SM4

niophobic Higgs

MSSM

xotic 00 Summary

都

Bibliography

Backup 0000000

Non-SM Exotic Higgs: Beyond SM and MSSM Including results from Tevatron and LHC

Stefano Lacaprara on behalf of CMS/ATLAS/CDF/D0 collaboration

Hadron Collider Physics Symposium 2012, Higgs session Kyoto University, 15 November 2012, 京 日

SAC

Higgs in Standard Model with 4th generation

2 Fermiophobic Higgs

8 Next to Minimal Supersymmetric Standard Model

- $t \rightarrow H^{\pm}b \rightarrow (W^{\pm}a_1)b$, $a_1 \rightarrow \tau \tau$ • $h \rightarrow aa \rightarrow (4\mu)$
- $gg \rightarrow a \rightarrow (2\mu)$
- h
 ightarrow aa
 ightarrow 4γ

4 Exotic

- See-Saw Type-II H⁺⁺
- Hidden sector

5 Summary

3

- ∢ ∃ ▶

< 4 → <

Higgs in Standard Model with 4th generation

2 Fermiophobic Higgs

3 Next to Minimal Supersymmetric Standard Model

- $t \to H^{\pm}b \to (W^{\pm}a_1)b, \quad a_1 \to \tau\tau$
- h
 ightarrow aa
 ightarrow (4μ)
- $gg \rightarrow a \rightarrow (2\mu)$
- $h \rightarrow aa \rightarrow 4\gamma$

4 Exotic

- See-Saw Type-II H⁺⁺
- Hidden sector

5 Summary

3

イロト イヨト イヨト

- Standard Model with a fourth generation of fermions u₄, d₄, ℓ₄, ν₄;
- not excluded by EWK precision data if mass split not too large O(50) GeV,

- Standard Model with a fourth generation of fermions u₄, d₄, ℓ₄, ν₄;
- not excluded by EWK precision data if mass split not too large $\mathcal{O}(50)$ GeV,

Large impact on **production** and decay rates

- $\sigma(gg \rightarrow H)$ enhanced, VBF and VH negligible;
- $BR(H \rightarrow WW/ZZ)$ smaller, $H \rightarrow \gamma \gamma$ suppressed,
 - $H \rightarrow fermions$ larger

*d *s

C

V

Z

- fermions $u_4, d_4, \ell_4, \nu_4;$
- not excluded by EWK precision data if mass split not too large O(50) GeV,

Large impact on **production** and decay rates

- $\sigma(gg \rightarrow H)$ enhanced, VBF and VH negligible;
- $BR(H \rightarrow WW/ZZ)$ smaller, $H \rightarrow \gamma \gamma$ suppressed,
 - $H \rightarrow fermions$ larger

Need re-interpretation of SM(3) results in the context of SM4.

• at CDF 4.8 fb^{-1} and D0 5.4 fb^{-1} [1]

- low mass scenario $m_{\nu_4} = 80$ GeV, $m_{\ell_4} = 100$ GeV;
- high mass scenario $m_{\nu_4} = m_{\ell_4} = 1$ TeV.
- $m_{d_4} = 400 \ GeV \ m_{u_4} m_{d_4} = (50 + 10 \cdot \ln(m_H/115)) \ GeV$
- Uses only $H \to WW$
- 2 ℓ^{\pm} isolated + MET + (0,1, \geq 2 jets)

Results: $131 < m_{H_{SM4}} < 204$ GeV excluded at the 95% CL

S.Lacaprara (INFN Padova)

SM4	Fermiophobic Higgs	nMSSM 0000	Exotic 000	Summary	Bibliography	Backup ononooo
	SM4 at LHC					INFN

ATLAS 1.0-2.3 fb⁻¹ [2] CMS 4.6-4.8 fb⁻¹ [3]

 $m_{\ell_4} = m_{\nu_4} = m_{d_4} = 600 \, GeV$ $m_{\mu_{A}} - m_{d_{A}} = (50 + 10 \cdot \ln(m_{H}/115)) \ GeV$

