm{B}^{0} \to \mu^{+} \mu^{-})}{\mathcal{B}(\mathrm{B}^{0}_{\mathrm{s}} \to \mu^{+} \mu)}$
Г	20	16.5	2.0	35%	>100%	$0.0-1.5 \sigma$	>100%
	100	144	18	15%	66%	$0.5 - 2.4 \sigma$	71%
	300	433	54	12%	45%	$1.3 - 3.3 \sigma$	47%
	3000	2096	256	12%	18%	5.4–7.6 σ	21%

Trigger will be crucial (p⊥ resolution at L1 for dimuons)
 ▷ E.g. L1 track trigger!

${\sf B} ightarrow \mu \mu$ new analysis:

- improved muon ID
- improved pileup studies
- effective lifetime determination
- in-situ dimuon trigger/reconstruction bias determination
- not a "search analysis" any more

$B^0 \rightarrow K^* \mu \mu$: introduction

- Fully described by: $\theta_{\ell}, \theta_{K}, \varphi$ and $q^2 = M_{\mu\mu}^2$;
- $B^0(\overline{B}^0)$ identified by K and π charges;
- First analysis ^[PLB 753 (2016) 424] 8 TeV, 20 fb⁻¹:
 - measured A_{FB} , F_L , and dB/dq^2 vs q^2 .
 - Signal Yield ~ 1400 events
- Use same dataset to measure P_5' and P_1 with CMS data

- Final state ${\rm K}^+\pi^-\mu^+\mu^-$ has contribution from P-wave (K*) and S-wave
- in total, PDF has 14 parameters: fold around $\varphi=0$ and $\theta_\ell=\pi/2$ to reduce them

$$\begin{aligned} \frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2\mathrm{d}\cos\theta_I\mathrm{d}\cos\theta_\mathrm{K}\mathrm{d}\phi} &= \frac{9}{8\pi} \left\{ \frac{2}{3} \left[\left(F_\mathrm{S} + A_\mathrm{S}\cos\theta_\mathrm{K} \right) \left(1 - \cos^2\theta_I \right) + A_\mathrm{S}^5 \sqrt{1 - \cos^2\theta_\mathrm{K}} \sqrt{1 - \cos^2\theta_I}\cos\phi \right] \right. \\ &+ \left(1 - F_\mathrm{S} \right) \left[2F_\mathrm{L}\cos^2\theta_\mathrm{K} \left(1 - \cos^2\theta_I \right) + \frac{1}{2} \left(1 - F_\mathrm{L} \right) \left(1 - \cos^2\theta_\mathrm{K} \right) \left(1 + \cos^2\theta_I \right) \right. \\ &+ \left. \frac{1}{2} P_1 (1 - F_\mathrm{L}) (1 - \cos^2\theta_\mathrm{K}) (1 - \cos^2\theta_I)\cos2\phi \right. \\ &+ \left. 2P_5'\cos\theta_\mathrm{K} \sqrt{F_\mathrm{L} \left(1 - F_\mathrm{L} \right)} \sqrt{1 - \cos^2\theta_\mathrm{K}} \sqrt{1 - \cos^2\theta_I}\cos\phi \right] \right\} \end{aligned}$$

- 6 parameters left: statistics not enough to perform a fully floating fit
- F_L , F_S , and A_s fixed from previous CMS measurement
- P_1 and P'_5 measured, A^5_s nuisance parameter

• Final state $K^+\pi^-\mu^+\mu^-$ has contribution from P-wave (K^{*}) and S-wave • in total, PDF has 14 parameters: fold around $\varphi = \phi$ and $\theta_\ell = \pi/2$ to reduce them

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^{2}} \frac{\mathrm{d}^{4}\Gamma}{\mathrm{d}q^{2}\mathrm{d}\cos\theta_{l}\mathrm{d}\cos\theta_{\mathrm{K}}\mathrm{d}\phi} = \frac{9}{8\pi} \left\{ \frac{2}{3} \left[\left(F_{\mathrm{S}} + A_{\mathrm{S}}\cos\theta_{\mathrm{K}}\right) \left(1 - \cos^{2}\theta_{l}\right) + A_{\mathrm{S}}^{5}\sqrt{1 - \cos^{2}\theta_{\mathrm{K}}}\sqrt{1 - \cos^{2}\theta_{l}}\cos\phi \right] \right. \\ \left. + \left(1 - F_{\mathrm{S}}\right) \left[2F_{\mathrm{L}}\cos^{2}\theta_{\mathrm{K}}\left(1 - \cos^{2}\theta_{l}\right) + \frac{1}{2}\left(1 - F_{\mathrm{L}}\right)\left(1 - \cos^{2}\theta_{\mathrm{K}}\right)\left(1 + \cos^{2}\theta_{l}\right) \\ \left. + \frac{1}{2}P_{1}(1 - F_{\mathrm{L}})(1 - \cos^{2}\theta_{\mathrm{K}})(1 - \cos^{2}\theta_{l})\cos2\phi \right] \\ \left. + 2P_{5}'\cos\theta_{\mathrm{K}}\sqrt{F_{\mathrm{L}}\left(1 - F_{\mathrm{L}}\right)}\sqrt{1 - \cos^{2}\theta_{\mathrm{K}}}\sqrt{1 - \cos^{2}\theta_{l}}\cos\phi \right] \right\}$$

- 6 parameters left: statistics not enough to perform a fully floating fit
- F_1 , F_5 , and A_5 fixed from previous CMS measurement
- P_1 and P'_5 measured, A_s^5 nuisance parameter

