LINEA 1 : Oscillazioni di Neutrini

Marco Laveder

Frascati, 16 aprile 2012

BEYOND STANDARD MODEL : spin 0 composite particle massive Majorana neutrinos

massive Dirac neutrinos

STANDARD MODEL : SM HIGGS BOSON

massless neutrinos

Neutrinos: active

 $\underline{v_{\mu}} \rightarrow \underline{v_{e}} \operatorname{Result}$

Reconstructed v_e energy

Phys. Rev. Lett. 107:041801, (2011) 68%/90% CL region

Expected 1.5 \pm 0.3 BG and observed 6 event. θ_{13} = 0 probability is only 0.7%.

 $0.03 < \sin^2 2\theta_{13} < 0.28$ (normal) $0.04 < \sin^2 2\theta_{13} < 0.34$ (inverted)

We observed the indication of $\theta_{13} \neq 0$

Probability to observe the vertex distribution

Probability From Toy-MC						
Distribution	7 FC Events	6 FCFV Events				
Dwall	22.6%	3.7%				
Towall	7.2%	1.9%				
Fromwall	22.8%	5.8%				
R^2	10.9%	3.1%				
Z	38.8%	68.3%				
ϕ	28.5%	11.0%				

Probability From Toy-MC						
Distribution	7 FC Events	6 FCFV Events				
Towall to Beam	5.1%	1.1%				
Fromwall to Beam	1.4%	0.14%				
x	32.0%	51.4%				
y	42.5%	72.7%				
2	5.2%	0.65%				

Reconstructed v_{μ} energy

90% CL region

Clear oscillation pattern is observed with off-axis beam

90% CL boundary includes (1.0, 3.1x10⁻³eV²), (0.84, 2.65x 10⁻³eV²) and (1.0, 2.2x10⁻³eV²)

First observation of v_{μ} disappearance using off-axis beam.

ND280 off-axis event gallery

A. Rubbia

Wednesday, March 16, 2011

Vacuum frequency $\delta m^2/2E$ (unknown sign) interferes with v_e interaction energy $\sqrt{2G_FN_e}$ (known sign) in solar matter: MSW

→ Get (v_1, v_2) hierarchy: state with largest v_e component is the lightest of the two - conventionally, v_1

Main features of matter effects: established | Spectral details: need higher stat, lower E

Here at TAUP 2011: Final SNO data analysis and first Borexino pep flux data!

Solar neutrinos survival probability: after Borexino including pep v_e 's

What can we learn from solar neutrinos (1)?

Astrophysics: resolving "metallicity problem"

metallicity

abundance of the elements above He

New 3D Standard Solar Models -> lower metallicity -> discrepancy with helioseismology... where is the problem?

	Difference	$\Phi(v \text{ sec}^{-1} \text{ cm}^2)$	$\Phi(\nu \text{ sec}^{-1} \text{ cm}^2)$	Sources
	%	low-metallicity	high-metallicity	
	0.8	6.03(1±0.006)×10 ¹⁰	5.98(1±0.006)×1010	pp
	2.0	1.47 (1±0.012)×108	1.44(1±0.012)×10 ⁸	pep
	33	8.31(1±0.300)×103	8.04(1±0.300)×103	hep
	9.4	4.56(1±0.070)×109	5.00(1±0.070)×109	⁷ Be
Solar neutrino	19.8	4.59(1±0.140)×106	5.58(1±0.140)×106	⁸ B
fluxes	31.6	2.17(1±0.140)×108	2.96(1±0.140)×108	^{13}N
depend	33.5	1.56(1±0.150)×108	2.23(1±0.150)×108	150
on metallicity!	53.0	3.40(1±0.160)×106	5.52(1±0.170)×106	^{17}F

Solar Model: Serenelli, Haxton and Pena-Garay arXiV:1104.1639
High metallicity GS98 = Grevesse et al.S. Sci. Rev. 85,161 ('98);
Low metallicity AGS09 = Asplund, et al, A.R.A.&A. 47(2009)481;

Rencontres de Moriond EW, La Thuile, 3-10 March 2012

Implications of the ⁷Be measurement

-comparing to non-oscillated SSM : no oscillation excluded @ 5.0 σ

(electron equivalent flux (862 keV line): (2.78 ± 0.13) x 10⁹ cm⁻² s⁻¹)

- assuming MSW-LMA: f (7Be) = measured flux / SSM = 0.97 + 0.09
- including all solar experiments + luminosity constrain:

 $f_{pp} = 1.013^{+0.003}_{-0.010}$ $f_{CNO} < 2.5 \text{ at } 95\% \text{ C.L.}$

Rencontres de Moriond EW, La Thuile, 3-10 March 2012

Livia Ludhova (Borexino collaboration)