ATLAS/CMS each exclude

- $H \rightarrow \gamma \gamma$, bb (almost no sensitivity)
- $H \rightarrow \tau \tau$
- $H \rightarrow WW$

Results

イロト 不得下 イヨト イヨト 二日

Higgs in Standard Model with 4th generation

Fermiophobic Higgs

3 Next to Minimal Supersymmetric Standard Model

- $t \to H^{\pm}b \to (W^{\pm}a_1)b, \quad a_1 \to \tau\tau$
- h
 ightarrow aa
 ightarrow (4μ)
- $gg \rightarrow a \rightarrow (2\mu)$
- $h \rightarrow aa \rightarrow 4\gamma$

4 Exotic

- See-Saw Type-II H⁺⁺
- Hidden sector

5 Summary

3

(日) (周) (三) (三)

- Possible with extended Higgs sector (2DHM)
- SM-like but no coupling to fermions;

3

イロト イポト イヨト イヨト

- Possible with extended Higgs sector (2DHM)
- SM-like but no coupling to fermions;

decay $H \rightarrow WW, ZZ, \gamma\gamma$

- 本間 と 本語 と 本語 と

3

- Possible with extended Higgs sector (2DHM)
- SM-like but no coupling to fermions;

decay $H \rightarrow WW, ZZ, \gamma\gamma$ production only via VBF and VH \checkmark , no $gg \rightarrow H$ nor $ttH \times$.

- \blacktriangleright Yield $\rightarrow \gamma\gamma$ comparable to SM at 125 GeV
- Higgs is boosted
- additional signatures: di-jet, lepton, MET
- LEP excluded H_{fp} $M_H < 108.2$ GeV.

- SM Higgs analysis re-optimized to use boosted Higgs
- Channels considered:
 - $H \rightarrow \gamma \gamma$
 - $H \rightarrow WW \rightarrow 2\ell 2\nu$ (0, 1, \geq 2 jets)
 - $WH \rightarrow WWW$
 - $ZH \rightarrow ZWW$

- ATLAS 4.9 fb⁻¹ [5]
- $H \rightarrow \gamma \gamma$: SM-like selections
- 9 sub-channels
 - η -region: both central, rest
 - converted/unconverted
 - Low/High $P_{T_t}^{\gamma\gamma}$

 $P_{T_{\star}}^{\gamma\gamma} \gamma\gamma$ transverse momentum orthogonal to the $\gamma\gamma$ thrust (\hat{t}) axis in the transverse plane

• + converted γ in transition region

S.Lacaprara (INFN Padova)

+ 01

P1.

de

- CMS 4.9-5.1 fb⁻¹ [3] and 5.1+5.3 fb⁻¹ [6]
- $H \rightarrow WW \rightarrow 2\ell^{\pm}2\nu + (2 \text{ jets}, \ell)$
- $H \rightarrow ZZ$ re-interpretation of SM analysis;
- $H \rightarrow \gamma \gamma$, in association with:
 - pair of jets with large $\Delta \eta_{jj}$
 - an isolated muon/electron or large MET
 - untagged (4 sub-channels by η_{γ} and shower shape)

2D analysis: $m_{\gamma\gamma}, \pi_T^{\gamma\gamma} = p_T^{\gamma\gamma}/m_{\gamma\gamma}$ to exploit the $H \to \gamma\gamma$ boost.