• Final state $K^+\pi^-\mu^+\mu^-$ has contribution from P-wave (K*) and S-wave

• in total, PDF has 14 parameters: fold around $\varphi=0$ and $\theta_\ell=\pi/2$ to reduce them

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2 \mathrm{d}\cos\theta_I \mathrm{d}\cos\theta_\mathrm{K} \mathrm{d}\phi} = \frac{9}{8\pi} \left\{ \frac{2}{3} \left[\left(F_\mathrm{S} \right) \left(A_\mathrm{S} \cos\theta_\mathrm{K} \right) \left(1 - \cos^2\theta_I \right) + A_\mathrm{S}^5 \sqrt{1 - \cos^2\theta_\mathrm{K}} \sqrt{1 - \cos^2\theta_I} \cos\phi \right] \right. \\ \left. + \left(1 - \left(F_\mathrm{S} \right) \left[\left(F_\mathrm{L} \cos^2\theta_\mathrm{K} \left(1 - \cos^2\theta_I \right) + \frac{1}{2} \left(1 - \left(F_\mathrm{L} \right) \left(1 - \cos^2\theta_\mathrm{K} \right) \left(1 + \cos^2\theta_I \right) \right) \right. \\ \left. + \frac{1}{2} P_1 \left(1 - \left(F_\mathrm{L} \right) \left(1 - \cos^2\theta_\mathrm{K} \right) \left(1 - \cos^2\theta_I \right) \cos 2\phi \right. \\ \left. + 2P_5' \cos\theta_\mathrm{K} \left(\sqrt{F_\mathrm{L}} \left(1 - \left(F_\mathrm{L} \right) \sqrt{1 - \cos^2\theta_\mathrm{K}} \sqrt{1 - \cos^2\theta_I} \cos\phi \right) \right] \right\} \right\}$$

- 6 parameters left: statistics not enough to perform a fully floating fit
- F_L , F_S , and A_s fixed from previous CMS measurement
- P_1 and P'_5 measured, A^5_s nuisance parameter

- Final state $K^+\pi^-\mu^+\mu^-$ has contribution from P-wave (K*) and S-wave
- in total, PDF has 14 parameters: fold around $\varphi=0$ and $heta_\ell=\pi/2$ to reduce them

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2\mathrm{d}\cos\theta_I\mathrm{d}\cos\theta_\mathrm{K}\mathrm{d}\phi} = \frac{9}{8\pi} \left\{ \frac{2}{3} \left[(F_\mathrm{S} + A_\mathrm{S}\cos\theta_\mathrm{K}) \left(1 - \cos^2\theta_I \right) + \left(A_\mathrm{S}^3 \sqrt{1 - \cos^2\theta_\mathrm{K}} \sqrt{1 - \cos^2\theta_I} \cos\phi \right] \right. \\ \left. + \left(1 - F_\mathrm{S} \right) \left[2F_\mathrm{L}\cos^2\theta_\mathrm{K} \left(1 - \cos^2\theta_I \right) + \frac{1}{2} \left(1 - F_\mathrm{L} \right) \left(1 - \cos^2\theta_\mathrm{K} \right) \left(1 + \cos^2\theta_I \right) \right. \\ \left. + \left[\frac{1}{8} P_\mathrm{I} \right] \left(1 - F_\mathrm{L} \right) \left(1 - \cos^2\theta_\mathrm{K} \right) \left(1 - \cos^2\theta_I \right) \cos 2\phi \right] \right\}$$

- 6 parameters left: statistics not enough to perform a fully floating fit
- F_L , F_S , and A_s fixed from previous CMS measurement
- P_1 and P'_5 measured, A^5_s nuisance parameter

Full PDF, including mis-tagged events and background

$$p.d.f.(m, \cos\theta_{\rm K}, \cos\theta_{\rm I}, \phi) = Y_{S}^{C} \cdot \left(S_{i}^{R}(m) \cdot S_{i}^{a}(\cos\theta_{\rm K}, \cos\theta_{\rm I}, \phi) \cdot \epsilon_{i}^{R}(\cos\theta_{\rm K}, \cos\theta_{\rm I}, \phi) + \frac{f_{i}^{M}}{1 - f_{i}^{M}} \cdot S_{i}^{M}(m) \cdot S_{i}^{a}(-\cos\theta_{\rm K}, -\cos\theta_{\rm I}, -\phi) \cdot \epsilon_{i}^{M}(\cos\theta_{\rm K}, \cos\theta_{\rm I}, \phi)\right) + Y_{B} \cdot B_{i}^{m}(m) \cdot B_{i}^{\cos\theta_{\rm K}}(\cos\theta_{\rm K}) \cdot B_{i}^{\cos\theta_{\rm I}}(\cos\theta_{\rm I}) \cdot B_{i}^{\phi}(\phi).$$