SSM with GS98 metal abundances

P_{oc}: v_e survival probability

The first v_{τ} candidate event Phys. Lett. B 691 (2010) 138

- 2008-2009 data analysis completed (arXiv:1107.2594v1) Acc. by New Journ. of Phys.
 - 4.8×10¹⁹ pot, 34% of available sample, 2.6 × more statistics w.r.t. τ candidate publication
 - 2738 fully analysed events (decay search). No new τ
 - Analysis improvements

1) Search of highly ionizing tracks in hadronic interactions (\downarrow bckg for $\tau \rightarrow$ h)

2) Follow down of vertex tracks in the emulsion \rightarrow p-range correlations \rightarrow increased μ -ID efficiency \rightarrow \downarrow charm background \downarrow hadronic bckg from $\nu_{\mu}^{\ CC}$ with μ misID

3) Implementation of state-of-the art charm cross section from CHORUS ($\uparrow \sigma$)

Full simulation chain with reconstruction in the emulsions

Statistics update and analysis improvements

Including all the improvements in the analysis

			OPERA 20	08-2009,	4.8e19 p.o.t.		
Decay channel	Expected signal events $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$		events	 obser tau sig 	ved gnal	1	
	22.5 10 ¹⁹ p.o.t.	4.8 10 ¹⁹ p.o.t. (analysed)	1.5	charm hadro muon	ı back. nic back. scatter back.		
$ au ightarrow \mu$	1.79	0.39	1			•	
$\tau ightarrow e$	2.89	0.63	Ē				
$ au ightarrow m{h}$	2.25	0.49	0.5				
au ightarrow 3h	0.71	0.15	τ-	→μ	τ → e	τ⇒h	$\tau \rightarrow 3h$
Total	7.63	1.65	0				channels

- In the analyzed sample (92% of 08/09 data)
- one v_{τ} observed in the $\tau \rightarrow h$ channel compatible with the expectation of 1.65
- Expected background in $\tau \rightarrow h$: 0.05 \pm 0.01 events
- Total background (considering all channels): 0.16 ± 0.03 events
- $\tau \rightarrow \mu$ is the cleanest channel

Updated S/B expectations

CNGS neutrino run in 2010-2011

	20	10	2011		
Event Type	Collected Expected		Collected	Expected	
$ u_{\mu}$ CC	114	129	247	273	
ν_{μ} NC	46	42	71	90	
ν_e CC	1	1	-	-	
νXC^{\star}	7	-	37	-	
Total	167	171	355	363	

 \star Events at edges, with μ track too short to be visually recognized: futher analysis needed.

Izabela Kochanek (US & LNGS)

CNGS CC ν_{μ} interaction

 $E_{deptot} = 3.23 \pm 0.54 \,\, \mathrm{GeV}$

- $p_T = 78 \text{ MeV/c}$ $P_{tot} = 7 \text{ GeV/c}$
- $p_T = 154 \text{ MeV/c}$ $P_{tot} = 6.5 \text{GeV/c}$

TRACK	E [MeV]	p [MeV/c]	range [cm]
Α (π)	62 ± 5	145 ± 7	18
Α (π)	337 ± 32	455 ± 32	18
Β(π)	429 ± 36	550 ± 38	92

dE/dx for the first part of the cascades: 1.99 MeV/cm, 2.1 MeV/cm. Conversion distances: 14.6 cm, 61.4 cm.

Izabela Kochanek (US & LNGS)

 $\Delta m_{21}^2 = (7.65^{+0.23}_{-0.20}) \times 10^{-5} \,\mathrm{eV}^2 \qquad |\Delta m_{31}^2| = (2.40^{+0.12}_{-0.11}) \times 10^{-3} \,\mathrm{eV}^2$ $\sin^2 \vartheta_{12} = 0.304^{+0.022}_{-0.016} \qquad \sin^2 \vartheta_{23} = 0.50^{+0.07}_{-0.06}$

[Schwetz, Tortola, Valle, arXiv:1108.1376]

6 days ago: $\sin^2 \vartheta_{13} = 0.023 \pm 0.004$ [Daya Bay, arXiv:1203.1669]

Previous indications of $\sin^2 \vartheta_{13} > 0$: [T2K, arXiv:1106.2822], [MINOS, arXiv:1108.0015], [Double Chooz, arXiv:1112.6353]

 $\vartheta_{13} \neq 0 \implies CP$ violation, matter effects, mass hierarchy

EPILOGUE

at the

Three (v) gondolas are safe in the harbor... ...but that's not what they are made for. New gondolas might join, and all lead us towards new (physics) horizons