 $M_H = 125.5 \text{ GeV } p_0 = 3.2\sigma \text{ (w/o LEE effect)}$. Signal strenght too low for a Fermiophobic Higgs hypothesis. $m_{H_{fp}} < 147 \text{ GeV}$ 95% CL

S.Lacaprara (INFN Padova)

Non-SM Exotic Higgs

Kyoto, 15/11/2012 11 / 33

1 Higgs in Standard Model with 4th generation

2 Fermiophobic Higgs

Next to Minimal Supersymmetric Standard Model $t \to H^{\pm}b \to (W^{\pm}a_1)b, \quad a_1 \to \tau\tau$

•
$$h \rightarrow aa \rightarrow (4\mu)$$

• $gg \rightarrow a \rightarrow (2\mu)$

•
$$h
ightarrow$$
 $aa
ightarrow$ 4γ

Exotic

- See-Saw Type-II H⁺⁺
- Hidden sector

5 Summary

3

(日) (同) (三) (三)

- nMSSM: add one scalar singlet to MSSM.
 - ▶ 3 CP-even $h_{1,2,3}$, 2 CP-odd $a_{1,2}$, charged H^{\pm}
 - one CP-odd boson (a_1) can be very light $m_{a_1} \lesssim 2m_b$
- solve some problem of MSSM
 - accommodates better $M_H = 125 126 \text{ GeV}$
 - ▶ no fine-tuning for µ-term (produced by VEV of singlet)
- Production via $gg \rightarrow (h, a)$ through t, b triangle loop.

Channels:

- $t \to H^{\pm}b \to (W^{\pm}a_1)b$ $a \to \tau\tau$
- $h \rightarrow a_1 a_1 \rightarrow 4 \mu$
- $a_1 \rightarrow \mu \mu$

•
$$h \rightarrow a_1 a_1 \rightarrow 4\gamma$$

• Searches also at B-factory via $\Upsilon(nS) o \gamma a_1$

(日) (同) (三) (三)

CDF L= 2.7 fb^{-1} [7]

- $t\bar{t}$ standard selection: isolated- μ/e +MET +3 jets+b-jets
- au selection for 1-prong decay: 1 isolated track far from leptons
- signal extraction based on isolated track pt spectrum
- no excess, limit on $B(t \rightarrow H^{\pm}a_1)$ vs M_H^{\pm} for $m_{a_1} = 4 - 9 \text{ GeV}$

S.Lacaprara (INFN Padova)

12 13 1 M.... [GeV]

Non-SM Exotic Higgs

8.5 M... [GeV]

M... [GeV]

Kyoto, 15/11/2012

ATLAS $L = 4.9 \, \text{fb}^{-1}$ [12]

- Sensitive to very light *a*:
 - ▶ for $M_a < 3m_{\pi^0}$: $a \rightarrow \gamma \gamma$ enhanced, very clean signal.
- large boost for a, γ very collinear, seen almost as $H \rightarrow \gamma \gamma$
- same analysis as SM $H \rightarrow \gamma \gamma$
 - ▶ relaxed shower shape requirements on γ
 - allow larger lateral energy leak F_{side}
- limit on $\sigma(h \rightarrow aa \rightarrow 4\gamma)$ vs $M_h \in [110 150]$ GeV for $m_a = 100, 200, 400$ MeV

1 Higgs in Standard Model with 4th generation

2 Fermiophobic Higgs

3 Next to Minimal Supersymmetric Standard Model

- $t \to H^{\pm}b \to (W^{\pm}a_1)b, \quad a_1 \to \tau\tau$
- $h \rightarrow aa \rightarrow (4\mu)$
- $gg \rightarrow a \rightarrow (2\mu)$
- $h
 ightarrow aa
 ightarrow 4\gamma$

4 Exotic

- See-Saw Type-II H⁺⁺
- Hidden sector

5 Summary

3

(日) (周) (三) (三)

Model: Minimal See-Saw Type II

- Additional scalar field, triplet under *SU*(2)_{*L*}
- New Higgs-like particles $\phi^{++}, \phi^+, \phi^0$
- responsible for low neutrino masses via see-saw mechanism
 - \blacktriangleright Search for ϕ^{++} and ϕ^+
 - Produced from W/Z
 - $\blacktriangleright \phi^{\pm\pm} \to \ell^{\pm} \ell^{\pm}:$

same sign leptons signature

SM4	Fermiophobic Higgs	nMSSM 0000	Exotic ○○●	Summary	Bibliography	Backup
🔀 Hi	idden sector					INFN