Full PDF, including mis-tagged events and background

CMS

$$\begin{aligned} \text{p.d.f.}(\boldsymbol{m}, \cos \theta_{\text{K}}, \cos \theta_{l}, \phi) &= Y_{S}^{C} \cdot \left(S_{i}^{R}(\boldsymbol{m}) \cdot S_{i}^{a}(\cos \theta_{\text{K}}, \cos \theta_{l}, \phi) \cdot \epsilon_{i}^{R}(\cos \theta_{\text{K}}, \cos \theta_{l}, \phi) \right. \\ &+ \left. \frac{f_{i}^{M}}{1 - f_{i}^{M}} \cdot S_{i}^{M}(\boldsymbol{m}) \cdot S_{i}^{a}(-\cos \theta_{\text{K}}, -\cos \theta_{l}, -\phi) \cdot \epsilon_{i}^{M}(\cos \theta_{\text{K}}, \cos \theta_{l}, \phi) \right) \\ &+ \left. Y_{B} \cdot B_{i}^{m}(\boldsymbol{m}) \cdot B_{i}^{\cos \theta_{\text{K}}}(\cos \theta_{\text{K}}) \cdot B_{i}^{\cos \theta_{l}}(\cos \theta_{l}) \cdot B_{i}^{\phi}(\phi). \end{aligned}$$

- Fit performed for 7 (+2 CR) different q^2 bins
- Fit *m* side bands to determine the background shape;
- Fit whole mass spectrum with 5 floating parameters;
- used unbinned extended maximum likelihood estimator
 - discretize P_1, P'_5 space
 - maximize $\mathcal{L}(Y_S, Y_B, A_s^5)$
 - fit \mathcal{L} with 2D-gaussian
 - \blacktriangleright find abs max of ${\cal L}$ inside the physically allowed region
- \bullet stat uncert using FC construction along the 1D profiled $\mathcal L$

Systematics

_					_	
	Systematic uncertainty	$P_1(10^{-3})$	$P_5'(10^{-3})$		•	• Comparing fit results on MC (high stat) with
	Simulation mismodeling	1–33	10–23 🗸			input (simulation mismod)
	Fit bias	5–78	10–119 🔶			Fit bigs with eachtail signal MC + toy
	MC statistical uncertainty	29–73	31–112 🔨			Fit bias with cocktain signal with + toy
	Efficiency	17-100	5-65 🤸	\setminus		background from data side-bands;
	$K\pi$ mistagging	8-110	6–66 🤸	\backslash	- 0	• MC stat due to limited statistics in efficiency
	Background distribution	12-70	10-51	\mathbb{N}		shape evaluation
	Mass distribution	12	19	\mathbb{N}		
	Feed-through background	4–12	3-24	\backslash	- 0	Comparing F _L on CR wrt PDG (efficiency)
	$F_{\rm L}$, $F_{\rm S}$, $A_{\rm S}$ uncertainty propagation	0-126	0-200		- 0	$\mathbf{K}\boldsymbol{\pi}$ mistag evaluated in J/ψ control region and
	Angular resolution	2–68	0.1–12		-	propagated to all bins:
	Total systematic uncertainty	60-220	70-230		C	propagated to an bills,
	· · ·	1				

Propagation of F_L , F_S , and A_s uncertainties:

• generate pseudo experiments, with x100 events, for each q^2 bin;

- Fit with F_L , F_S , A_s free to float and with F_L , F_S , A_s fixed;
- ▶ ratio of stat. uncert. on P_1 and P'_5 with free and fixed fit used to estimate syst uncertainties.
- check bias vs statistics of toy MC and validated on control channels

CMS/

Results: fit projection for second bin: $2.0 < q^2 < 4.3 \,\text{GeV}^2$

S.Lacaprara (INFN Padova)

Results vs SM prediction and LHCb/Belle measurements

SM-DHMV is computed using soft form factors in addition with parametrised power corrections and with the hadronic charm-loop contribution derived from calculations ^{[JHEP 01} (2013) 048, JHEP 05 (2013) 137] SM-HEPfit uses full QCD computation of the form factors and derives the hadronic contribution from LHCb data ^{[JHEP 06} (2016) 116, arXiv:1611.04338]

No significant deviation wrt SM prediction, more compatible with SM-DHMV uncertainties are not small

CMS performance

Quarkonia production

- Single quarkonium production
- Prompt Double Υ observation

3 Properties

- Lifetime measurement
- Λ_b polarization

④ Spectroscopy

- Search for $X^+(5568)
 ightarrow {\sf B}^0_{
 m s} \pi^+$
- 5 Rare decays and angular analysis
 B⁰_s → μμ
 b → sμμ

Additional or backup slides

Quarkonium yield extracted with a extended-UML to $M_{\mu\mu}$.

• Pdf used:

- J/ ψ : Crystal ball + Guassian
- $\psi(2S)$: Crystal ball
- Background: exponential
- for J/ ψ , ψ (2S) non prompt-component from b-hadrons decay.
 - use 2D UML using also decay lenght of $J/\psi, \psi(2S)$: pdf
 - prompt component: double gaussian (per-event resolution)
 - ★ non-prompt: exponential⊗gaussian
 - background: double gaussian

${ m J}/\psi$ and $\psi(2{ m S})$ fraction from b-hadrons decay

Fraction of non-prompt J/ ψ and ψ (2S) (from b-hadrons) as a function of $p_{\rm T}$, and for 7 TeV (|y| < 0.9) and 13 TeV (|y| < 0.3)

Phys. Lett. B 771 (2017) 435

 $\sqrt{s} = 13 \,\mathrm{TeV}, \ L = 48.1 \,\mathrm{pb}^{-1}$ with 50 ns bunch spacings

Decay mode: $B^+ \rightarrow J/\psi K^+ \rightarrow \mu^- \mu^+ K^+$

$$\frac{d\sigma(pp \to B^+X)}{dx^B} = \frac{n_{sig}(x^B)}{2 \mathcal{A}(x^B) \varepsilon(x^B) \mathcal{BL} \Delta x^B} \qquad x = p_T^B, y^B$$

