# Status update on ${\rm B^0} \to \eta^\prime {\rm K_S^0}$ on DataChallenge

And on  $\eta^\prime$  rediscovery in phase II

#### Stefano Lacaprara

stefano.lacaprara@pd.infn.it

INFN Padova

TDCPV meeting, SpeakApp, 5 December 2018





#### Today: update wrt to 31/10/2018 presentation

- ullet Update on  $\eta'$  rediscovery on phase2 (a bit Off-Topic, but not completely)
- Progress on DataChallenge (MC9) and issues found

### $\eta'$ rediscovery: what's new

- As promised, note available BELLE2-NOTE-PH-2018-038
  - comments welcome! (got many from Phil, will reply asap)
- proper inclusive MC for background ( $q\bar{q}$  properly mixed)
- signal properly visible in MC and DC for all three channels
  - was not for  $\eta' o \eta ( o \pi^+ \pi^- \pi^0) \pi^+ \pi^-$
  - Note: for DC I'm using TDCPV skims, which requires a light resonance **and** a K<sub>S</sub><sup>0</sup> so yield cannot be compared
- maybe a signal in data also for  $\eta' \to \rho(\to \pi^+\pi^-)\gamma$



## $\eta' o \eta ( o \gamma \gamma) \pi^+ \pi^-$ Data - MC comparison





MC - Phase 2 BGx1 Events / ( 0.00833333 GeV Belle II Preliminary - MC L=1 fb η'→η (→γγ) π<sup>+</sup>π<sup>-</sup> 200 ╗



(similar to previous presentation) MC and DC ok,  $\sigma$  wider in DC. Small signal on Data, larger  $\sigma$  18 vs 11 MeV

M (GeV)



# $\eta' o \eta ( o \pi^+ \pi^- \pi^0) \pi^+ \pi^-$ Data - MC comparison



4 / 20





MC - Phase 2 BGx1



DC - Phase 3 BGx1



Now MC (new) and DC are as expected. Maybe signal on Data, very low significance and background shape not trivial (and not well modelled by fit)



### $\eta' \to \rho(\to \pi^+\pi^-)\gamma$ Data - MC comparison





Now MC and DC are as expected (was not). Mass peak  $\sim$  8 MeV lower than other channels. On Data hard to say (was none), very low significance and very narrow ?



### Combined $\eta'$ Data - MC comparison





On Data the peak is good, still very narrow (due to  $\rho\gamma$ ?). 10 MeV bias of Data wrt MC

In DC (and MC) combined peak width is also due by lower peak position in  $\rho\gamma$  channels. Not so in data.





#### Today: update wrt to 31/10/2018 presentation

- ullet Update on  $\eta'$  rediscovery on phase2 (a bit, but not completely Off-Topic)
- Progress on DataChallenge (MC9) and issues found

### Quick reminder of $B_0 o \eta' K_s$ analysis strategy for DataChallenge

- √ Signal selection and eff estimation (MC)
- √ continuum background suppression
- Signal cross Feed (SxF) optimization
- ML fit to extract signal yield (and compute BR)
- Toy study with expected yield to assess resolution and bias
- $\nearrow$  study  $\Delta t$  and  $\Delta z$  resolution in MC, including modelization
- ML fit to Data challenge to extract TDCPV parameters

## $\mathcal{F}$ DC B<sup>0</sup> $\rightarrow \eta' K_S^0$ : TDCPV



#### What's new

- Still only  $\mathsf{B}^0 \to \eta' (\to \eta_{\gamma\gamma} \pi^+ \pi^-) \mathsf{K}^0_\mathsf{S}$
- Moved back to MC9 (was MC10 only)
  - DC is based on MC9 release-01-0x-xx
  - ✓ signal (BGx0, BGx1), also MC10 BGx1 for comparison
  - $\checkmark$  background ( $q\bar{q}$ ,  $B\bar{B}$  generic,  $\tau$ ): BGx1. 0.8 ab<sup>-1</sup>
- Continuum suppression re-implemented (wrong in previous presentation)
- check also sibling channel  $B^+ \to \eta' K_s$  for cross check;
- First look at DC: search for signal and first yield estimation;
  - Many issues found, will discuss later.