ATLAS L= $1.9 \, \text{fb}^{-1}$ [17]

- Search for rare H decay into hidden sector
- $H \rightarrow 2f_{d_2}, f_{d_2} \rightarrow f_{d_1}\gamma_d, \gamma_d \rightarrow \mu\mu$
 - $m_{\gamma_d} = 400 \text{ MeV}$, long-lived
 - $B(\gamma_d \rightarrow \mu\mu) = 45\%$
- $\bullet\,$ Back-to-back pairs of isolated, collinear, displaced μ^\pm
- little MET since f_{d_1} are emitted back-to-back
- limit on $\sigma B(H
 ightarrow 2\gamma_d + X)$ vs $(c au)_{\gamma_d}$
 - ► $BR(H \rightarrow 2\gamma_d + X) < 10\%$ for 7(5) < $c\tau < 82(159)$ mm for $M_H = 140(100)$ GeV

3

- 4 同 6 4 日 6 4 日 6

1 Higgs in Standard Model with 4th generation

2 Fermiophobic Higgs

3 Next to Minimal Supersymmetric Standard Model

- $t \to H^{\pm}b \to (W^{\pm}a_1)b, \quad a_1 \to \tau\tau$
- h
 ightarrow aa
 ightarrow (4μ)
- $gg \rightarrow a \rightarrow (2\mu)$
- $h
 ightarrow aa
 ightarrow 4\gamma$

4 Exotic

- See-Saw Type-II H⁺⁺
- Hidden sector

5 Summary

3

(日) (周) (三) (三)

- A rich program of searches for exotic Higgs beyond SM and MSSM,
- including SM4, Fermiophobic SM, nMSSM, SeeSaw models, hidden sector.

- A rich program of searches for exotic Higgs beyond SM and MSSM,
- including SM4, Fermiophobic SM, nMSSM, SeeSaw models, hidden sector.

S.Lacaprara (INFN Padova)

Non-SM Exotic Higgs

SM4	Fermiophobic Higgs	nMSSM 0000	Exotic 000	Summary	Bibliography	Backup onnooc
	Bibliography I					INFN

- [1] CDF and D0 Collaboration. Combined tevatron upper limit on $gg \rightarrow h \rightarrow W^+W^-$ and constraints on the higgs boson mass in fourth-generation fermion models. *Phys. Rev. D*, 82:011102, Jul 2010.
- [2] ATLAS Collaboration. Update of the combination of higgs boson searches in pp collisions at sqrt(s) = 7 tev with the atlas experiment at the Ihc. Technical Report ATLAS-CONF-2011-135, CERN, Geneva, Sep 2011.
- CMS Collaboration. Combination of sm, sm4, fp higgs boson searches. CMS Physics Analysis Summary, CMS-PAS-HIG-12-008, 2012.
- [4] The CDF and D0 Collaborations and the Tevatron New Physics and Higgs Working Group. Combined cdf and d0 upper limits on fermiophobic higgs boson production with up to 8.2 fb-1 of ppbar data. FERMILAB-CONF-11-413-E, 2011.
- [5] ATLAS Collaboration. Search for a fermiophobic Higgs boson in the diphoton decay channel with the ATLAS detector. Eur.Phys.J., C72:2157, 2012.
- [6] CMS Collaboration. Higgs to gamma gamma, fermiophobic. CMS Physics Analysis Summary, CMS-PAS-HIG-12-022, 2012.
- [7] CDF Collaboration. Search for a very light *cp*-odd higgs boson in top quark decays from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. *Phys. Rev. Lett.*, 107:031801, Jul 2011.
- [8] D0 Collaboration. Search for next-to-minimal supersymmetric higgs bosons in the h → aa → μμμμ, μμττ channels using pp̄ collisions at √s = 1.96 TeV. Phys. Rev. Lett., 103:061801, Aug 2009.
- CMS collaboration. Search for new light bosons in decays of a non-standard-model higgs boson to two pairs of muons in proton-proton collisions at sqrt(s) = 7 tev. Technical Report CERN-PH-EP-2012-292. CMS-EXO-12-003, CERN, Geneva, Oct 2012.
- [10] CDF Collaboration. Search for narrow resonances lighter than υ mesons. The European Physical Journal C Particles and Fields, 62:319–326, 2009. 10.1140/epic/s10052-009-1057-4.