Selection:

- factor 2: σ for single charge B⁺
- $n_{sig}(p_T, |y|)$ from UML fit
- $\mathcal{B} = \mathcal{B}(\mathsf{B}^+ \to \mathsf{J}/\psi\mathsf{K}^+) \cdot \mathcal{B}(\mathsf{J}/\psi \to \mu\mu)$
- $\Delta p_{\mathrm{T}}, \ \Delta y = 2\Delta |y|$ are bin widths
- \mathcal{A}, ε from MC, evaluated for each bin

Signal yield extraction

• Signal extracted with extendend UML to $M_{{\rm J}/\psi\,{\rm K}^+}$ distribution in different bin of $p_{\rm T}$ and y

- 9 bins in $p_{\mathsf{T}}^{\mathsf{B}} \in [10-100]\,\mathsf{GeV}$
 - $|y^{\rm B}| < 1.45(2.1)$ for $p_{\rm T}^{\rm B} < 17(100)\,{
 m GeV}$
- 8 bins in $|y^{\mathsf{B}}|$
 - ▶ $p_{\rm T}^{\rm B} \in [10 100] \, {
 m GeV}$
- pdf:
 - signal: 3 gaussian
 - combinatorial background: exponential
 - $B^+ \rightarrow J/\psi \pi^+$: 3 gaussian
 - B \rightarrow J/ ψ + h's: error function

B^+ cross-section results: 13 and 7 TeV

Comparison with FONLL $^{[JHEP\ 03\ (2001)\ 006]}$ and $\rm PYTHIA$ prediction, for 7 and 13 TeV. Reasonable agreement in shape and normalization

Cross section ratio: 13/7 TeV

Ratio of σ measurement at 13 and 7 TeV prefer higher valued compared to FONLL and $\rm PYTHIA$ prediction

S.Lacaprara (INFN Padova)

HF-physics at CMS

The measurement of quarkonium pair production in pp collisions provides further insight into the underlying mechanism of particle production. It probes specific mechanism of cccc & bbbb systems production & transformation to two mesons, namely it probes the distribution of gluons in a proton since their production should be dominated by gluon-gluon interactions as well.

According to the description by parton models production in QCD, in a single hadronhadron collision 2 partons often undergo a single interaction (Single Parton Scattering : SPS).

The SPS mechanism can be described by NRQCD.

- > At the parton level the two J/ψ mesons are either produced as CS states or CO states that turn into color-singlets after emitting soft gluons. **CO contributions play a greater role as** p_T **increases**.
- Non-trivial contributions should come from Next-to-Leading Order (NLO) SPS. Models released recently begin to approach NLO (and NNLO).

Double Quarkonia Production: DPS

- It is also possible that multiple distinct parton interaction (MPIs) occur, the simplest case being the Double Parton Scattering (DPS) : 2 distinct parton-parton collisions (still in the same pp interaction)
 - Because of the high parton flux and the high center-of-mass energy @ the LHC, the pair production can be potentially sensitive to DPS. These non-trivial contribution expected from DPS cannot be modeled by current NRQCD predictions: difficult to be addressed within perturbative QCD framework.
 - >> Pair production in pp collisions via DPS is assumed to result from 2 independent SPS occurances
 - Several DPS production processes , including final states with quarkonia and with associated jets are described by an effective cross section σ_{eff} that characterizes the transverse area of the hard partonic interactions, expected to be independent of the final states (assuming PDFs not correlated).

[more on this later!]

It depends on the DPS fraction which is usually estimated either ...

1) as a residual of the SPS prediction, or ...

2) as the result of a fit to the rapidity or azimuthal angle difference between pairs

Strong correlation of the two J/ψ s produced via SPS interaction should result in small values of the absolute rapidity difference $|\Delta y|$: large $|\Delta y|$ values are possible for DPS production

Xsection measurement of quarkonium pair production crucial to understand SPS & DPS contributions

 Σ Pair production phase space @CMS nicely complements LHCb and gives access to high p_T regime

											Component	Uncertainty (%)
											Resonance shape	7.9
											Simulation	4.9
											Efficiency	3.7
											Acceptance	2.8
$\lambda_{\theta 1}$	$^{+1}$	+1	+0.5	-0.5	+0.5	-1	$^{+1}$	-0.5	-0.5	-1	Integrated luminosity	2.6
$\lambda_{\theta 2}$	$^{+1}$	+0.5	+0.5 +18	+0.5	-0.5	+1	-1	-0.5	-1	-1	Total	10.7

Signal extraction:

- **>>** Trigger: muon pairs compatible with J/ψ mass & $p_{\tau} \ge 8GeV$
- > High quality offline charged tracks attached to J/ψ (or tertiary) vertex [$p_\tau \ge 0.5 GeV$]; additional kinematical requirements according to channel.
- Intermediate neutral resonances [K⁰, K⁰, φ, Λ⁰] reconstructed by pairs of opposite charged tracks from a common vertex; 2σ mass-window around nominal masses; cross-channel contamination removed. Tertiary vertex displacement requirements (for K⁰₀, Λ⁰).

Lifetime measurement: UML fit

Lifetime: B_s^0 effective lifetime

B_s mesons undergo rapid spontaneous transitions between particle and antiparticle states; the system is described by heavy/light, B_µ / B_L, mass eigenstates characterized by sizable differences:

$$\Delta m_s = m_{\mu} - m_L \approx 17.76 \pm 0.02 \, ps^{-1} \qquad \qquad \Delta \Gamma / \Gamma = \frac{\Gamma_{\mu} - \Gamma_L}{(\Gamma_{\mu} + \Gamma_L)/2} \approx -0.12 \pm 0.01$$

In absence of sizable CPV in the B_s system, heavy/light eigenstates correspond to CP-odd/even resp.

