

Primo workshop italiano sulla fisica di ATLAS e CMS

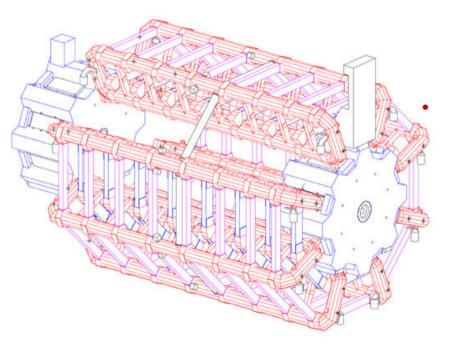
Pisa, Scuola Normal Superiore, 10 giugno 2003

Ricostruzione e identificazione di muoni in ATLAS e CMS

Stefano Lacaprara, Stefania Spagnolo

Stefano.Lacaprara@pd.infn.it, Stefania.Spagnolo@le.infn.it

INFN and Padova University, INFN Lecce



Outline

- ATLAS e CMS
 - Sistema magnetico,
 - ullet Risoluzione p_t ,
 - Layout spettrometri
 - Rivelatori,
 - Allineamento e calibrazione
 - Trigger,
- Ricostruzione
- Performances
- Conclusioni

I Toroidi di ATLAS

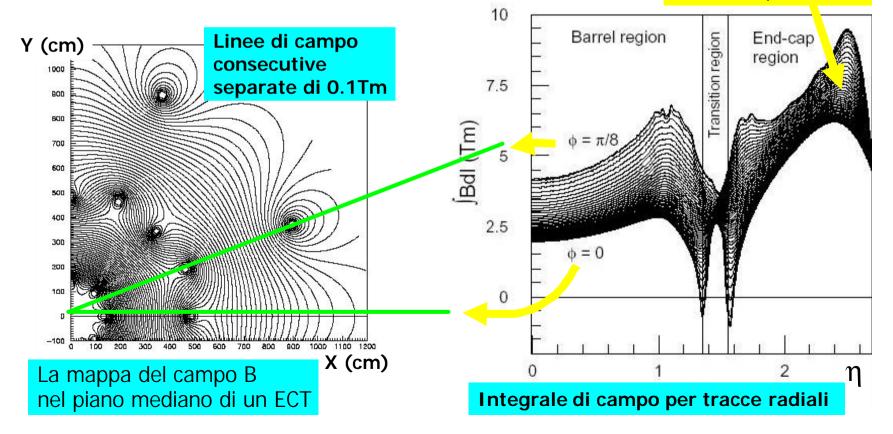
- 1 toroide per il barrel BT $(\eta < 1)$ 8 bobine
 - Lunghezza 26m
 - Raggi interno/esterno 9.5m/20m
 - Bending power ∫Bdl = 2 6 Tm
 - 1 Criostato/bobina

2 toroidi per gli endcaps ECT ($\eta > 1.4$) 8 bobine ciascuno

- Collocati alle due estremità all'interno del BT, bobine ruotate di 22.5° rispetto al BT
- Lunghezza 5m
- Raggi interno/esterno 1.7m/10.7m
- Bending power ∫BdI = 4 8 Tm
- Singolo criostato per ciascun ECT

Curvatura nel piano r-z Sovrapposizione dei campi nella regione 1<η<1.4

I Toroidi di ATLAS

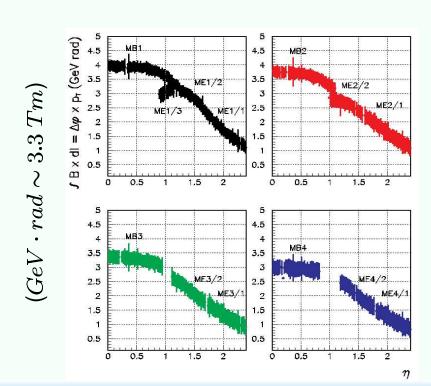

Richieste soddisfatte dal layout:

Campo toroidale in avanti \Rightarrow buona risoluzione in momento trasverso fino a $\eta \sim 2.7$ Toroide nel barrel \Rightarrow minimizzazione delle forze magnetiche sul sistema;

minime dimensioni/costi

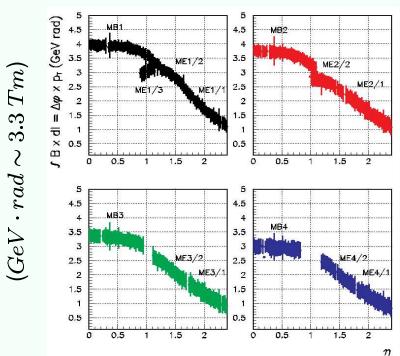
Overlap BT-ECT ⇒ massima accettanza per muoni singoli

Alto bending power ad alta rapidità



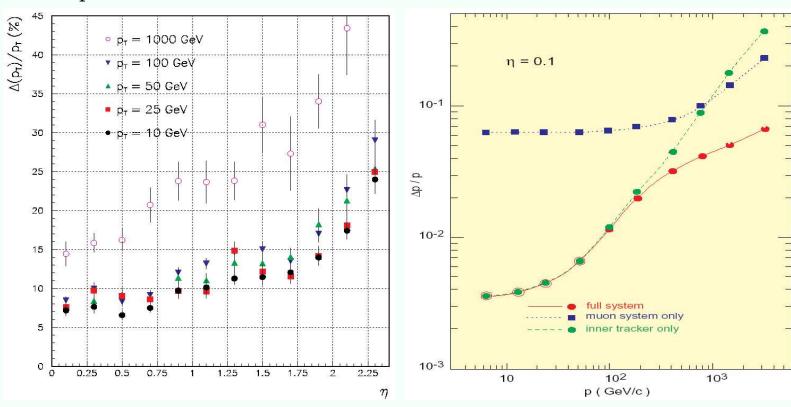
CMS: sistema magnetico

- Solenoide centrale, $B=4~T, l\approx 14~m, r=3~m,$
- ullet campo di ritorno nel ferro del giogo $B\sim 2~T$,
- $\int Bdl \sim 12~Tm$ all'interno del solenoide $|\eta| < 1.45$, poi decresce ($\sim 4~Tm$ a $\eta \sim 2.4$)



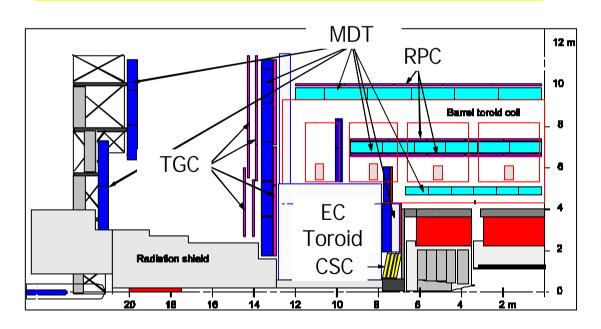
CMS: sistema magnetico

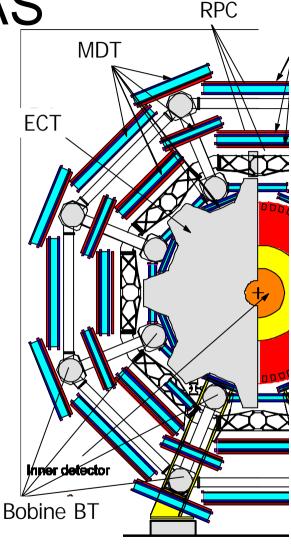
- Solenoide centrale, $B=4~T, l\approx 14~m, r=3~m,$
- campo di ritorno nel ferro del giogo $B \sim 2 T$,
- $\int Bdl \sim 12~Tm$ all'interno del solenoide $|\eta| < 1.45$, poi decresce ($\sim 4~Tm$ a $\eta \sim 2.4$)
- $\int Bdl \sim 3~Tm$ fuori del solenoide nel barrel, $\sim 1.6 \div .6$ nell'endcap,
- possibile misura indipendente dentro e fuori magnete.



CMS: Risoluzione p_t

- grande bending power, necessaria risoluzione relativamente poco spinta
- molto materiale nello spettrometro: multiple scattering dominante per σ_{p_t} basso p,
- energy loss, showering, ΔB , allineamento
- σ_{p_t} migliore con uso TRK fino $\mathcal{O}(100~GeV)$




Lo spettrometro di ATLAS

L'organizzazione dei rivelatori in ϕ segue la periodicità dei toroidi -> otto settori "Large" e "Small"

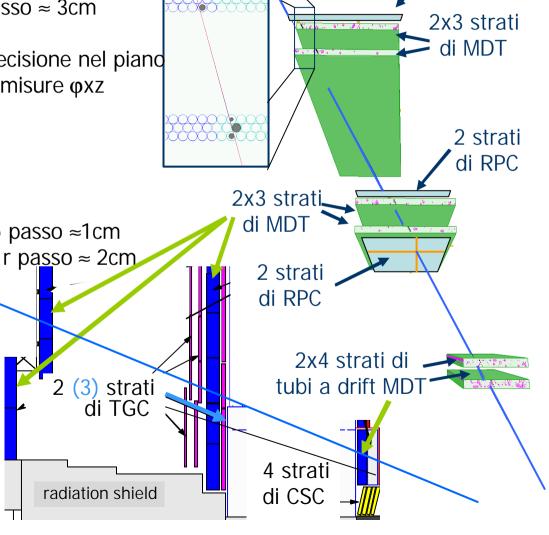
GOAL

Tracciamento di muoni di p_T tra 6 GeV e 1 TeV fino a η <2.7 risoluzione pochi % fino a 100 GeV, 10% a 1TeV Trigger di muoni con p_T > 6 GeV fino a η <2.4

Layout dello spettrometro ATLAS

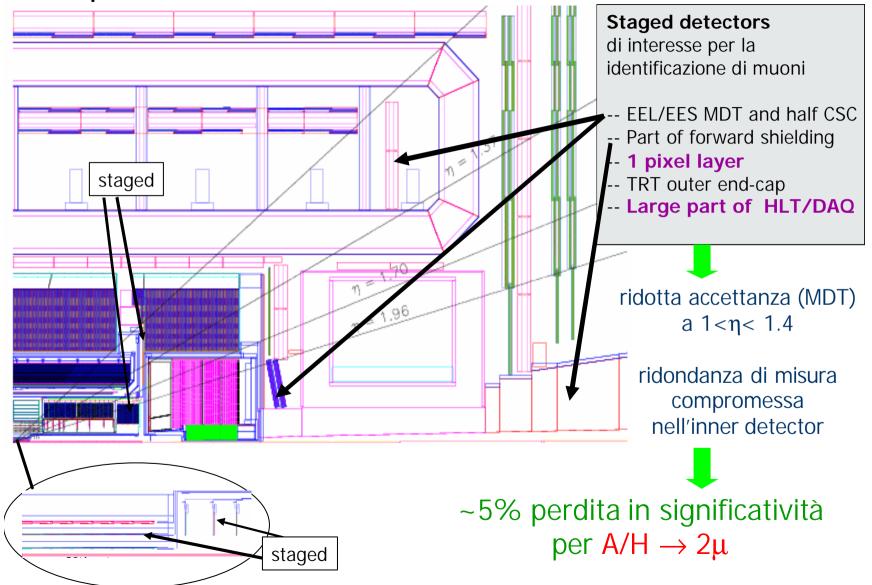
2 strati

di RPC


Barrel MDT misurano z σ ≈80 μm RPC strip $\varphi \in \eta$ passo ≈ 3 cm

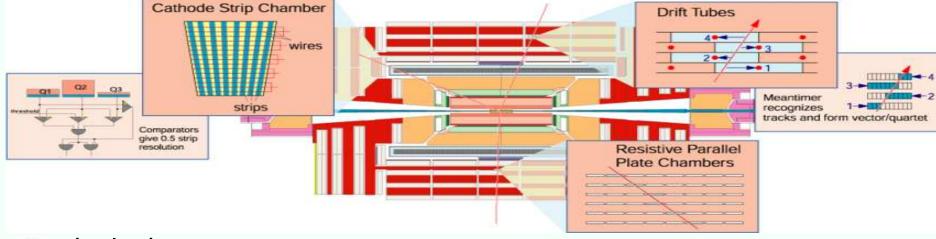
> ⇒ 20 misure z di precisione nel piand di curvatura + 6 misure φxz