3

イロト イポト イヨト イヨト

SM4	Fermiophobic Higgs	nMSSM 0000	Exotic 000	Summary	Bibliography	Backup onnooc
	Bibliography II					INFN

- [11] CMS Collaboration. Search for a light pseudoscalar boson in the dimuon channel. CMS Physics Analysis Summary, CMS-PAS-HIG-12-004, 2012.
- [12] ATLAS collaboration. Search for a higgs boson decaying to four photons through light cp-odd scalar coupling using 4.9 fb⁻¹ of 7 TeV pp collision data taken with atlas detector at the lhc. Technical Report ATLAS-CONF-2012-079, CERN, Geneva, Jul 2012.
- [13] ATLAS Collaboration. Search for doubly-charged Higgs bosons in like-sign dilepton final states at $\sqrt{s} = 7$ TeV with the ATLAS detector. 2012.
- [14] CMS Collaboration. Inclusive search for doubly charged higgs in leptonic final states with the 2011 data at 7 tev. CMS Physics Analysis Summary, CMS-PAS-HIG-12-005, 2012.
- [15] D0 Collaboration. Search for doubly charged higgs boson pair production in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. *Phys. Rev. Lett.*, 108:021801, Jan 2012.
- [16] CDF Collaboration. Search for new physics in high p_T like-sign dilepton events at cdf ii. Phys. Rev. Lett., 107:181801, Oct 2011.
- [17] Georges Aad et al. Search for displaced muonic lepton jets from light Higgs boson decay in proton-proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector. 2012.
- [18] ATLAS collaboration. A search for a light cp-odd higgs boson decaying to μ⁺μ⁻ in atlas. Technical Report ATLAS-CONF-2011-020, CERN, 2011.

3

(日) (周) (三) (三)

-

< 177 ▶

S.Lacaprara (INFN Padova)

Kyoto, 15/11/2012 28 / 33

CMS $L = 1.3 \, \text{fb}^{-1}$ [11].

- $\sigma(gg
 ightarrow a)_{LHC} pprox 4.5 \sigma_{Tevatron}$
 - ► Trigger: $2\mu^{\pm}$, $p_t > 3.5 \text{ GeV}$, $p_t^{\mu\mu} > 6 \text{ GeV}$ $M_{\mu\mu} \in [5 - 14] \text{ GeV}$, same vtx, pre-scale=2
 - Background: $\Upsilon(nS)$ +continuous
 - Fit separately $M_{\mu\mu}$ for barrel and end-cap

•
$$M_{\mu\mu} \in [5.5-8.8] \cup [11.5-14]$$
 GeV

• excluding the $\Upsilon(nS)$ peaks

- 4 @ > - 4 @ > - 4 @ >

3

イロン イヨン イヨン イヨン

D0 L= $4.2 \, \text{fb}^{-1}$ [8]

- 4 μ Not enough granularity for $\mu\mu$, so 2(μ +track) isolated pairs, same vtx
 - ▶ background from resonances $\eta, \phi, J/\psi, \ldots$ and Z/γ^*
 - signal $m_1(\mu, track) = m_2(\mu, track)$, background from side bands;
- $2\mu 2 au$ > 2μ , $M_{\mu\mu}$ < 20 GeV and Σp_t^{μ} > 35 GeV
 - plus complex requirement for $\tau \; ({
 m MET}/{
 m MET} + {
 m jet}/{\mu}/{
 m e})$
 - signal search in $M_{\mu\mu}$ spectrum

Limit on $\sigma(p\bar{p} \rightarrow h) \times B(h \rightarrow a_1a_1)$ vs M_{a_1} and M_h