- $\sum_{n=0}^{\infty} B_{n}^{n} \rightarrow J/\psi \pi^{-n}$: the final state state is dominated by $f_{0}(980)$, making it a CP-odd state [PRD 89 (2014) the measured lifetime gives direct access to Γ_{H} (thus τ_{H}) 092006]
- $B_s^0 \rightarrow J/\psi \phi$: the final state is an admixture of 1 CP-odd and 2 CP-even eigenstates
 - the measured lifetime is an effective lifetime τ_{eff} (the distribution consists in 2 exponentials) that is a weighted average of $\tau_{H} \otimes \tau_{L}$ [note: average lifetime is for equal admixtures] (details @backup)
 - This is complementary to the weak mixing phase \u03c6_s analysis CMS, PLB 757 (2016) 97 where the CP-odd/even components are disentangled by an angular analysis (details @backup)
 - The bias caused by the contamination of nonresonant $B_i^{\circ} \rightarrow J/\psi KK$ decays is considered as a systematic uncertainty.

The *S*-wave fraction is assigned the value $(f_s = 1.2^{+0.9}_{-0.9}\%)$ measured in CMS, PLB 757 (2016) 97 , after the needed correction [to account for different trigger & selection criteria in the 2 analyses].

The B_H/B_I relative fraction evolves in time rightarrow the cut $ct > 200 \mu m$ modifies the relative composition & $c\tau_{eff}$ must be properly corrected

B_s mesons mix via box diagrams [with relatively large decay width difference between the mass eigenstates]

When $B_s^0 \otimes \overline{B}_s^0$ decay to a *CP* eigenstate (as in flavor-blind $B_s^0 \to J/\psi\phi$) the weak phase ϕ_s arises from the interference between direct decays & decays with mixing

Theoretically clean decay mode: tiny CPV ruled by $\phi_{s}^{SW} \sim -2\beta_{s} = -0.0363^{+0.0016}_{-0.0016} rad [\beta_{s} = \arg(-V_{n}V_{b}^{+}/V_{cn}V_{cb}^{+})]$ [PRD 84 (2011) (BRD 84 (2011) (BRD 84 (2011)) (BRD 84

 $J/\psi\phi$ final state : admixture of CP-odd and CP-even eigenstate to be disentangled by angular analysis

The different CP components in the $B_i^0 \rightarrow J/\psi\phi$ decay are accessed in another already published CMS analysis, performed as a timedependent, tagged, angular analysis (using the same 8*TeV* dataset). It implies the detailed characterization of the system & the simultaneous extraction of *weak phase* ϕ . & width difference $\Delta\Gamma_e$

(and the measurement of the average decay width Γ_s)

- Σ Δ Γ_s is confirmed to be non-zero
- These accurate measurements are in good agreement with SM predictions and with previous ones (that of φ_s is statistically limited; to be done with Run-II)

- In the heavy quark effective theory (HQET) predicts a large fraction of the tranverse b-quark polarization to be retained after hadronization. http://arxiv.org:hep-ph/0702191. In the particular \wedge_b baryons the b-quark combines with a spin-0 *ud* pair, so all of the \wedge_b spin resides on the valence b-quark and we expect b-polarization to become \wedge_b polarization.
- A previous LHCb measurement in 2013 is published in **Physics Letters B 724 (2013) 27.** The reported value cannot exclude a transverse polarization at the order of 10%, however a polarization of 20% at level of ± 2.7sigma is discarded.
- Also, the asymetry parameter in $\Lambda_b -> \Lambda V$ decays has been calculated in many publications. Most predictions lie in the range from -21% and -10%, while HQET obtains a large positive value <u>arXiv:hep-ph/0412116.</u>

	v	 	
Method		Value	
Factorisation		-0.1	LHCb
Factorisation		-0.18	
Covariant oscillator quark mo	del	-0.208	
Perturbative QCD		-0.17 to -	-0.14
Factorisation (HQET)		0.777	
Light front quark model		-0.204	

• To summary, a measurement of the polarization provides a test of HQET and information about heavy baryon hadronization and nonperturbative corrections to spin transfer in fragmentation.

- · We consider the following systematics sources:
- Fit Bias. From Toy MC we take the difference between the input values and the mean of the fitted values as systematic
- · Asymmetry parameter. The maximum difference when we vary the value of this parameter within ±sigma of its measured value is taken as systematic.
- · Background mass model. We use an exponential instead of a first order polynomial, also we vary bkg parameters ±sigma.
- · Background angular model. We change the model to estimate the shape of the angular background. The difference with the nominal result is taken as systematic.
- Signal mass model. This uncertainty is estimated by varying the parameters within their uncertainties and taking into account the correlations. The difference with the nominal result is taken as systematic.
- · Angular efficiency. The values of the Chebyshev coefficients are varied ±sigma. The maximum difference with respect to the nominal fit is taken as systematic.
- Angular resolution. The measurement resolution of the angular observables is considered. First, we determine angular resolution from MC, the resulting Gaussian
 models are used to generate random numbers that are added to the 3 polar angles of MC events at gen-level. The difference between the parameters obtained from
 fits using events with/out random terms added is quoted as systematic.
- Azimuthal efficiency. The non-uniformity of the azimuthal efficiency shape is investigated from Toy MC. We generate 500 pseudo-experiments, using the 5D
 angular distribution (3 polar & 2 azimuthal angles) multiplied by the polar and azimuthal efficiency shape (from full MC simulation). Then we fit them with the 3D
 nominal model. Difference of the mean values with respect to the input values are taken as systematic.
- Reweighting procedure. We apply a procedure where weights are varied in each iteration. The histograms of MC distribution are varied ±sigma(bin error) and then compute the weight per event. We take the largest difference with respect to the nominal value as systematic.
- Possible reco-bias. Possible unaccounted reconstruction bias is considered. In order to estimate this systematic uncertainty, we generate a MC sample with input
 values of the helicity amplitudes and polarization similar to the observed values in data, we fit the MC sample and take the differences between input and fit values
 for every angular parameter and the polarization. Since we are considering the Full MC, we subtract the sum in quadrature of the systematic sources involved in
 the fit from those observed differences, finally we take the square root of this subtraction as the estimation of the systemati