Endcap

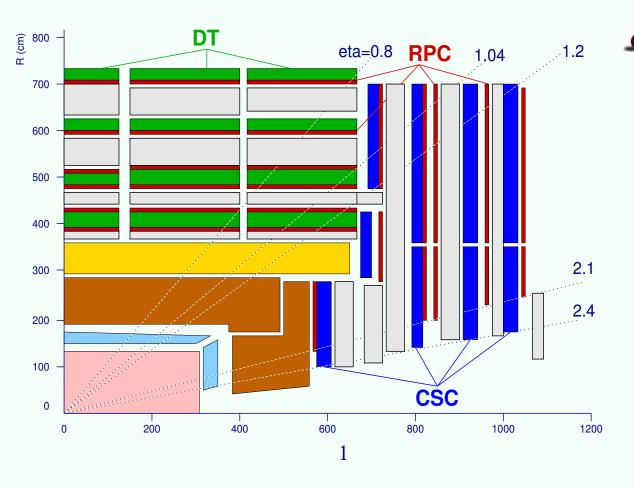

MDT misurano r σ ≈80 μm CSC strip r $\sigma \approx 60 \, \mu \text{m}$, strip ϕ passo $\approx 1 \, \text{cm}$ TGC strip φ passo \approx 3cm, fili r passo \approx 2cm

- $\Rightarrow \eta < 2$ 20 misure r di precisione +9 misure φxr
- \Rightarrow 2< η <2.7 16 misure r di precisione
 - + 4 misure φ
 - + 7 misure φxr

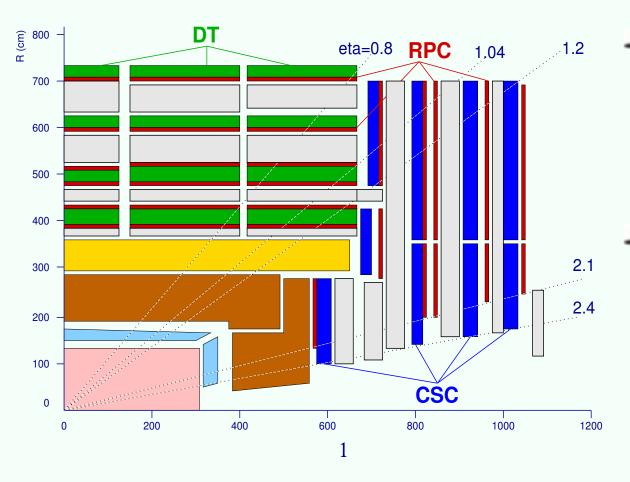
ATLAS


Lo spettrometro nella fase iniziale di run

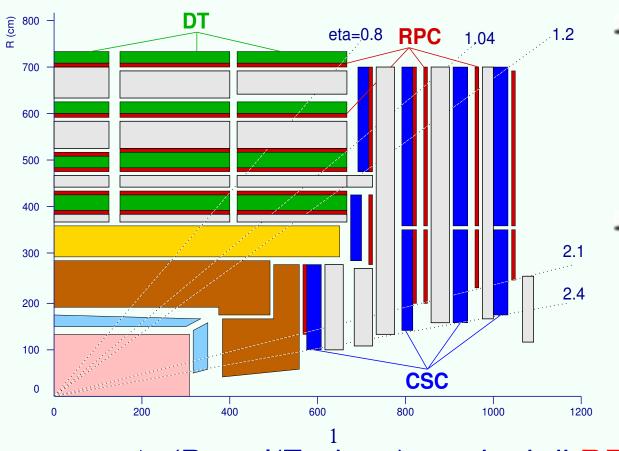
Spettrometro di CMS



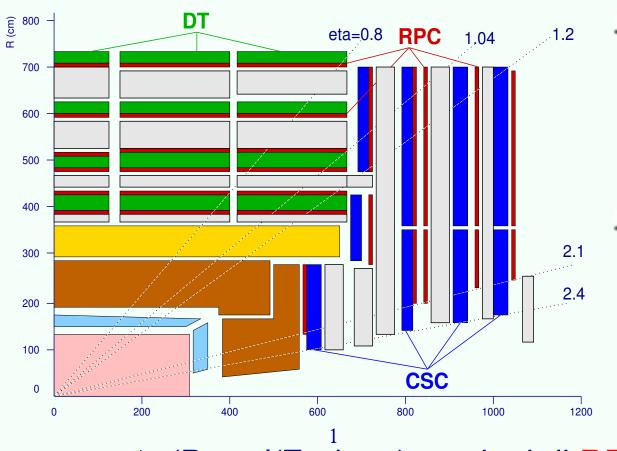
- risoluzione $\sigma_{R\phi} \sim 100~\mu m$,
- risoluzione $\sigma_t \sim 5~ns$ per bx ass.,
- Barrel
 - $\vec{B} \approx 0, R(\mu) \lesssim 1 \; Hz/cm^2, (n, \gamma) \sim 0$
 - Drift Tubes $\sigma_x \approx 200 \ \mu m/layer$,
- Endcap
 - $\vec{B} \neq 0, R(\mu) \lesssim 10 \ kHz/cm^2, (n, \gamma) \sim 10 \ kHz/cm^2$
 - Cathod Strips Chambers $\sigma_x \approx 100 \div 240 \ \mu m/layer$,
- Trigger
 - Resistive Plate Chambers: $\sigma_t \lesssim 2 \ ns$
 - (DT+CSC)+RPC



4 stazioni DT's, entro return yoke $|\eta| \lesssim 1.2$: 3×4 layers di tubi a drift (2 $r - \phi$, 1 r - z)



- entro return yoke $|\eta| \lesssim 1.2$: 3×4 layers di tubi a drift (2 $r-\phi$, 1 r-z)
- 4 stazioni CSC inframezzate dai dischi iron yoke, 6 layers ciascuna, $|\eta| < 2.4$,



- entro return yoke $|\eta| \lesssim 1.2$: 3×4 layers di tubi a drift (2 $r-\phi$, 1 r-z)
- 4 stazioni CSC inframezzate dai dischi iron yoke, 6 layers ciascuna, $|\eta| < 2.4$,

• 6/4 (Barrel/Endcap) stazioni di RPC fino $|\eta| < 2.1$,

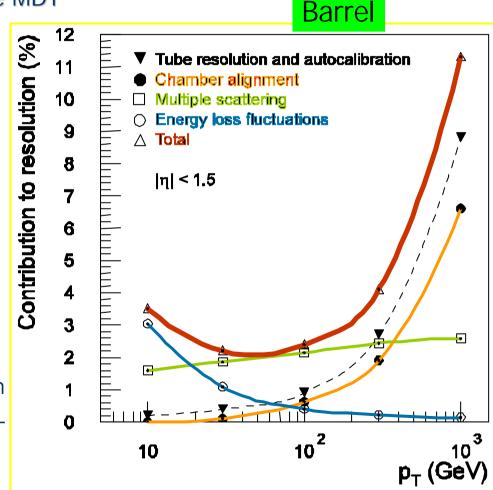
- 4 stazioni DT's, entro return yoke $|\eta| \lesssim 1.2$: 3×4 layers di tubi a drift (2 $r - \phi$, 1 r - z)
- 4 stazioni CSC inframezzate dai dischi iron yoke, 6 layers ciascuna, $|\eta| < 2.4$,
- 6/4 (Barrel/Endcap) stazioni di RPC fino $|\eta| < 2.1$,
- L1 trigger fino $|\eta| < 2.1$
- Start-up staged detector: no ME4 e RPC $|\eta| < 1.6$

Contributi alla risoluzione in p_T

Items cruciali

noti campo magnetico e di dE/dx nei calorimetri

Risoluzione spaziale e calibrazione MDT


Allineamento

La richiesta più stringente:

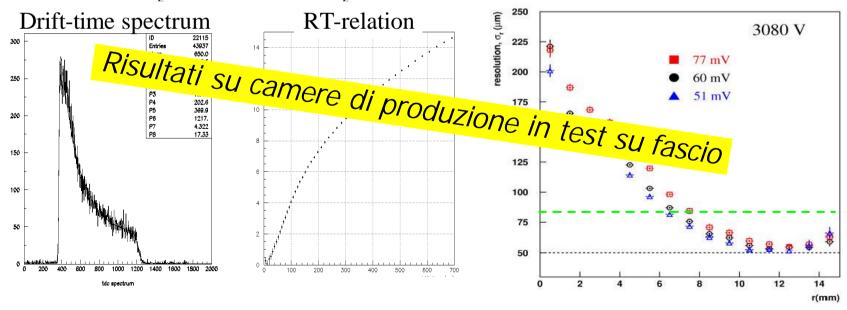
$$\Delta p_T/p_T = 0.1 \text{ per } p_T = 1\text{TeV}$$

 $p_T = 1\text{TeV} \rightarrow \text{sagitta } 500 \mu\text{m};$
 $\Delta s = 50 \mu\text{m}$

Goal raggiungibile con

- Risoluzione spaziale ~80μm
- posizione del filo nota entro 20µm
- Allineamento controllato entro 30-40µm (barrel - endcaps)

Risoluzione spaziale: MDT


Parametri meccanici dei tubi a drift
Catodo cilindrico in Al spessore 400 µm
raggio 1.5cm
Filo W-Re diametro 50 µm
Lunghezza dei tubi 1-6 metri
Tolleranze meccaniche 20 µm

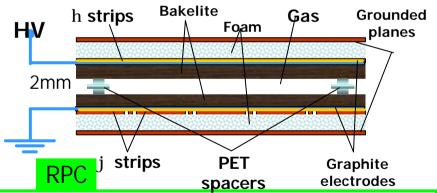
R-t non lineare accuratamente calibrata

- \Rightarrow vs B (non uniforme lungo φ)
- \Rightarrow vs T (Δ Tmax ~2.65ns/K)
- \Rightarrow vs % di CO₂ (Tmax ~83ns/%CO₂)

 $Ar(93\%)CO_2(7\%)$ a P=3bar (ageing safe!) HV 3080V, soglia 25 e-

Massimo tempo di drift ~800ns Guadagno 2x10⁴ Risoluzione spaziale media 80μm x 6(o 8) misure ⇒ ~50 μm e ~0.3mrad per stazione

Caratteristiche principali di RPC/TGC/CSC ATLAS

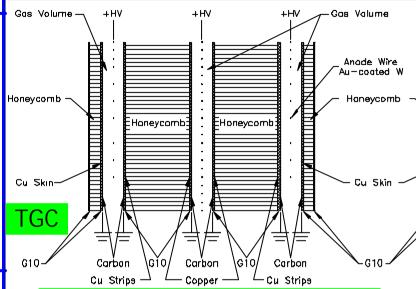

Anodo-Anodo 1.8mm Anodo-Catodo 1.4mm Catodo-Catodo 2.8 mm

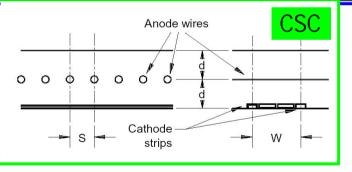
Gas: 55 % CO₂, 45 % N-Pentano; HV= 3.1 KV ⇒ regime di valanga saturata

Tempi di drift brevi → risoluzione temp.

sufficiente per bunch-crossing ID.