### Continuum suppression



- Was wrong in previous iteration (that's why I got no signal!)
- re-trained using signal events (MC9 BGx1) against continuum  $q\bar{q}$  passing preselection;
  - ▶ Still working with NtupleTools, will move to VariableToNtuple sometime;
- I prefer to use Transformed CS-MVA rather than prob since it is easier to model in ML fit.
- TODO: use Data (DC) side bands as training sample





warning: mixed have also signal inside: removed for final selection



## Signal Efficiency



10 / 20

| Dataset                                                    | $\varepsilon$ % | SxF% | cand/ev |  |  |  |
|------------------------------------------------------------|-----------------|------|---------|--|--|--|
| MC9 BGx0                                                   | 22.1            | 3.5  | 1.2     |  |  |  |
| MC9 BGx1                                                   | 10.7            | 4.8  | 1.14    |  |  |  |
| MC10 BGx1                                                  | 21.7            | 6.7  | 1.2     |  |  |  |
| B2TIP BGx0                                                 | 30.1            | 2.3  | 1.06    |  |  |  |
| B2TIP BGx1                                                 | 23.0            | 3.8  | 1.09    |  |  |  |
| Same selections: $\varepsilon_{MC9} << \varepsilon_{MC10}$ |                 |      |         |  |  |  |
| DC is based on MC9                                         |                 |      |         |  |  |  |



### MC7 BGx1 (B2TIP)



### MC9 BGx0



#### MC10 BGx1



Warning: some selection (eg  $M_{\eta,\eta'}$ ) moved to pre-selection wrt B2TIP



### Signal yield expected



- Reporting B2TIP table
- event yield for background looking at 0.8 ab<sup>-1</sup> of MC9, rescaled to 1 ab<sup>-1</sup>
  - continuum a bit higher, but compatible
  - peaking lower for neutral (/10) and higher for charged (x4)
  - signal is removed from neutral mixed
- signal expected given the (low)  $\varepsilon$  in MC9
  - Was  $\sim 970$  events.  $\varepsilon \sim 23\%$
  - ▶ in MC9 expect ~ 350 events.
  - ▶ from 0.8 ab<sup>-1</sup> of generic B<sup>0</sup>B

    0 I got ~ 316 true signal
    - $\star \sim 400 \text{ in } 1 \text{ ab}^{-1}$

 $L=1 ab^{-1}$ 

|                     | B2TIP        | MC9          | DC   |  |  |  |  |
|---------------------|--------------|--------------|------|--|--|--|--|
|                     | N ev.        |              |      |  |  |  |  |
| $qar{q}$            | 16413        | 18300        | -    |  |  |  |  |
| $B^0\overline{B}^0$ | 1834         | 150          | -    |  |  |  |  |
| $B^+B^-$            | 57           | 210          | -    |  |  |  |  |
| Signal              | 969          | 400          | -    |  |  |  |  |
| Total               | $\sim 20000$ | $\sim 19000$ | 6150 |  |  |  |  |

Even before searching for the signal, I do have roughy 1/3 of the continuum events I do expect And (in principle) MC9 and DC are the same thing.





- I'm always using the TDCPV skim centrally produced;
- not for the signal, where I run my selection w/o intermediate skim;
- ullet Check the event yields and retention rate arepsilon after the TDCPV skims
  - ▶ not clear to me if these numbers refer to 1 or  $0.8\,\mathrm{ab}^{-1}$

|                     | MC9                 |                  |           | DC               |             |               |
|---------------------|---------------------|------------------|-----------|------------------|-------------|---------------|
| Dataset             | all                 | skim             | arepsilon | all              | skim        | $\varepsilon$ |
| qq                  | $4.6 \cdot 10^9$    | $213 \cdot 10^6$ | 4.6%      |                  | -           |               |
| $B^0\overline{B}^0$ | $0.53 \cdot 10^{9}$ | $3.5\cdot 10^6$  | 0.67%     |                  | -           |               |
| $B^+B^-$            | $0.56 \cdot 10^{9}$ | $4.6 \cdot 10^6$ | 0.8%      |                  | -           |               |
| Total               | $5.7 \cdot 10^9$    | $221 \cdot 10^6$ | 3.8%      | $5.6 \cdot 10^9$ | $60.10^{6}$ | 1%            |

### What am I missing?

It seems that the initial numer of events is correct, but the TDCPV skims retains about 1/4 of what I would expect.

## Intermezzo $B^+ \to \eta' K^+$



- Why B<sup>+</sup>?
  - ▶ The idea was to have a control channel with similar final state
  - (thanks Ale for the suggestion)
- BR is similar:  $\mathcal{B}(\mathsf{B}^+) = 4.1 \cdot 10^{-6} \text{ vs } \mathcal{B}(\mathsf{B}^0) = 3.86 \cdot 10^{-6}$
- no MC available (not even dec file)
  - produce and test a dec file

ightharpoonup pro tip: if you ask <code>EVTGEN</code> to decay  $\eta' o \eta' \pi^+ \pi^-$ , it will do it w/o complaining.