$\Lambda_{\rm b}$ polarization systematics

Source	$P \times 10^{-2}$	$\alpha_1 \times 10^{-2}$	$\alpha_2 \times 10^{-2}$	$\gamma_0 \times 10^{-2}$
Angular Efficiency	0.1	0.3	3.0	1.0
Azimuthal Efficiency	0.1	1.0	0.3	0.1
Fit Bias	0.1	0.3	0.1	0.2
Angular Resolution	1.0	0.1	2.6	0.8
Background mass model	0.01	0.5	1.0	0.9
Background angular model	0.4	0.5	0.9	5.0
Signal mass model	0.01	0.3	1.0	1.0
Asymmetry parameter α_{Λ} .	0.4	0.7	2.0	0.6
Reweight procedure	0.1	1.3	0.4	2.0
Reconstruction bias	5.6	10.0	5.1	9.1
Total(sqrt of the quadratic sum)	5.8	10.0	5.1	11.1

- The contributions from the different uncertainty sources a r e a s s u m e d t o b e independent
- *The total systematic uncertainty is calculated as the square root of the quadratic sum of all uncertainties.

$$\begin{aligned} \alpha_1 &\equiv |T_{++}|^2 - |T_{+0}|^2 + |T_{-0}|^2 - |T_{--}|^2, \\ \alpha_2 &\equiv |T_{++}|^2 + |T_{+0}|^2 - |T_{-0}|^2 - |T_{--}|^2, \\ \gamma_0 &\equiv |T_{++}|^2 - 2 |T_{+0}|^2 - 2 |T_{-0}|^2 + |T_{--}|^2, \end{aligned}$$

ı	11	c_i	Ji
1	1	1	1
2	α2	α_{Λ}	$\cos heta_p$
3	$-\alpha_1$	P	$\cos \theta_{\Lambda}$
4	$-\left(1+2\gamma_{0} ight)/3$	$\alpha_{\Lambda}P$	$\cos \theta_{\Lambda} \cos \theta_{p}$
5	$\gamma_0/2$	1	$(3\cos^2\theta_{\mu}-1)/2$
6	$(3\alpha_1 - \alpha_2) / 4$	α_{Λ}	$\cos \theta_p \left(3 \cos^2 \theta_\mu - 1 \right) / 2$
7	$(\alpha_1 - 3\alpha_2)/4$	P	$\cos \theta_{\Lambda} \left(3 \cos^2 \theta_{\mu} - 1 \right) / 2$
8	$\left(\gamma_{0}-4 ight)/6$	$\alpha_{\Lambda}P$	$\cos \theta_{\Lambda} \cos \theta_{p} \left(3 \cos^{2} \theta_{\mu} - 1 \right) / 2$

$$\begin{split} P &= 0.00 \pm 0.06(stat) \pm 0.06(syst), \\ \alpha_1 &= 0.14 \pm 0.14(stat) \pm 0.10(syst), \\ \alpha_2 &= -1.11 \pm 0.04(stat) \pm 0.05(syst), \\ \gamma_0 &= -0.27 \pm 0.08(stat) \pm 0.11(syst) \end{split}$$

$$\begin{split} |T_{-0}|^2 &= 0.52 \pm 0.03(stat) \pm 0.04(syst), \\ |T_{+0}|^2 &= -0.10 \pm 0.04(stat) \pm 0.04(syst), \\ |T_{--}|^2 &= 0.53 \pm 0.04(stat) \pm 0.04(syst), \\ |T_{++}|^2 &= 0.04 \pm 0.04(stat) \pm 0.04(syst). \end{split}$$

Parameter	CMS	LHCb		ATLAS		
		result	difference	result	difference	
$ T_{-0} ^2$	$0.52 \pm 0.03 \pm 0.04$	$0.57 \pm 0.06 \pm 0.03$	0.71σ	$0.35^{+0.07}_{-0.08}\pm0.04$	1.60σ	
$ T_{+0} ^2$	$-0.10 \pm 0.04 \pm 0.04$	$0.01 \pm 0.04 \pm 0.03$	1.45σ	$0.03^{+0.04}_{-0.05}\pm0.03$	1.48σ	
T2	$0.53 \pm 0.04 \pm 0.04$	$0.51 \pm 0.05 \pm 0.02$	0.13σ	$0.62^{+0.06}_{-0.08}\pm0.02$	1.00σ	
$ T_{++} ^2$	$0.04 \pm 0.04 \pm 0.04$	$-0.10\pm 0.04\pm 0.03$	1.98σ	$0.01^{+0.02}_{-0.01}\pm0.01$	0.65σ	
Р	$0.00 \pm 0.06 \pm 0.06$	$0.06 \pm 0.07 \pm 0.06$	0.47σ			