Fili misurano R e sono usati per il trigger Strip misurano φ ; pitch 20-30mm



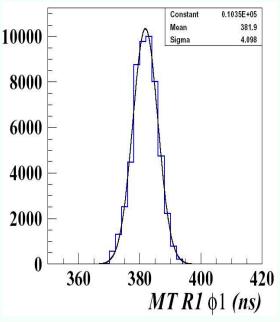

Campo elettrico nella gap ~ 5 KV/mm;

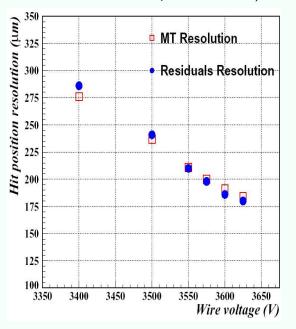
Gas: $C_2H_2F_4/C_4H_{10}/SF_6$ 96.7/3/0.3

 ρ bakelite ~ $2x10^{10} \Omega cm$; strip in Cu, pitch ~ 30mm

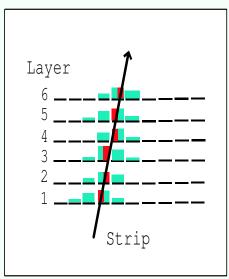
Risoluzione temporale ~1.5 ns

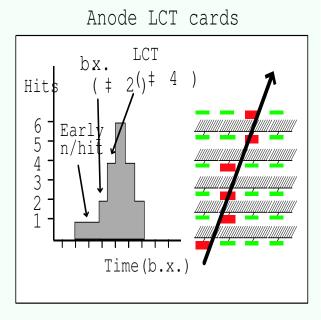
Pitch anodo-anodo: 2.54 mm
Strip read-out pitch: 5.08 mm
Risoluzione 50 µm da interpolazione
della carica letta sulle strip del catodo
Risoluzione temp. 7 ns(max. Tdrift=30ns)

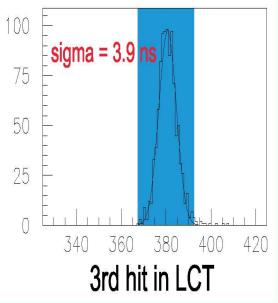


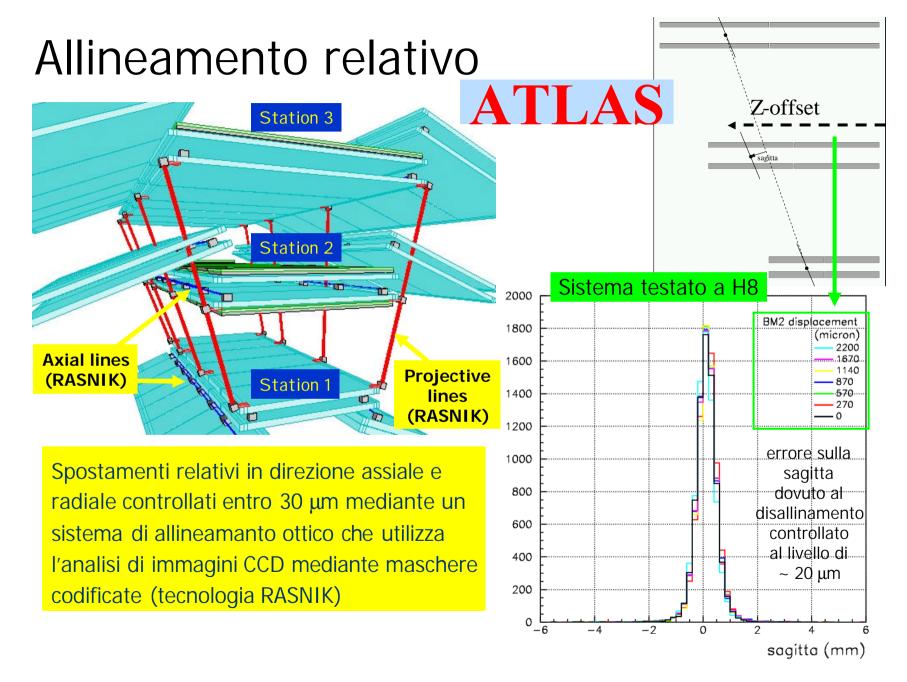

Drift Tube chambers

- ullet campo ec E ottimizzato per linearità,
- Gas mixture: $Ar CO_2$ 85 15%, pressione atmosferica,
- Risoluzione cella $\sigma_x \sim 180 \ \mu m$,
- Self-trigger: identificazione bx tramite mean-timer grazie a 4 piani spostati di 1/2 cella: $\sigma_t \sim 4 \ ns$
- Allineamento dei layer e superlayer entro $\mathcal{O}(10 \ \mu m)$




Cathode Strip Chambers




- Camere multi-wire,
- misura coordinata bending con interpolazione carica depositata su strip adiacenti $\sigma \sim 100 \div 240 \mu m$,
- lettura gruppi fili per coordinata radiale $\sigma \sim cm$,
- Gas mixture: $Ar CO_2 CF_4 \ 30 50 20\%$ (no H!),
- $\sigma_t \sim 4 \ ns$ con ricostruzione segmento multi layer

Cathode LCT cards

Procedure di calibrazione globale

Risoluzione in momento e calibrazione assoluta dipendono da

- allineamento degli MDT
- conoscenza del campo magnetico
- conoscenza della perdita di energia nei calorimetri

Allineamento: run speciali con il campo toroidale spento e campo solenoidale acceso campione di tracce rettilinee di momento misurato in ID consente di allineare rapidamente lo spettrometro entro 30µm

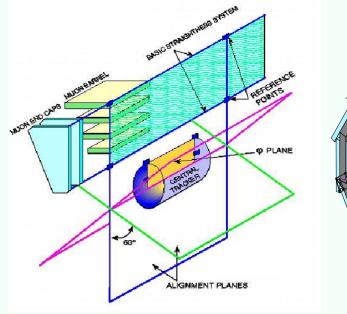
Campo magnetico: inizialmente misurato con 5000 sonde Hall

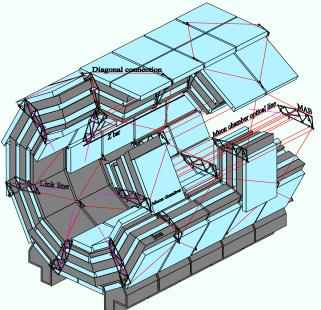
⇒ precisione relativa 0.1%

 $Z \rightarrow \mu^+\mu^-$: 30k eventi al giorno a bassa luminosità

Occorre fittare il campo magnetico e insieme dE/dx la richiesta più stringente proviene da

ΔM_W ~20MeV con 10fb⁻¹


Incertezza finale su B ~0.02 % richiede pari precisione su B del solenoide e <Eloss> nota ~ 10MeV



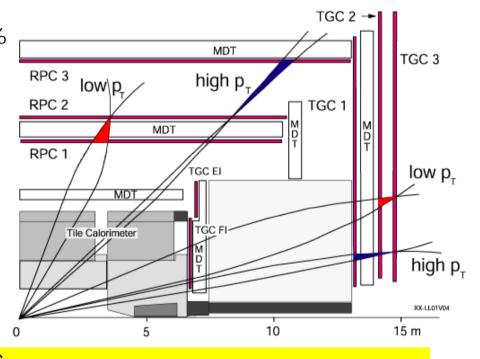
CMS Allineamento

- camere $\mu \ \sigma_{r\phi} \sim 100 \ \mu m, \longrightarrow$ allineamento,
- **a** allineamento con inner tracker critico per muoni $p_t \gtrsim 100~GeV$
- sistema di allineamento: strutture rigide (fibra carbonio), camere CCD, LED, laser
- ▶ Forze magnetiche intense: movimento B_{on}/B_{off} $\mathcal{O}(cm)$
- Possibile usare $p_{\mu}^{t} > 50~GeV$: Rate:0.2 ÷ 1 $Hz~\mu/{\rm settore}$
- ullet necessaria buona conoscenza $ec{B}$ o alta statistica

Logica di trigger

Basso impulso p_T>6GeV: accettanza media 94%
Coincidenza di 3 /4 in RPC2
3 /4 in RPC1
Endcap
Coincidenza di 3 /4 in TGC3
3 /4 in TGC2

Alto impulso p_T>20GeV: accettanza media 93%


Trigger di basso impulso

+ 1 hit in RPC3 (barrel)

+ coincidenza di 2 /3 in TGC1 (EC)

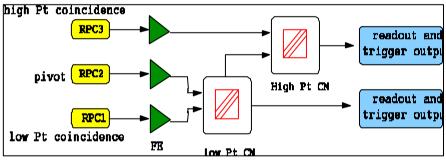
RPC

risoluzione temporale ~1.5ns Granularità di readout ~30mm

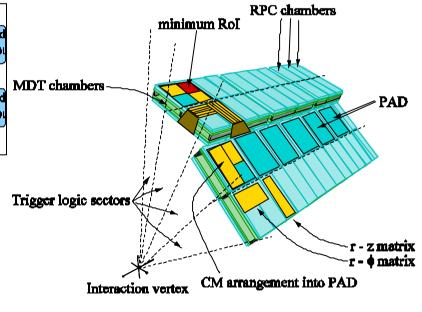
TGC
Efficienza 99% per gate temporale di 25ns
Granularità di readout 20mm (fili) 30mm (strip)

Robustezza del trigger garantita dalla possibiltà di riprogrammare la logica delle coincidenze a seconda delle condizioni di fondo

Trigger di muoni



LVL1 goal: Rate da 40 MHz(*20 interazioni primarie) a 75 kHz; latenza 2µs output:


Definizione della RoI (input per il LVL2) e molteplicità di \mathbf{m} per 6 soglie in p_T per bunch crossing risoluzione in $p_T \sim 20-30\%$ RoI \rightarrow Region of Interest

implementazione:

- Matrici di Coincidenza ricercano pattern di hits in tempo nei vari layers corrispondenti a tracce provenienti dal punto di interazione (la finestra $\Delta \eta x \Delta \phi$ di coincidenza fissa la soglia in p_T)

- PAD combinano le due viste e definiscono le RoI (minima RoI nel barrel ΔηχΔφ 0.1x0.1)
- Settore (nel barrel 32*2 settori ΔηχΔφ 1x0.2)
 definizione dell'output