- produced privately 10k events (release-02-01-00)
- setup a quick and dirty selection:
  - $\star$   $\eta'$  as in B<sup>0</sup> channel, plus a K<sup>+</sup>
- ightharpoonup arepsilon reconstruction and preselection
- lacktriangledown  $arepsilon\sim 15\%$  with cut on  $M_{\eta,\eta'}$  and  $\mathit{CS}_{\mathit{MVA}}>0.5$
- rescale by factor 2? for MC10 $\rightarrow$ MC9?  $\varepsilon\sim7-10\%$
- expected yield in  $1 \text{ ab}^{-1}$ :  $1.1 \cdot 10^9 (B\overline{B})$ ,  $550 \cdot 10^6 (B^+B^-)$
- Yield =  $N_{\rm R}^{+}_{\rm R}^{-} \cdot 2 \cdot \mathcal{B} \cdot \varepsilon \approx 300 400$  events in  $1\,{\rm ab}^{-1}$ 
  - side note: almost as hard as the signal channel...

## Intermezzo (II) $B^+ \to \eta' K^+$



sel is w/ cut on  $M_{\eta,\eta'}$  and  $\mathit{CS} > 0.5$ 

- why  $\Delta E$  is not at 0 ????
- traced back to  $M_{\rm B}^{\rm reco}=5.35\,{\rm GeV}$  and not 5.28 GeV.
  - MC truth mass is correct  $M = 5.28 \,\text{GeV}$
  - decay chain is correct
  - ▶ B<sup>0</sup> reconstructed momentum match well the MC truth one.
  - ► B<sup>0</sup> reconstructed energy (P4[3]) does not
- As if the particle reconstruction associate  $B_s^0$  in place of  $B^\pm$  to the decay
  - reconstructDecay("B+ -> eta'
    K+:good","Mbc > 5.2 and
    abs(deltaE) < 0.2")</pre>









## Intermezzo (III) $B^+ o \eta' K^+$



- Pretending that it is fine that  $\Delta E$  is not centered at zero
- selection CS > 0.5 and  $M_{\eta,\eta'}$ 
  - ▶ No cut in  $\Delta E$
- found a nice signal in DC in  $M_{bc}$  distribution
- event yield  $\sim$  40. Expected  $\sim$  300 400
- Ok, only  $M_{bc}$  ML fit, not a  $M_{bc}$ ,  $\Delta E$  one, but still . . .





### ML fit: w/o the time dependent part





### Back to B<sup>0</sup>

- Columns:
  - $M_{bc}$
  - $\Delta E$
  - $\sim CS_{MVA}$
  - $\triangleright$   $SxF_{MVA}$  not retrained yet
- Rows:
  - Signal
  - SxF
  - continuum
  - peaking signal removed



## Signal B<sup>0</sup> in MC9











### B<sup>0</sup> in MC, not yet DC

- Build my own "DC" a,
  - combining 0.8 ab<sup>-1</sup> of continuum
  - and  $0.8\,\mathrm{ab}^{-1}~\mathrm{B}~\overline{\mathrm{B}}$ 
    - \* w/o removing my signal
- MC truth tells me that I do have  $\sim$  320 B0\_isSignal
- ML fit found:
  - ► **nSig=407** (30 $\sigma$ )
  - ► nSxF=57.8 (1.2 $\sigma$ )
  - bias to be investigated, might be related to bad SxF MVA

a with blackjack and h... [Bender Bending Rodríguez, Futurama, ep. 2, s. 1]



## Signal $B^0$ in DC proper (allegedly $1 ab^{-1}$ ): 1D ML fit



### First just try to apply all selection plus $CS_{MVA}>0.5$ and perform a 1D fit on $M_{bc}$ and $\Delta E$





Expected event yield  $\sim$  400 events



## Signal $B^0$ in DC proper (allegedly $1 ab^{-1}$ ): 4D ML fit











### The full 4D ML fit and signal extraction

- ML fit found:
  - $nSig=136.6 \pm 14.7 \text{ ev } (16\sigma)$
  - ▶  $nSxF=22.2 \pm 33.1 \text{ ev } (0.7\sigma)$
- ullet expected  $\sim$  400 events
- A good signal, but significantly lower than expected
  - signal is roughly 1/4 of expected, as the ratio between TDCPV skimmed events
  - worth investigating...



### Summary

- ✓ Found small signal for  $\eta' \to \eta (3\pi/2\gamma) \pi^{\pm}/\rho \gamma$  in Phase II Data
- $\checkmark$  Found signal for both  $B^+ \to \eta' K^+$  and  $B^0 \to \eta' K^0_S$  in DC
- both significantly lower than expected
- $\checkmark$  hand-made  $0.8\,\mathrm{ab}^{-1}$  DC mixture has the expected number of signal events

#### Todo

- Understand TDCPV skims retention in DC
- Understand why B<sup>+</sup> mass reconstruction is wrong
- $\checkmark$  Do SxF retraining (and/or try if  $\pi^0$  veto improves SxF)
- toys for ML fit for signal yields to check bias
- a better control channel?





Additional or backup slides