$B^0_s ightarrow \mu \mu$ Analysis in a nutshell

Signal (BDT selection)

- a good, isolated μ^{\pm} pair from displaced vertex
- momentum aligned along flight direction;
- invariant mass peaking at $M(B_s^0, B_d^0)$ $\mathcal{B}(B_s^0 \to \mu\mu) = N_s \cdot \frac{\mathcal{B}(B^{\pm} \to J/\psi K^{\pm})}{N(B^{\pm} \to J/\psi K^{\pm})} \cdot \frac{\varepsilon(B^{\pm})}{\varepsilon(B_s^0)} \frac{f_u}{f_s}$
- ε include acceptance, trigger, and selection
- f_s/f_u B-factorization

Background

- combinatorial (semileptonic decay): side bands
- rare decays
 - non peaking $B_s^0 \rightarrow K^- \mu \nu$, $\Lambda_b \rightarrow p \mu \nu$ (MC)
 - ▶ peaking $B^0 \rightarrow KK, K\pi, \pi\pi$: absolute yield evaluated on independent single- μ trigger
- μ quality, good sec. vertex, isolation, pointing angle, and $M_{\mu\mu}$ resolution: \rightarrow powerful background suppression

• Normalization channel $B^{\pm} \rightarrow J/\psi K^{\pm} \rightarrow \mu \mu K^{\pm}$, calibration $B_s^0 \rightarrow J/\psi \phi \rightarrow \mu \mu K K$

- UML symultaneous fit to Bs and Bd
- several categories based on event classification (BDT) and region (Barrel-Endcap)

- Signal $B^0_s
 ightarrow \mu^+ \mu^-$
 - two muons from one decay vertex well reconstructed secondary vertex momentum aligned with flight direction isolated, mass around m_{B⁰}

- combinatorial (from sidebands)
 two semileptonic (B) decays (gluon splitting)
 one semileptonic (B) decay and one misidentified hadron
- ▷ rare single *B* decays (from MC simulation) non-peaking, e.g. $B_s^0 \to K^- \mu^+ \nu$, $\Lambda_b \to p \mu^+ \nu$ peaking, e.g. $B_s^0 \to K^+ K^-$
- Blind analysis
- ⇒ Critical issues
 - optimized selection
 - > muon misidentification probability
 - > pileup (isolation)

- Measurement of $B_s^0 \rightarrow \mu^+ \mu^-$ relative to normalization channel:
 - $\triangleright \; B^+ \to J\!/\psi \, K^+,$ with well-known branching fraction
 - Inearly) identical selection to reduce systematic uncertainties

$$\begin{split} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &= \quad \frac{n_{B^0_s}^{\text{obs}}}{\varepsilon_{B^0_s} N_{B^0_s}} = \frac{n_{B^0_s}^{\text{obs}}}{\varepsilon_{B^0_s} \mathcal{L} \sigma(pp \to B^0_s)} \\ &= \quad \frac{n_{B^0_s}^{\text{obs}}}{N(B^+ \to J/\psi \ K^+)} \frac{A_{B^+}}{A_{B^0_s}} \frac{\varepsilon_{B^+}^{ana}}{\varepsilon_{B^0_s}^{ama}} \frac{\varepsilon_{B^+}^{ana}}{\varepsilon_{B^0_s}^{ama}} \frac{\varepsilon_{B^+}^{trig}}{\varepsilon_{B^0_s}^{ama}} \frac{f_u}{\varepsilon_{B^0_s}^{ama}} \mathcal{B}(B^+ \to J/\psi \ [\mu^+ \mu^-]K) \end{split}$$

- Reconstructed exclusive decays
 - ▷ $B^+ \rightarrow J/\psi K^+$: normalization and studies
 - $\triangleright \ B^0_s \to J/\psi \, \phi \hbox{:} \qquad \qquad B^0_s \ \text{signal MC validation} \\ alternative normalization}$
 - $\triangleright \ J\!/\!\psi\,, \Upsilon(1S) \to \mu^+\mu^- \text{: mass calibration}$
- Divide data into channels
 - better sensitivity
 - add more data

- Hadronization probability ratio f_s/f_u from LHCb [JHEP 04, 001 (2013)]
 - $\triangleright\,$ additional 5% systematics for possible p_{\perp} or η dependence
- Rare decays
 - ▶ hadron to muon misidentification probability $K_s^0 \to \pi^+\pi^-$, $\Lambda \to p\pi$, and $D^{*+} \to D^0(K^-\pi^+)\pi^+$
 - 50% uncertainty, pions/kaons/protons uncorrelated
 - branching fraction uncertainties
 - $\triangleright \Lambda_b \to p \mu \bar{\nu}$:

large range of predictions in literature (w/o JHEP, 1109, 106) take average (6.5×10^{-4}) and assign 100% uncertainty (note that invariant mass covers B_s^0 signal region, using EVTGEN 'phase space' model for decay)