Trigger performances

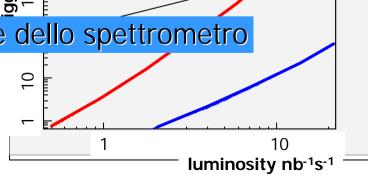
Rate di casuali da fondo non correlato

e- Compton E<2MeV

Rate di muoni

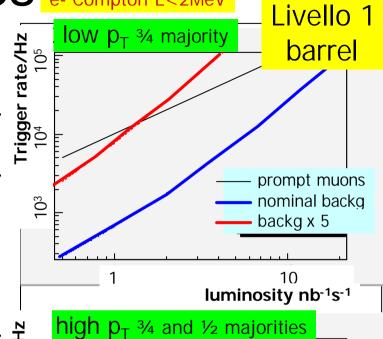
barrel/endcaps

Rate	L1	L2	L1	L2
kHz	low p _t	low p _t	high p _t	high p _t
KI p decays	7.9/12	3.1/1.8	1.1/2.1	0.06/0.06
b decays	1.7/1.8	1.0/0.9	0.8/0.8	0.09/0.13
c decays	1.0/1.1	0.5/0.5	0.4/0.4	0.04/0.05
W decays	~ 0	~ 0	0.06/	0.05/
Total	10.6/15	4.6/3.2	2.4/3.3	0.24/0.24


1 nb⁻¹s⁻¹

10 nb⁻¹s⁻¹

Gli algoritmi di Livello 2 forniscono una reiezione del fondo non correlato pari a 10²


stime da aggiornare sul layout finale dello spettrometro

 $H\rightarrow 4\mu$ M_{Higgs} 120-180GeV accettanza del trigger di $2\mu > 99\%$

prompt muons nominal backg

backq x 10

Robustezza e flessibilità del trigger

Altri contributi al rate del Livello 1

μ , π di impulso ~100 MeV

- ⇒ prodotti da decadimenti di K neutri negli sciami
- ⇒ rate « rate di e- Compton di bassa energia
 - \approx rate di μ da decadimento in volo di K/ π nei jet
 - ⇒ incertezze sulla s di interazione dei K ® incertezze sui rate

p di impulso ~400 MeV da interazioni di n

 \Rightarrow rate atteso 1.5-3 x rate di μ da decadimento in volo di K/ π nei jet

⇒ pattern di hit correlati possono simulare il segnale di muoni prompt

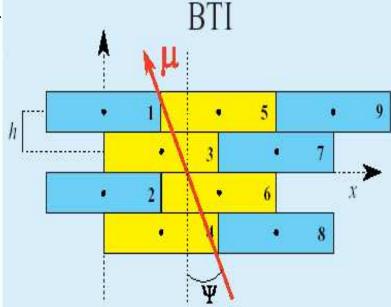
Schemi di trigger previsti per ridurre il rate da fondo correlato (implementabili con la logica riprogrammabile a disposizione)

barrel

- schema low p_T + hit di conferma in RPC3
- schema low p_T + deposito di energia compatibile con μ nel layer più esterno del Tile Calorimeter

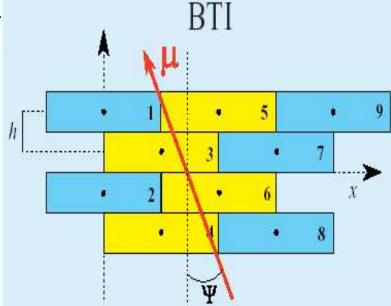
endcap

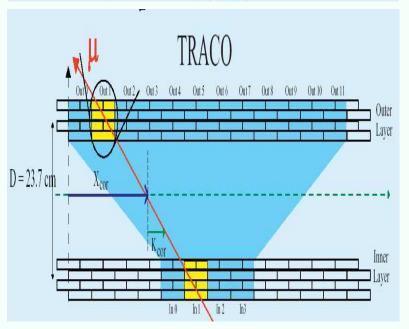
- schema low p_T + hit di conferma in TGC1
- schema low p_T + hit compatibili nella stazione TGC più interna


rate da fondo correlato trascurabile

DT

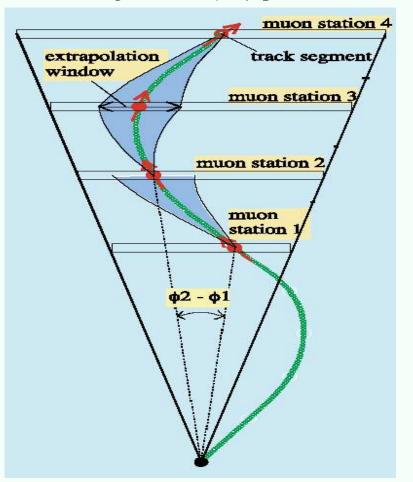
Mean timer su SuperLayer: id bx e ricostruzione segmento

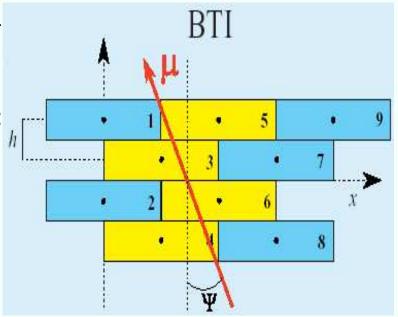


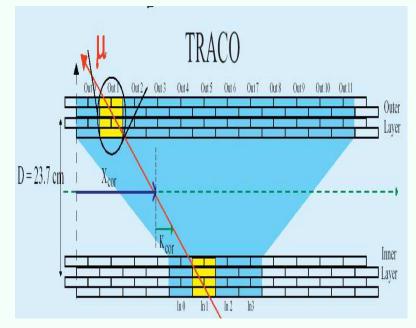


DT

- Mean timer su SuperLayer: id bx e ricostruzione segmento
- associazione segmenti due SL

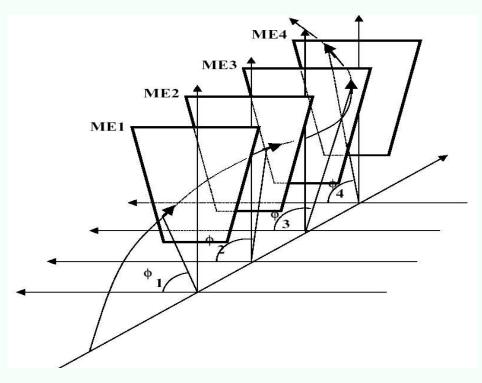


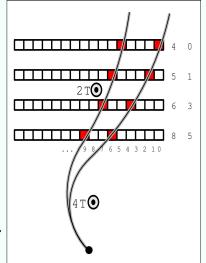


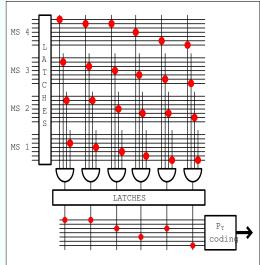


DT

- Mean timer su SuperLayer: id bx e ricostruzione segmento
- associazione segmenti due SL
- lacktriangle match segmenti su diverse stazioni: assegnazione ϕ , η , p_t via LUT

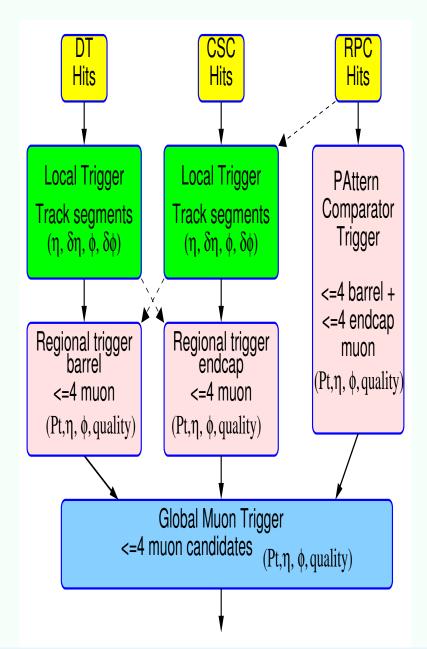




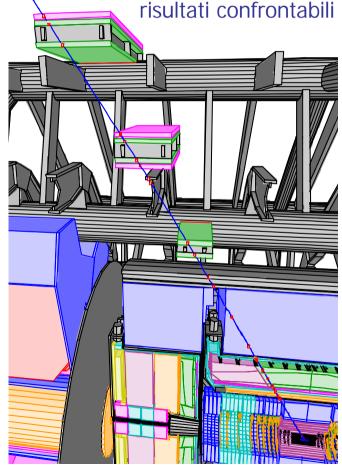


CSC

- identificazione bx via coincidenza multi layer,
- ricostruzione di Local Charged Track nelle due proiezioni
- **ਭ** assegnazione ϕ , η , p_t via LUT: lavora in 3D (\vec{B} anche radiale!)

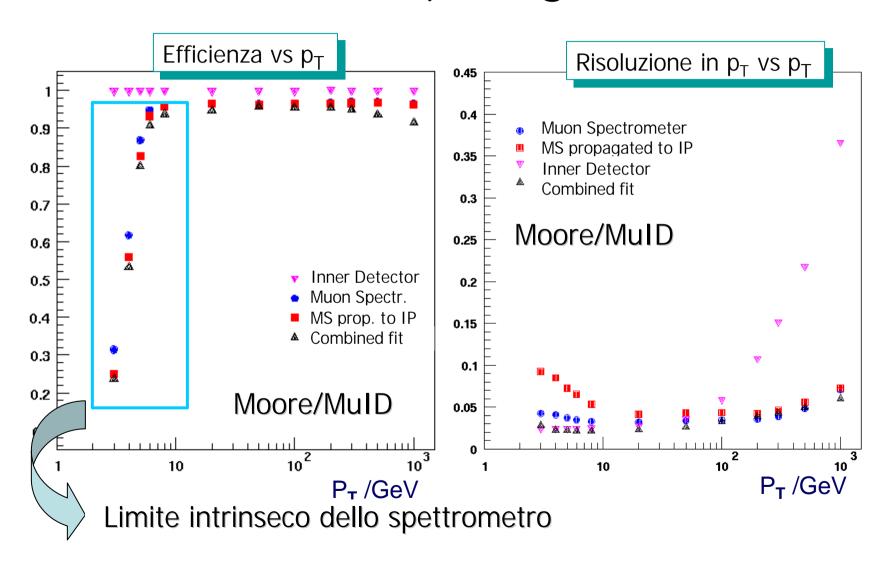

RPC

- precisa identificazione bx,
- m P match hit con patterns predefinit per assegnare $\phi,\,\eta,\,p_t$


- id μ , misura ϕ , η , p_t , assegnazione bx;
- Usa hit DT, CSC, RPC;
- ricostruzione locale DT e CSC → "Track segments";
- ricostruzione regionale e assegnazione parametri $p_t \phi, \eta;$
- output 4μ piú energetici;
- non applica soglia, ma decisione presa da Global Trigger (con Calo Trigger output).

