Efficiency for L1 DT primiteves

Stefano Lacaprara

INFN Padova

No Meeting, PS, 25 February 2014

Outline

- Intro
- Eff vs chamber position
- Eff vs chamber position vs n Layers
- 4 Eff vs chamber position vs n SL
- Primitives vs Code
- Quality code

Intro

- Look at efficiency for L1DTTrigger;
- Look only at bending primitives: ϕ superlayers (1 and 3);
- Efficiecny definition: $\epsilon = \frac{N}{D}$
 - Numerator:
 - ★ A primitive is present;
 - ★ Consider only correct BX (=0), any code;
 - ★ for legacy and new L1 primitives.
 - Denominator:
 - ★ Some DTDigi are present;
 - ★ Any number of DTDigi
 - Separately for number of Layers and SuperLayers which have at least one Digi;
 - ★ For local position in chamber use centroid of wires with Digis, normalized to chamber width $(x \in [-1., 1.])$

- CMSSW_5_3_14
- latest code from GIT repository
 battibass/L1IntegratedMuonTrigger.git
- datasample
 - ▶ 100k
 - SingleMu
 - flat pT Gun, $3 < p_T < 140 \text{ GeV}$
 - ▶ charge=+1
 - ▶ $|\eta| < 0.85$
 - ► $-30^{\circ} < \phi < 30^{\circ}$
 - ▶ No PU, No noise

Outline

- Intro
- 2 Eff vs chamber position
- Self vs chamber position vs n Layers
- 4) Eff vs chamber position vs n SL
- Primitives vs Code
- Quality code

Eff vs chamber position

- ullet Showing ϵ for legacy and new primitives as well as ratio New/Legacy
 - grouped per station and per wheel;
 - per chamber granularity is available, but too much stuff to show here.
- only if BX is correct (BX=0)
- Inclusive in term of quality code, and number of Layers or SuperLayers with DTDigis;
 - Exclusive efficiency later;
- Drop at border of chamber (acceptance);
- for Station 1 and 2 (all wheel) a hole at x = 0, maybe a bug in how the DTDigi centroid is computed: checking;
- ullet Some % of ϵ drop from Legacy to New, but for Station 4

Efficiency vs Chamber position by Station

Efficiency vs Chamber position by Station

Efficiency vs Chamber position by Wheel

Legacy

Efficiency vs Chamber position by Wheel

Outline

- Intro
- Eff vs chamber position
- 3 Eff vs chamber position vs n Layers
- 4) Eff vs chamber position vs n SL
- Primitives vs Code
- Quality code

Eff vs chamber position vs n Layers

- \bullet Showing ϵ for legacy and new primitives as well as ratio New/Legacy
 - grouped per station and per wheel;
 - per chamber granularity is available, but too much stuff to show here.
- only if BX is correct (BX=0)
- Inclusive in term of quality code
- As a function of Num of Layers with at least one DTDigi
 - ▶ NB: considering only ϕ Layers (SL=1,3, max N layers=8)
- ϵ drops only for nLayers=8 (and some for nLayers=7)

Efficiency vs Chamber position vs #Layers by

Legacy

Efficiency vs Chamber position vs #Layers by Station

Efficiency vs Chamber position vs #Layers by Wheel

Legacy

Efficiency vs Chamber position vs #Layers by Wheel

Outline

- Intro
- Eff vs chamber position
- Eff vs chamber position vs n Layers
- 4 Eff vs chamber position vs n SL
- Primitives vs Code
- Quality code

Eff vs chamber position vs n SL

- ullet Showing ϵ for legacy and new primitives as well as ratio New/Legacy
 - grouped per station and per wheel;
 - per chamber granularity is available, but too much stuff to show here.
- only if BX is correct (BX=0)
- Inclusive in term of quality code
- As a function of Num of SuperLayers with at least one DTDigi
 - ▶ NB: considering only ϕ SL (1,3)
- Show also ϵ vs pos for nSL=1 and nSL=2
- \bullet drops only for nSL=2, not at the border of the chambers, and much less for Station 4

Efficiency vs Chamber position vs #SL by Station

Efficiency vs Chamber position vs #SL by Station

Efficiency vs Chamber position vs #SL by Wheel

Legacy

Efficiency vs Chamber position vs #SL by Wheel

Efficiency vs Chamber position #SL==1 by Station

Legacy

Efficiency vs Chamber position vs #SL by Station

Efficiency vs Chamber position #SL==1 by Wheel

Legacy

Efficiency vs Chamber position vs #SL by Wheel

Efficiency vs Chamber position #SL==2 by Station

Legacy

Efficiency vs Chamber position #SL==2 by Station U

New/Legacy

Hbb

Efficiency vs Chamber position #SL==2 by Wheel

Legacy

Efficiency vs Chamber position #SL==2 by Wheel

- Intro
- 2 Eff vs chamber position
- Eff vs chamber position vs n Layers
- 4 Eff vs chamber position vs n SL
- Primitives vs Code
- Quality code

Primitives vs Code

- Study the Primitive distribution as a function of chamber position
- Subdivided for different Quality Code;

Legacy

- LI. LO never used.
 - at chamber edge: HI (almost no HO)
 - Almost no HO for wheel0 and nSL=1

- at chamber edge: HI+RPC (almost no HO)
- HO similar to HO+RPC St3 and St4 (no outer RPC)
- Almost all HO+RPC for wheel0 and nSI =1

	Code	Legacy	New
	1	LÍ	HI
	2	LO	НО
	3	HI	HI+RPC
	4	НО	HO+RPC
	5	LL	(HI+HO)+ RPC@bx0
	6	HL	(LL HL)
	7	HH	HH

N primitives vs Chamber position vs Code by Station

Legacy

St 3

N primitives vs Chamber pos vs Code by Station vs nSL

Legacy n SL=1

N primitives vs Chamber pos vs Code by Station vs nSL

Legacy n SL=2

N primitives vs Chamber position vs Code by Wheel

Legacy

N primitives vs Chamber position vs Code by Wheel vs nSL

Legacy n SL=1

N primitives vs Chamber position vs Code by Wheel vs nSL

Legacy n SL=2

N primitives vs Chamber position vs Code by Station

New

N primitives vs Chamber pos vs Code by Station vs

New n SL=1

1 U P 1 OF P 1 E P 1 E P 7 C

N primitives vs Chamber pos vs Code by Station vs nSL

New n SL=2

N primitives vs Chamber position vs Code by Wheel

New

N primitives vs Chamber position vs Code by Wheel

New n SL=1

N primitives vs Chamber position vs Code by Wheel

New n SL=2

Outline

- Intro
- Eff vs chamber position
- 3 Eff vs chamber position vs n Layers
- 4 Eff vs chamber position vs n SL
- Primitives vs Code
- Quality code

Quality code New vs Legacy by Station

Quality code New vs Legacy by Wheel

- Overall, the New Primitives behaves as expected;
- There is a drop of efficiency at the level of few %;
- Something odd in Wheel=0 for nSL=1;
- RPC use:
 - good for HI for all station and for HO only for station 1 and 2
 - at chamber edge many new superprimitives are HI+RPC, almosto none HO+RPC