- Normalization
 - ▶ 5%, varied functional forms and mass-constrained fits

Trig Dedicated HLT trigger path: Low pt dimuon, displaced, low invariant mass $h p_T^h > 0.8 \text{ GeV}, |M(K\pi) - M_{\kappa^*}| < 90 \text{ MeV}, M_{KK} > 1.035 (\phi$ veto), displaced $DCA/\sigma > 2$ $\mu p_T^{\mu} > 3.5 \,\text{GeV}, \ p_T^{\mu\mu} > 6.9 \,\text{GeV}, \ 1 < M_{\mu\mu} < 4.8 \,\text{GeV},$ displaced $L/\sigma > 3$ B⁰ $p_t > 8 \text{ GeV}, |\eta| < 2.2, \text{ displaced } (L/\sigma > 12), \cos \alpha > 0.9994,$ $|M - M_{p0}| < 280 \text{ MeV}$ • Both B^0 and \overline{B}^0 considered, if more than one candidate. take the one with best B^0 vtx CL

 \blacktriangleright anti radiation cut against feed-down of ${\rm J}/\psi/\psi'$

CR signal and control sample J/ ψ and ψ' treated same way.

Background considered

- Partially reconstructed \textbf{B}^0 decay might pollute left $M_{\textbf{R}^0}$ side bands
 - restrict left s.b. (5.1 < M < 5.6 GeV, default 5 < M < 5.6 GeV)
 - ▶ redo fit: change in P_1 and P'_5 within the systmatics uncertainties.
- $B^{\pm} \rightarrow K^{\pm} \mu \mu$ plus and additional random π^{\mp} :
 - distribution ends at M > 5.4 GeV, further reduced by $\cos \alpha$ cut, and BR similar to $B^0 \rightarrow K^* \mu \mu$
- $\Lambda_{\rm b} \rightarrow {\rm pKJ}/\psi(\mu^+\mu^-)$
 - ► look at event in the $M_{K\pi\mu\mu} \approx M_{B^0}$ peak, reconstruct them using p, K mass hypothesis: no peak seen.
- $B^0 \rightarrow DX$, with $D \rightarrow hh$ and h mis-id as μ
 - \blacktriangleright requires two mis-id: ${\it P_{misld}} \sim 1 \cdot 10^{-3}$: given ${\it BR} \sim 1 \cdot 10^{-3}$ negligible.

• $B^0 \rightarrow J/\psi(\mu\mu)K^*(K\pi)$, with one h and one μ switched

- ► $P_{\text{misld }\mu} \cdot (1 \varepsilon_{\mu}) \sim 1 \cdot 10^{-4}$, $Y_{\text{B}^0 \rightarrow \text{J/}\psi \, \mu \mu} \sim 1.6 \cdot 10^5$: few events in bin close to $\text{J/}\psi$
- J/ ψ feed contamination in close bin included in the fit model

Fit validation

extensive fit validation with MC: used as systematics

- compare fit results with MC input values (sim mismodeling)
- compare with data-like MC (fit bias)
 - signal only correct tag
 - signal correct+wrong tag
 - signal + background
- Data control channel (J/ ψ and ψ'), comparing fit results with PDG (F_L) (efficiency)
- compare P_1 and P_5' on ${\rm J}/\psi$ and ψ' w/ and w/o F_L fixed: no bias

$$\frac{\mathcal{B}(\mathsf{B}^0 \to \mathsf{K}^* \psi')}{\mathcal{B}(\mathsf{B}^0 \to \mathsf{K}^* \mathsf{J} / \psi)} = = \frac{\mathsf{Y}_{\psi'}}{\epsilon_{\psi'}} \frac{\epsilon_{\mathsf{J} / \psi}}{\mathsf{Y}_{\mathsf{J} / \psi}} \frac{\mathcal{B}(\mathsf{J} / \psi \to \mu^+ \mu^-)}{\mathcal{B}(\psi' \to \mu^+ \mu^-)} = 0.480 \pm 0.008 (\mathrm{stat}) \pm 0.055 (\mathrm{R}_{\psi}^{\mu\mu})$$

vs PDG 0.484 \pm 0.018(stat) \pm 0.011(syst) \pm 0.012(R_{ψ}^{ee})

Fit Validation (2)

Fit procedure

- The decay rate can become negative for certain values of the angular parameters (P1, P5', A5s)
- The presence of such a physically allowed region greatly complicates the numerical maximisation process of the likelihood by MINUIT and especially the error determination by MINOS, in particular next to the boundary between physical and unphysical regions
- The **best estimate** of **P**₁ and **P**₅' is computed by:
 - discretise the bi-dimensional space P1-P5'
 - maximise the likelihood as a function of Ys, YB, and A⁵s at fixed values of P1, P5'
 - fit the likelihood distribution with a 2D-gaussian function
 - the maximum of this function inside the physically allowed region is the best estimate
- To ensure correct coverage for the <u>uncertainties</u> of P₁ and P₅', the Feldman-Cousins method is used in a simplified form: the confidence interval's construction is performed only along two 1D paths determined by profiling the 2D-gaussian description of the likelihood inside the physically allowed region

FC stat uncertainties determination

- To ensure correct coverage for the <u>uncertainties</u> of P₁ and P₅', the Feldman-Cousins method is used in a simplified form: the confidence interval's construction is performed only along the two 1D paths determined by profiling the 2D-gaussian description of likelihood inside the physically allowed region:
 - generate 100 pseudo-experiments for each point of the path
 - fit and rank according to the likelihood-ratio
 - confidence interval bound is found when data likelihood-ratio exceeds the 68.3% of the pseudo-experiments

- Due to the limited number of pseudo-experiments statistical fluctuations are present
- To produce a robust result, the ranking of the data likelihood-ratio is plotted for several scan points
- The intersection is then computed using a linear fit