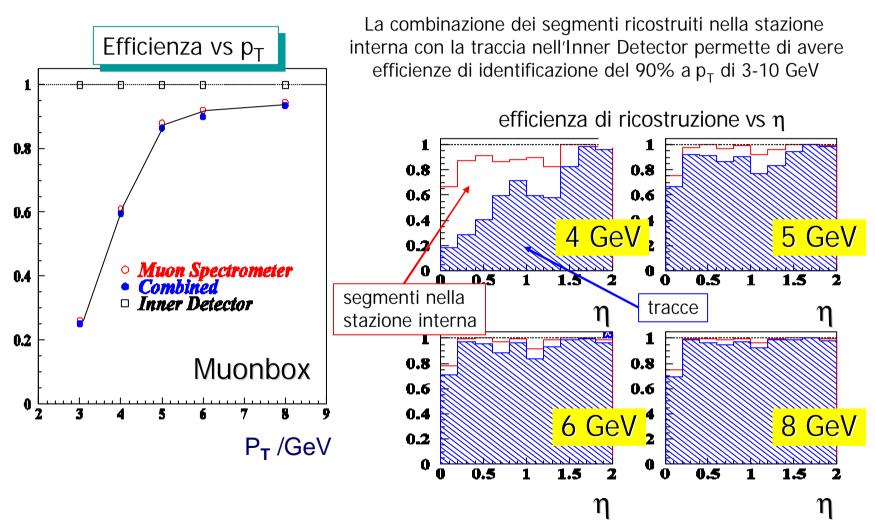
Strategia di tracciamento algoritmi offline ATLAS

- Identificazione di una regione di attività procedura guidata dagli hit φxη nelle camere di trigger
- Ricostruzione locale di segmenti rettilinei nel piano di curvatura con hits MDT
- Combinazione di segmenti compatibili definizione delle tracce candidate
- nel campo magnetico, tenendo conto di scattering multiplo e perdita di energia nei materiali del MS
- Propagazione al punto di interazione conoscenza dettagliata della natura e della quantità di materiale attraversato; dE/dx e angoli di scattering inclusi nel fit
- Combinazione tracce in MS e Inner Detector fit globale o associazione su base statistica


Software di ricostruzione
Muonbox – raffinato, affidabile,
ottimizzato
Moore/MuID – in evoluzione,
OO, veloce
strategia simile

Performances su µ singoli

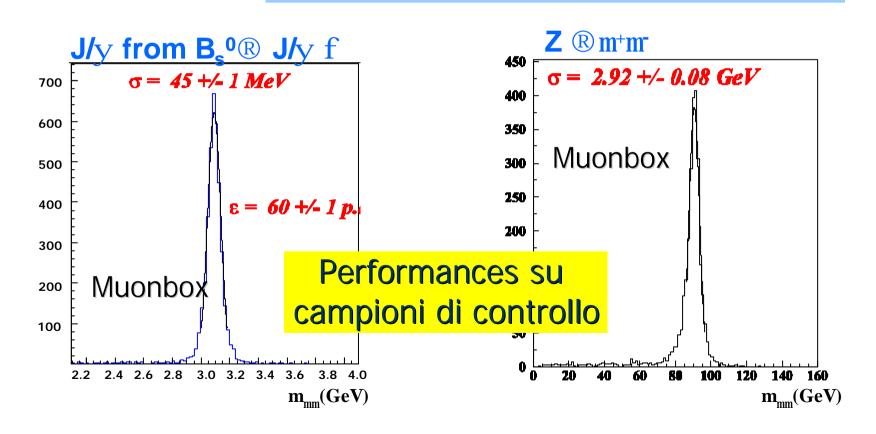
no background



μ di basso impulso

no background

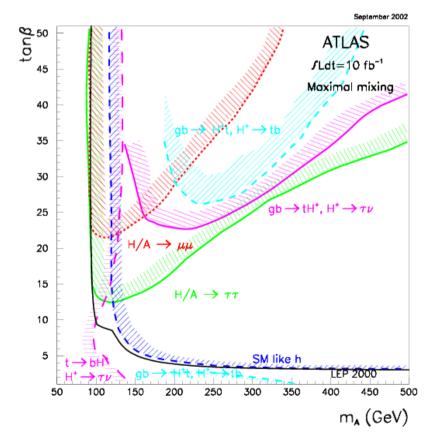
 μ di p_T=5 GeV perdono nei calorimetri da 2 a 4 GeV a seconda di η

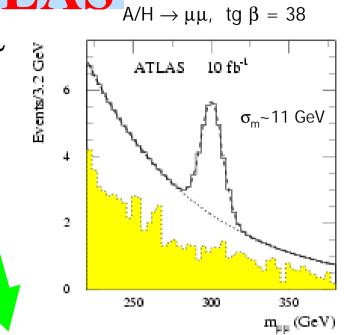

Performances in presenza di fondo

ATLAS

Effetto del fondo di caverna (fattore di sicurezza 5)

sulla ricostruzione di muoni singoli


- aumento della molteplicità di tracce spurie
- efficienza e risoluzione non sono deteriorate



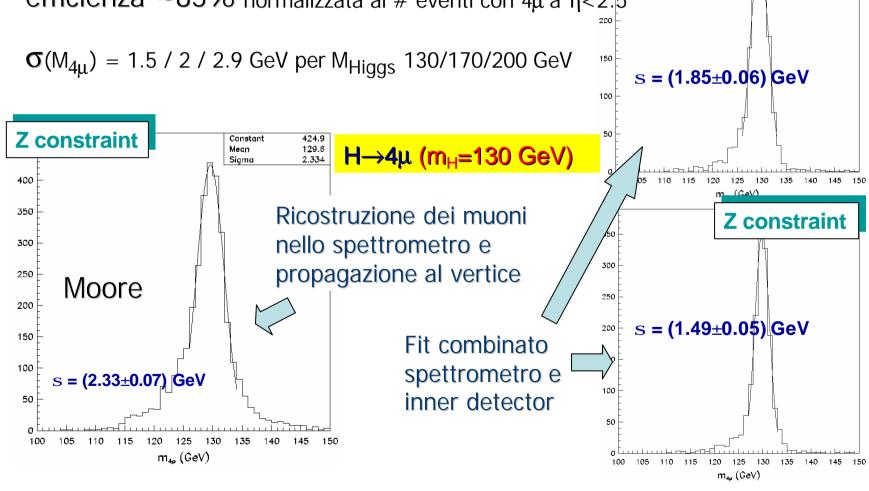
Nuovi stati finali a 2µ

In MSSM 5 Higgs: h, H, A, H[±]
numerosi modi di decadimento
con branching ratios dipendenti dai
parametri del modello

Constraint teorico: M(h) < 135 GeV

H/A → μμ importante in una regione dello spazio dei parametri non ancora esclusa

⇒ruolo cruciale dello Spettrometro
 ⇒scoperta accessibile in un anno di run a bassa luminosità
 ⇒risoluzione in massa invariante
 ~11GeV per m_{μμ} = 300 GeV


ATLAS

$H \rightarrow ZZ^* \rightarrow 4\mu$

Moore/MuID

no Z constraint

per M_{Higgs} tra 130-200 GeV efficienza ~85% normalizzata al # eventi con 4μ a η<2.5

Moore/MuID come algoritmo di HLT

logica dell'algoritmo di ricostruzione della singola traccia invariata rispetto all'ambiente offline

- chiamato dallo Step Controller del software di steering del Filtro invece che dell' event manager offline
- non effettua, in generale, la ricerca di muoni nell'evento ma processa un seed
 - conferma o rigetta un Trigger Element (TE) generato dal trigger di secondo livello
 - accede a una frazione dell'evento scelta dal meccanismo del Region Selector sulla base del seed
- usa le sequenze di trigger
 - produce nuovi TE dai TE di input
- usa le configuration signatures
 - collezioni di TEs richiesti dal menu del trigger da confermare
- può essere eseguito N volte per evento

Moore/Muld – Test preliminari sui tempi di esecuzione

P_T tempo di esecuzione

20 GeV	20 GeV	300 GeV	200 GeV	$H \rightarrow 4 \mu$ DC1
TDR	DC1	TDR	DC1	
142 msec	155 msec	368 msec	279 msec	572 msec

Ricostruzione nello spettrometro - Moore

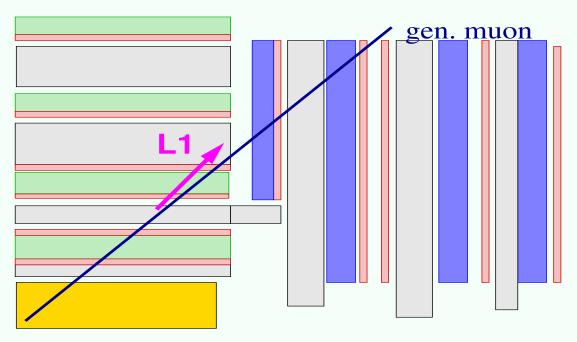
tempi di esecuzione su PIII, 800 MHz, 256MByte (stime conservative

- accesso all'evento incluso
- seeding non ancora applicato goal <1s su processori da 1GHz)

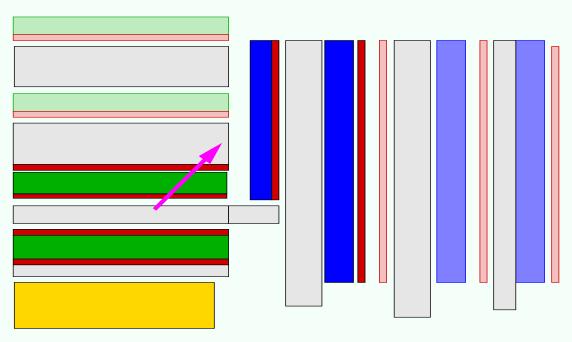
Propagazione al beam spot MuID dei muoni ricostruiti nello spettrometro (Moore)

P _T /GeV	Time /ms
20	5.1
100	6.3
300	4.9
H→4μ	25.2
m _H = 130 GeV	25.2

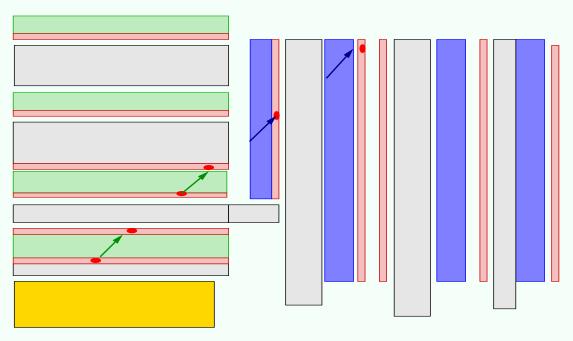
HLT Technical Design Report in preparazione


CMS HLT

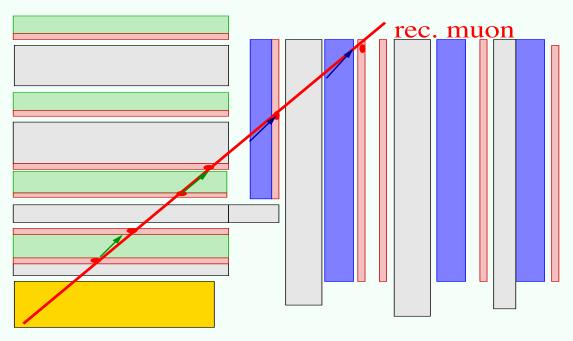
- In CMS High Level Trigger implementato su farm di processori commerciali (Filter Unit) usando algoritmi software sui raw data,
 - Software sarà il più possibile simile a off-line
 - no uso completo calibrazioni, allineamento, . . .
- Necessità di software robusto e alta qualitá
 - Uso di framework comune
 - Object-oriented Reconstruction for CMS Analisys: ORCA
- Principio base: ricostruzione regionale
 - serve seme per input: HLT usa output L1
- Prototipo dell'intera catena di ricostruzione e selezione descritto in DAQ & HLT TDR, CERN/LHCC 2002/26, 15 december 2002



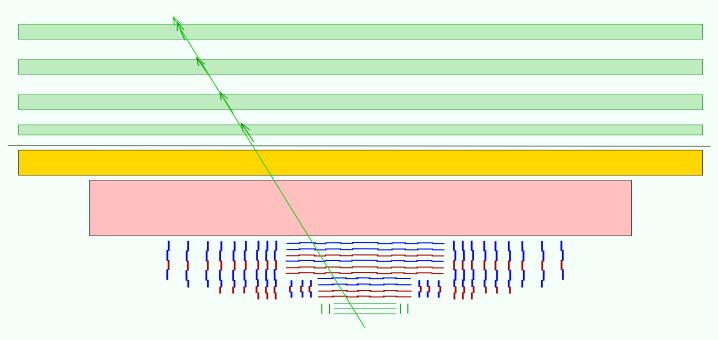
seme da output L1



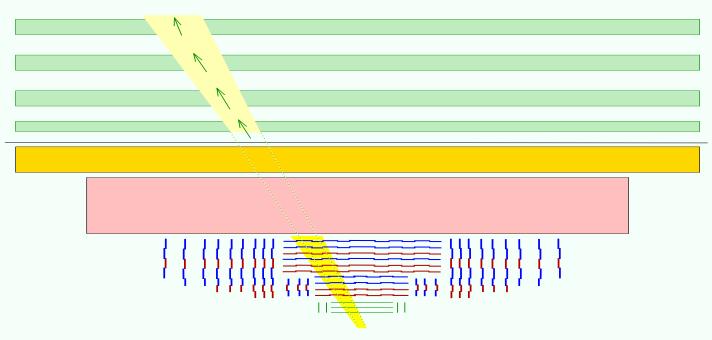
- seme da output L1
- Ricerca rivelatori compatibili con seme,



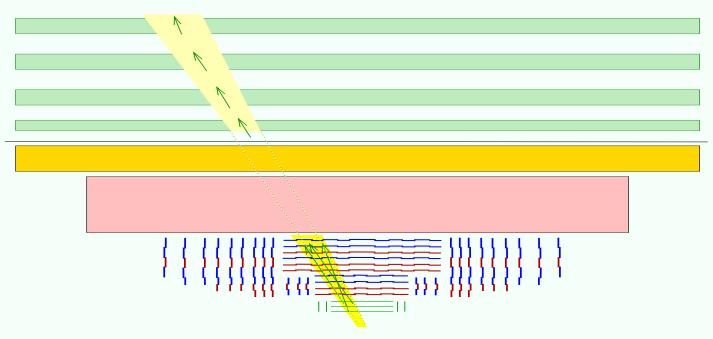
- seme da output L1
- Ricerca rivelatori compatibili con seme,
- ricostruzione locale solo su rivelatori compatibili



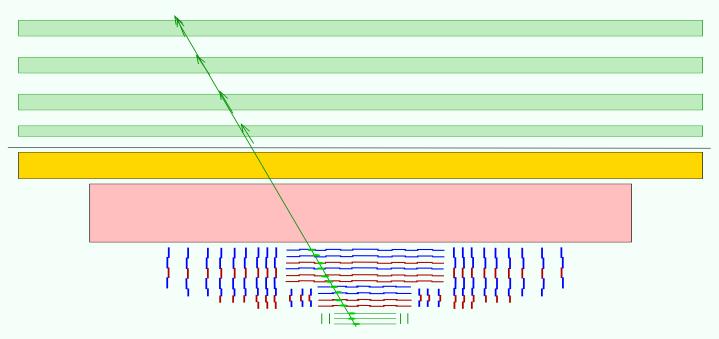
- seme da output L1
- Ricerca rivelatori compatibili con seme,
- ricostruzione locale solo su rivelatori compatibili
- Kalman filter, taglio χ^2 su hit,
- propagazione stato attraverso Fe con B non uniforme: CPU time consuming!
- Fit traccia dopo estrapolazione al I.P. nominale



- Inclusione Tracker hits:
- Uso μ L2 come seme per ricostruzione nel tracker



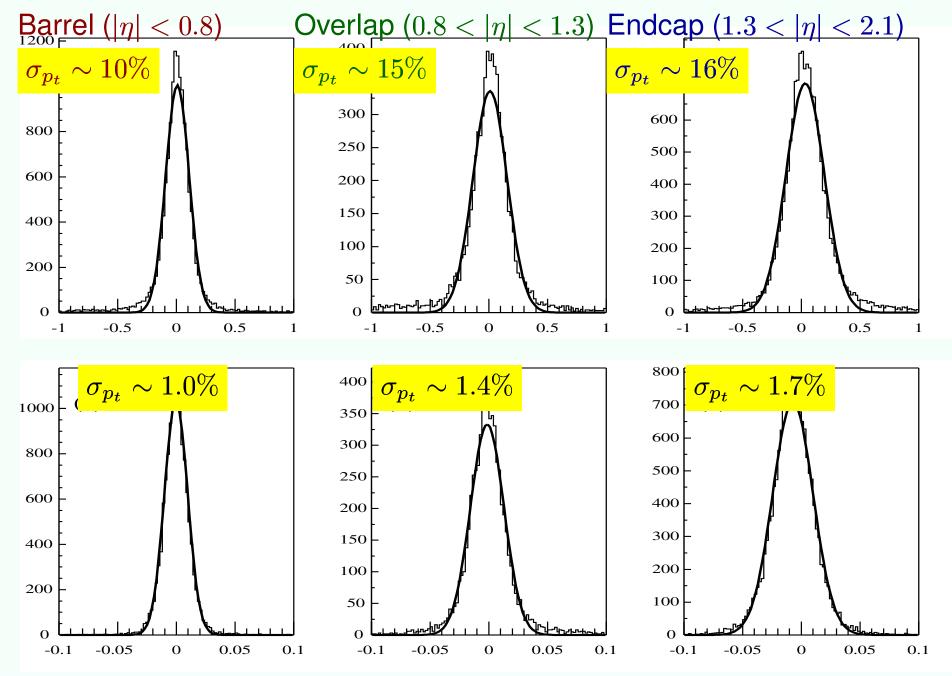
- Inclusione Tracker hits:
- Uso μ L2 come seme per ricostruzione nel tracker
- definisco cono nel tracker,



- Inclusione Tracker hits:
- Uso μ L2 come seme per ricostruzione nel tracker
- definisco cono nel tracker,
- creazione di uon o più semi da coppie di hit nel cono

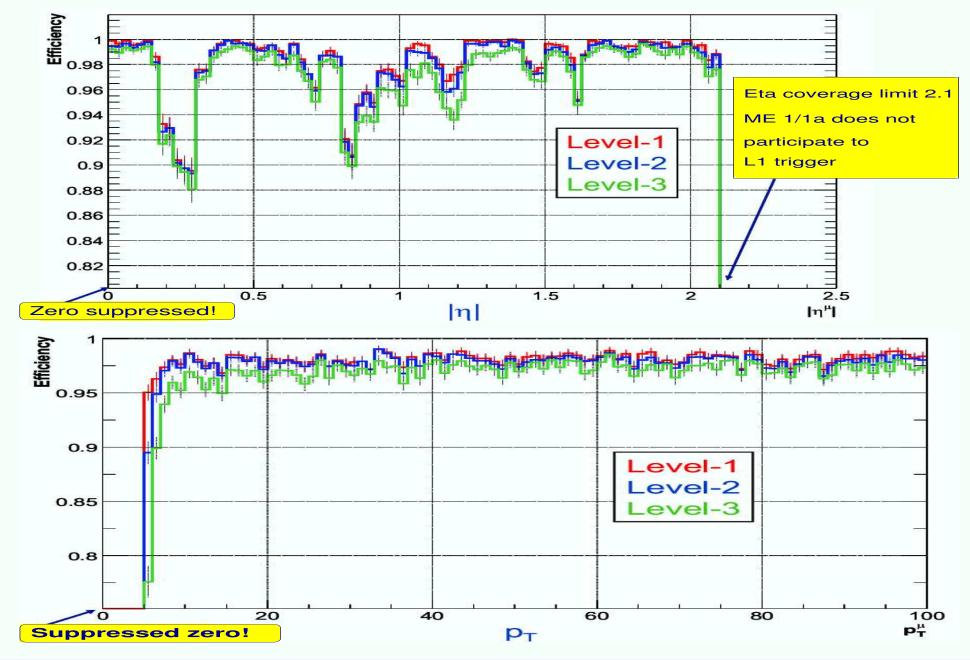
- Inclusione Tracker hits:
- Uso μ L2 come seme per ricostruzione nel tracker
- definisco cono nel tracker,
- creazione di uon o più semi da coppie di hit nel cono
- costruisco traiettoria inside-out, kalman filter
- uso tracker e muon hits per fit conclusivo,

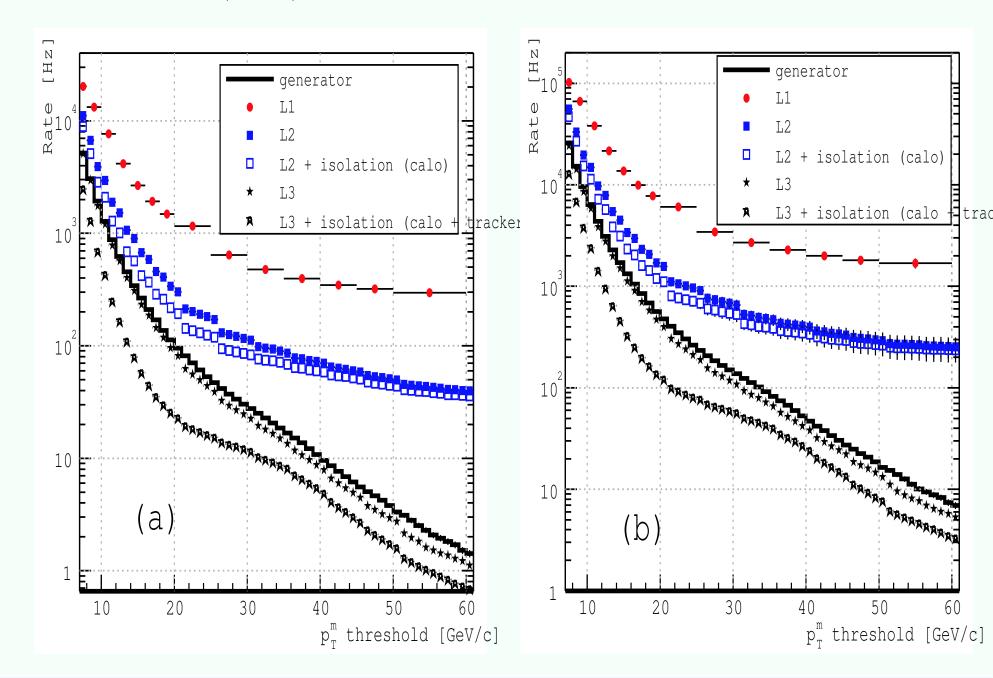
CMS CPU time


	mean CPU time	(ms/event)	mean CPU time	(ms/event)
algoritmo	Low Lumi totale	$p_t > 10~GeV$ senza GEANE	High Lumi totale	$p_t > 18~GeV$ senza GEANE
L2	640	100	580	100
Calo iso	100	25	90	40
L3	420	200	590	420
Pixel iso	65	65	320	320
Tk iso	190	190	370	370
Total	710	125	660	150

- su INTEL PIII 1 GHz CPU
- da legge di Moore, atteso fattore $2 \times 2 \times 2$ nel 2007,
- maggior parte del tempo speso propagando stati attraverso il ferro (GEANE)
- progetto (avanzato) per rimpiazzarlo con propagatore ottimizzato e adatto alla geometria CMS: atteso grande miglioramanto

CMS L2/L3 $\sigma_{p_t} W \rightarrow 1\mu$





CMS efficienza L2/L3

IN $R(1\mu)$ Low (a) and High (b) luminos

Sommario

- sistema magnetico determina scelte e problematiche
- ATLAS
 - toroide: basso $\int Bdl$,
 - richiede risoluzione spinta,
 - critico allineamento, calibrazione monitoring,
 - buona risoluzione p_t fino a alto η
 - copertura fino a $|\eta| < 2.7$
- CMS
 - solenoide: alto $\int Bdl$, molto ferro
 - risoluzione ragionevole,
 - allineamento, calibrazione, monitoring non così critici
 - $oldsymbol{\wp}$ multiple scattering domina risoluzione bassi p_t ,
 - $oldsymbol{ ilde{\rho}}$ cruciale uso inner traker per risoluzione p_t
 - copertura fino a $|\eta| < 2.4$

Sommario trigger

ATLAS

- basato solo su RPC e TGC,
- ullet selezione in p_t low e high, molteplicità per 3 soglie diverse in ogni configurazione,
- flessibilità della logica
- copertura fino a $|\eta| < 2.4$
- HLT in fase di consolidamento:
 - algoritmi di II livello hanno gia' dimostrato la funzionalita' e performences richieste
 - software di III livello ricostruzione offline in fase integrazione e ottimizzazione per il run nel Filtro

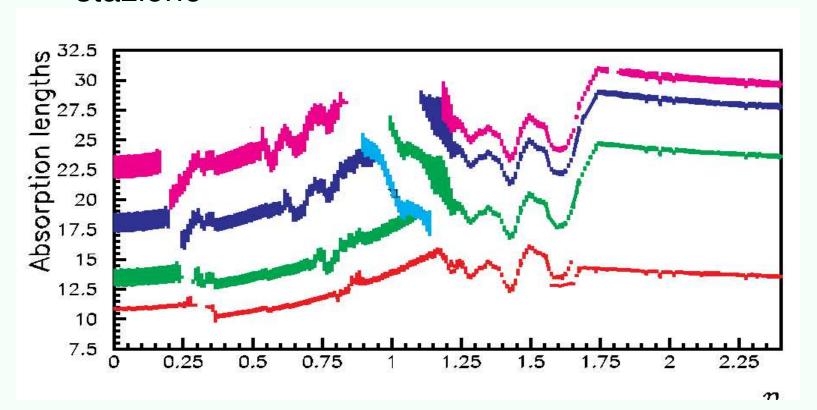
CMS


- usa tutti i rivelatori, ridondanza
- copertura fino a $|\eta| < 2.1$
- ightharpoonup misura p_t , grande flessibilità per selezione,
- rate dominata da feed-through: code più importanti della risoluzione
- HLT software sviluppato: ancora molto lavoro ma promettente (migliorare timing)
- possibilità grande flessibilità per selezione

Sommario ricostruzione

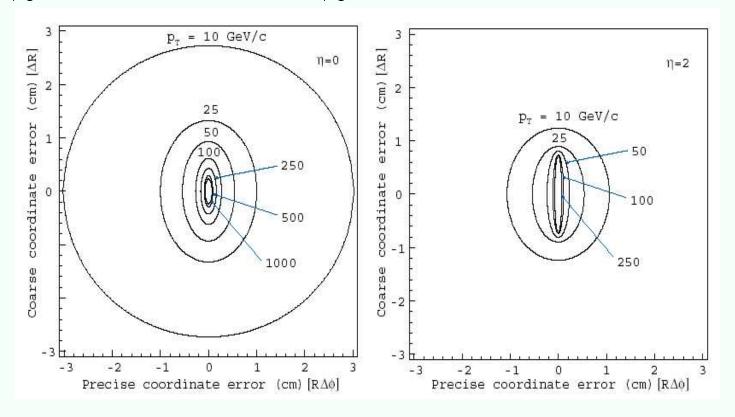
- Ricostruzione:
- approccio abbastanza simile:
 - ricostruzione locale di segmenti nelle camere multi-layer
 - ricostruzione delle tracce su base regionale
 - uso dei segmenti per la ricostruzione
 - uso algoritmi off-line in HLT
- ATLAS
 - ricostruzione off-line-like orientata alla fisica
 - match con inner tracker: ricostruzione separata e poi associazione
- CMS
 - ricostruzione on-line-like orientata all'HLT
 - $m \omega$ ricostruzione μ nel tracker parte da quella nelle camere a mu

Backup



CMS: Identificazione muoni

- Identificazione grazie al materiale davanti alle stazioni a mu
- $10 \div 15 \lambda_0$ davanti alla prima stazione
- ulteriore materiale $\sim 10 \div 15 \; \lambda_0$ davanti all'ultima stazione

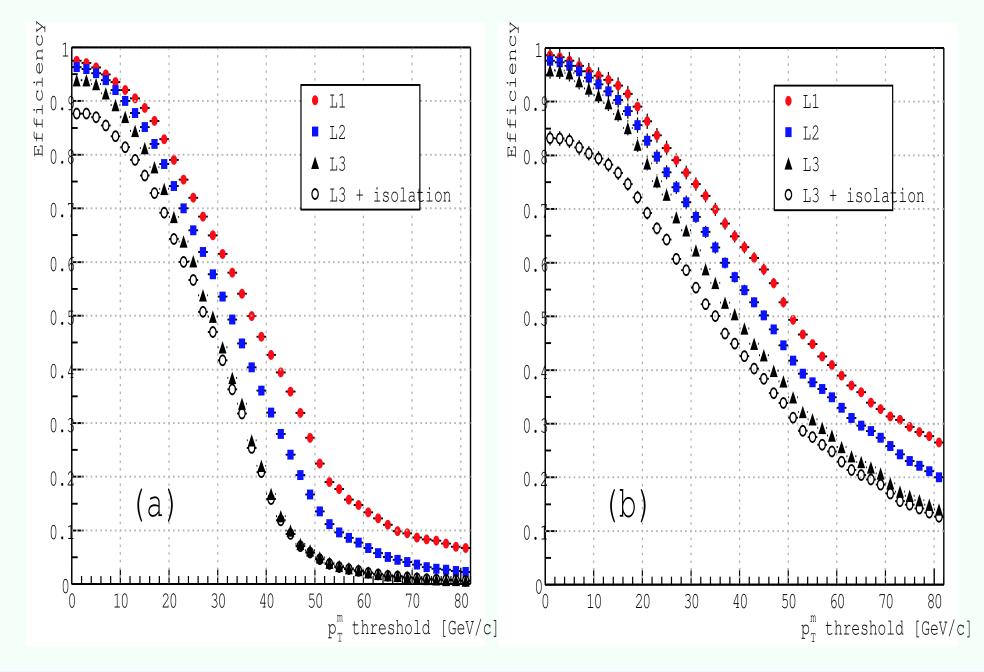


CMS Match con inner tracker

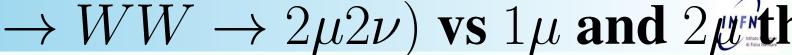
- Matching con inner tracker: multiple scattering domina sempre per "trigger" p_t
- critico l'allineamento μ -system inner tracker per $p_t \gtrsim 100~GeV$ barrel, $p_t \gtrsim 25~GeV$ endcap

CMS Campo magnetico

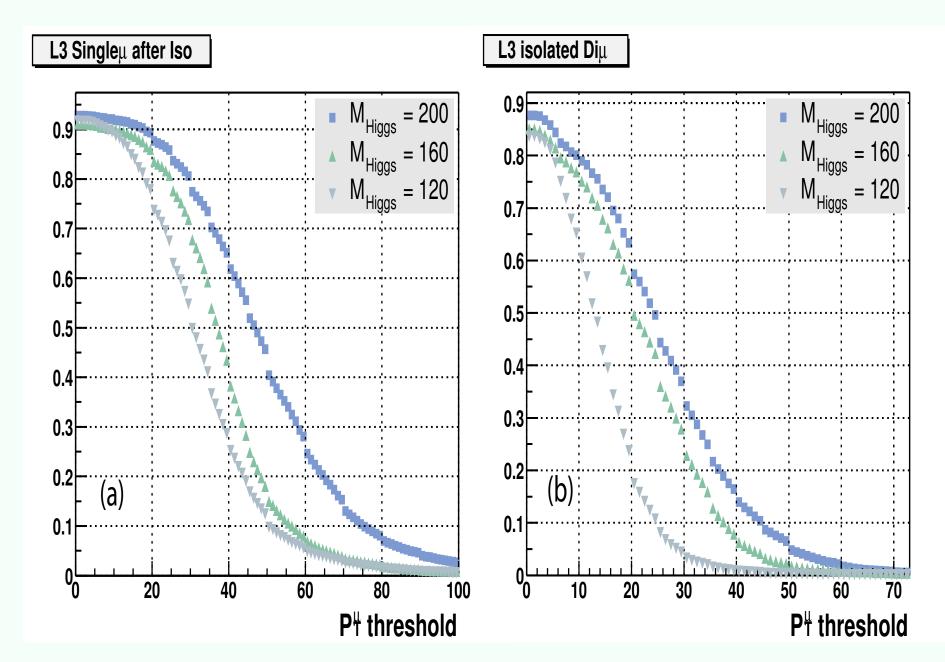
- ullet Campo \vec{B} dentro solenoinde semplice,
- $\Delta B/B \sim 0.1 \div 0.5\%$ non degrada risoluzione tracker,
- nel return yoke: $\Delta B/B \sim 1\%$ sufficiente,
- per matching μ -system, inner tracker, $\Delta B/B \sim 0.1\%$
- sistema di sonde Hall, eventualmente mobili, unito a simulazione 3D volumi magnetici



TOSCA computer model of the iron yoke of the magnetic system



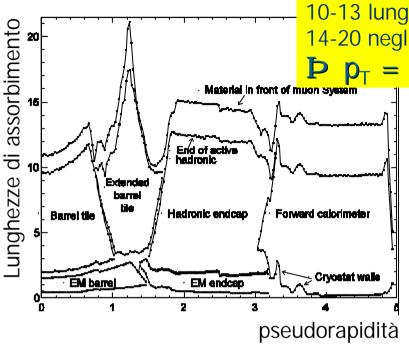
CMS $\epsilon(W \to \mu \nu)$ e $(t\bar{t} \to \mu + X)$



CMS Working point LL e HL

Lumi	$1~\mu$ thr.	di μ thr.	rate totale $(\pi K/bc\tau/W/Z)$
	L1-HLT GeV	L1-HLT GeV	Hz (\sim frac)
LL	14-19	3-7	29 (3.4/8.7/14.5/2.4)
HL	20-31	5-10	55 (0.8/ <mark>2</mark> /42/7.6)

- Soglie diverse per L1 e HLT, possibiltà per trigger (HLT) più esclusivi a soglia più bassa (correlazioni, tologici, selezione $m_{\mu\mu},\ldots$)
- rate b rilevante a low lumi, può essere aumentato con trigger dedicati sotto soglia HLT
- e.g. $B_s \to J/\psi \phi$: trigger con L1 di- μ + regional tracker reco + J/ψ massa invariante ($\delta m \sim 55~MeV$, $\sim 30~MeV$ full reco) può dare $\epsilon \sim 5\%$ per segnale $\to \sim 10^5$ ev/yr ($20~fb^{-1}$)
- Rate totale dominata (sopratutto a HL) da W: per abbassare soglia bisogna rigetttarle in parte, mantenedo alta efficienza per segnali

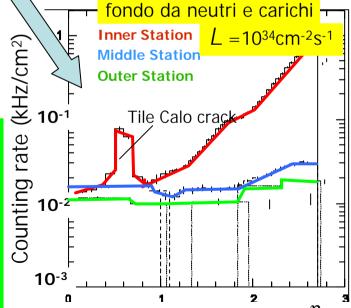

Signal efficiency at nominal threshol

Signal	ϵ_{LL}	ϵ_{HL}
$W o \mu u$	69%	42%
$Z o \mu\mu$	92%	86%
$t ar t o \mu + X$	72%	58%
$H_{120} o WW o 2\mu 2\nu$	87%	64%
$H_{160} o WW o 2\mu 2\nu$	92%	77%
$H_{150} \rightarrow ZZ^* \rightarrow 4\mu$	98%	97%
$H_{200} o ZZ o 4\mu$	99%	99%

- $W,Z,t\bar{t}$ efficienza relativa a eventi con almeno 1μ in $|\eta|<2.1$,
- Eff. Higgs relativa a eventi con $n_{\mu} \geq 1$ entro $|\eta| < 2.1$, e tutti entro $|\eta| < 2.4$.

Materiali e Fondo



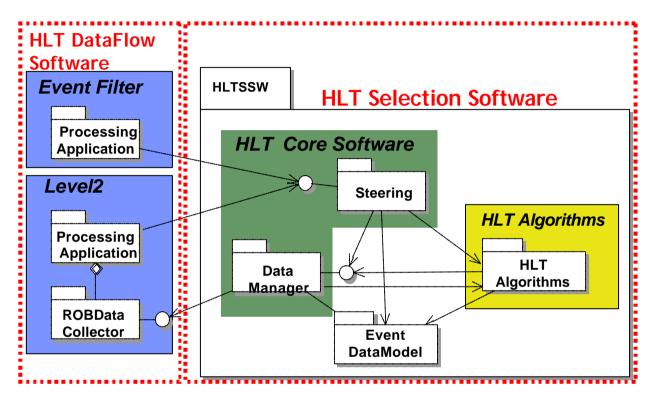

10-13 lunghezze di assorbimento nel barrel 14-20 negli endcap

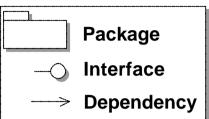
 $P_T = 3GeV per i \mu nello spettrometro$

Fondo di caverna

neutroni termici; fotoni da 10-1000keV p. π , μ , e da ~100MeV

Effetti di carica spaziale e invecchiamento


Fattori di sicurezza 5-10 tipicamente applicati


Incertezze sul rate:

proprietà degli eventi di minimum bias descrizione dettagliata dei materiali sensibilità dei rivelatori ($\sim 10^{-2}$ per γ , $\sim 10^{-3}$ per n)

Software di selezione di HLT

EventFilter: 1 kHz ® 100 Hz, latenza ≈1 sec

- l'intero evento è fornito dall' EventBuilder alla farm dell' EventFilter (PCs, Linux)
- Processing Applications indipendenti eseguono gli algoritmi di selezione sui nodi della farm
- Il software di selezione consiste di algoritmi offline che hanno accesso a costanti di calibrazione e di allineamento

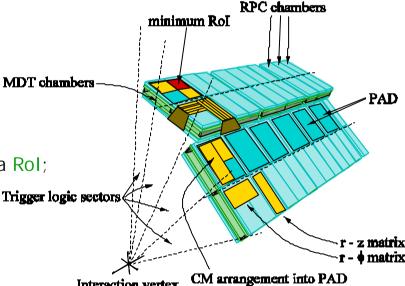
Trigger di muoni

LVL1 goal: Rate da 40 MHz(*20 interazioni primarie) a 75 kHz; latenza 2µs output:

Definizione della RoI (input per il LVL2) e molteplicità di \mathbf{m} per 6 soglie in p_T per bunch crossing risoluzione in $p_T \sim 20-30\%$ RoI \rightarrow Region of Interest

implementazione:

- Matrici di Coincidenza ricercano pattern di hits in tempo nei vari layers corrispondenti a tracce provenienti dal punto di interazione (la finestra $\Delta\eta x\Delta\phi$ di coincidenza fissa la soglia in p_T)
- PAD combinano le due viste e definiscono le RoI (minima RoI nel barrel $\Delta \eta x \Delta \phi$ 0.1x0.1)
- Settore (nel barrel 32*2 settori $\Delta\eta x\Delta\phi$ 1x0.2) definizione dell'output

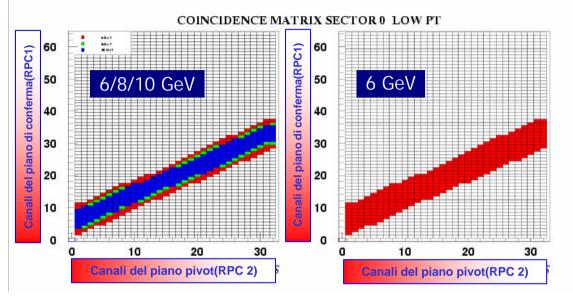

LVL2 goal: Rate a ~1 kHz; latenza <10 ms raffinare il taglio in p_T

match dei segmenti rettilinei nelle tre stazioni in una Rol; calcolo della sagitta;

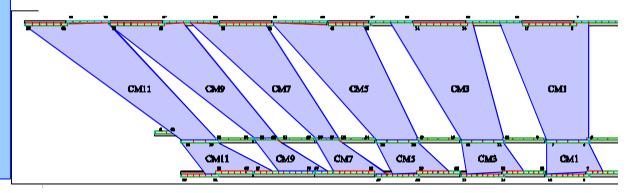
Trigger 1

conversione sagitta in p_T (lookup table per settore η - ϕ);

output: risoluzione in $p_T \sim 5\%$ per $p_T < 100$ GeV rate di spurie ridotto a livello trascurabile

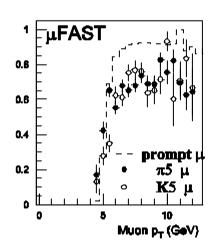

La matrice di coincidenza

Le matrici di coincidenza vengono alloggiate sopra le camere RPC del piano Pivot

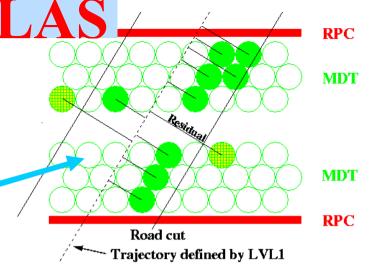

3 soglie programmate per il LOW-P,

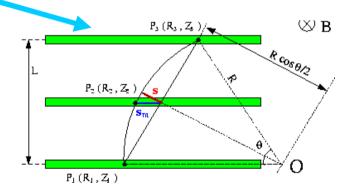
6 GeV 8 GeV 10 GeV

cablaggio delle CM dispari per un settore Large


Ogni canale del <u>piano pivot</u> (RPC2) è messo in corrispondenza con un determinato numero (dipendente dalla <u>larghezza</u> della finestra di <u>coincidenza</u>) di canali del <u>piano di conferma</u> (RPC1 e RPC3)




Trigger di muoni


LVL2 goal: Rate a ~1 kHz; latenza <10 ms raffinare il taglio in p_T

- pattern recognition RPC/TGC/MDT nella Rol
- fit a segmenti rettilinei nelle tre stazioni MDT relazione r-t lineare
- calcolo della sagitta da tre punti/ compo B uniforme
- conversione sagitta in p_T / relazione lineare tra 1/s e p_T (lookup table per settore η - ϕ)

output:

risoluzione in $p_T \sim 5\%$ per $p_T < 100$ GeV rate di spurie ridotto a livello trascurabile

rate da decadimenti di π e K riducibile con il match nell' inner detector

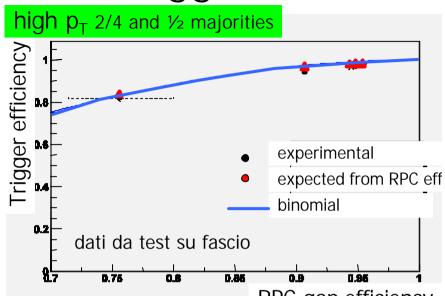
Robustezza e flessibilità del trigger

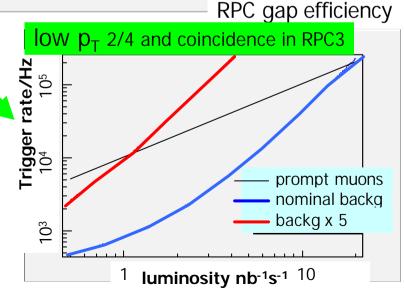
ATLAS Barrel

Efficienza di trigger vs efficienza dei rivelatori di trigger

Schema di trigger per far fronte a inefficienze degli RPC (implementabili con la logica riprogrammabile a disposizione)

Configurazione di trigger L (*loose*, *loose-robust*)
low p_T


⇒ 2/4 majority in RPC1 e RPC2


+ hit in coincidenza in RPC3

per ridurre il rate di spurie

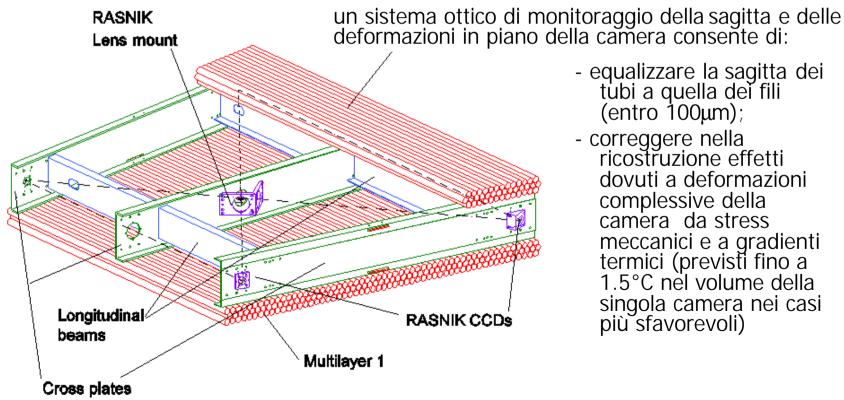
high $p_T \Rightarrow low p_T e 1/2$ majority in RPC3

RPC	low p _⊤ eff.			high p _⊤ eff.	
eff.	baseline	loose	loose robust	baseline	loose
95 %	0.99	1	0.95	0.98	1
80 %	0.82	0.92	0.85	0.79	0.88

Controllo delle posizione dei fili

Parametri meccanici dei tubi a drift

Catodo cilindrico in Al spessore 400 µm Filo W-Re


Lunghezza dei tubi

Tolleranze meccaniche

diametro 50 µm 1-6 metri

20 μm

- equalizzare la sagitta dei tubi a quella dei fili (entro 100µm);
- correggere nella ricostruzione effetti dovuti a deformazioni complessive della camera da stress meccanici e a gradienti termici (previsti fino a 1.5°C nel volume della singola camera nei casi più sfavorevoli)