Thank you for your attention

Neutrinos: sterile

A long standing set of anomalies

Summarizing

Reactors

0.6 0.7	0.8 0.	9	1	1.1	1.2	1.3	1.4
huuluul	hulund		пш		ЧШ	ηп	uluu
ROVNO88_3S	-	-	-		0.938	+0.008	+0.068
ROVNO88_2S	H	-	-		0.959	±0.009	±0.075
ROVNO88_1S					0.972	±0.009	±0.076
ROVNO88_21	H	-	-		0.948	+0.009	+0.065
ROVNO88_11			4		0.917	+0.008	+0.063
SRP-II 23.8 m				4	1.019	=0.010	+0.038
SRP-I			4		0.953	±0.006	±0.035
Krasnoyarsk-III					0.954	±0.010	+0.046
Krasnoyarsk-II	H				0.960	+0.190	+0.053
Krasnoyarsk-I	H				0.944	+0.034	+0.052
ILL 8.76 m	·····				0.801	+0.059	+0.048
Goesgen-III			-		0.924	+0.043	+0.055
Goesgen-II		-	**	e	0.991	±0.024	+0.059
Goesgen-I		++-			0.966	+0.023	+0.058
Bugey3			-+		0.873	±0.115	±0.044
Bugey3			-		0.948	+0.009	+0.047
Bugey-3/4			4		0.943	+0.004	±0.047
ROVNO91			4		0.940	+0.023	+0.028
Bugey-3/4					0.943	+0.000	+0.028
Ta=885.75 Av	erage	÷			0.943	±0.022	
hundhund	uuluud		վո	ului	ılıı	du	uluu
0.6 0.7	0.8 0.	9	1	1.1	1.2	1.3	1.4
V _{Measured} / V _{Expected}							

Sources

Accelerators

Mauro Mezzetto (INFN Padova)

Beyond3nu, 3-4/5/11 3 / 28

ν_e Disappearance in Gallium radioactive source experiments

 $R \equiv$ wheighted average value of the ratio of measured and predicted ^{71}Ge production rates (p) :

$$R \equiv \frac{p(\text{measured})}{p(\text{predicted})} = 0.87 \pm 0.05$$

arXiv:0901.2200[nucl-ex]

Ga radioactive source exp. results may be interpreted as an indication of the disappearance of ν_e due to active-sterile oscillations! hep-ph/0610352 Carlo Giunti & ML

[Giunti, Laveder, PRD 82 (2010) 053005, arXiv:1005.4599]

 $\Delta m^2_{
m SBL} \gtrsim 1\,{
m eV}^2$ is OK, but $\sin^2 2artheta_
u > \sin^2 2artheta_
u$

Parameter Goodness of Fit = 0.2%

CPT violation? [Giunti, Laveder, PRD 82 (2010) 113009, arXiv:1008.4750]

C. Giunti – Sterile Neutrino Fits – 17 Mar 2011 – 22/27

Borexino test exp

► Borexino:

[lanni, Montanino, Scioscia, EPJC 8 (1999) 609, arXiv:hep-ex/9901012]

Interesting Tension (2.3σ difference)
Plan to have at least double current data set by this Summer.

- Data taking interrupted by target failure on Feb. 26
- Plan to have new target in April

Mar. 15, 2011

...does not show up in 2011 data!

The Reactor Antineutrino Anomaly and implications

Th. Lasserre (CEA-Saclay, Irfu SPP & APC)

34

The neutrino run

- (A) electron-like neutrino data. Comparison between the data (black dots) and the calculated distributions due to misidentified v_{μ} events (red)—and genuine v_e events (blue). The sum is indicated in black. One notices an anomaly at low energies, which is incompatible with LNSD predictions.
- (B) according to Giunti & Laveder scaling of the events is applied with a factor 1.26, within the permitted uncertainty of F = 1.24 \pm 0.21 and gives an acceptable fit to the data. The v_e with and without scaling and disappearance are also shown.

Estimation/Measurement of Neutrino Flux

Phys. Rev. C84:034604 (2011)

Intermezzo sulla fisica di Majorana

Natura del neutrino

Nuovo Cimento **14** (1937) 171-184

TEORIA SIMMETRICA DELL'ELETTRONE E DEL POSITRONE

Nota di Ettore Majorana

Sunto. - Si dimostra la possibilità di pervenire a una piena simmetrizzazione formale della teoria quantistica dell'elettrone e del positrone facendo uso di un nuovo processo di quantizzazione. Il significato delle equazioni di DIRAC ne risulta alquanto modificato e non vi è più luogo a parlare di stati di energia negativa; nè a presumere per ogni altro tipo di particelle, particolarmente neutre, l'esistenza di « antiparticelle » corrispondenti ai « vuoti » di energia negativa.

We show that it is possible to achieve complete formal symmetrization in the electron and positron quantum theory by means of a new quantization process. The meaning of Dirac equations is somewhat modified and it is no more necessary to speak of negative-energy states; nor to assume, for any other type of particles, especially neutral ones, the existence of antiparticles, corresponding to the "holes" of negative energy.

Najorana Neutrino

Nuovo Cimento 14 (1937) 171-184

TEORIA SIMMETRICA DELL'ELETTRONE E·DEL POSITRONE Nota di Ettore Majorana

$$H=\sum_{\gamma}c\sqrt{m^2c^2+h^2\gamma^2}\sum_{r=1}^2\left[n_r(\gamma)-rac{1}{2}
ight],$$

(22)

Queste formole sono completamente analoghe, salvo la diversa statistica, a quelle che si ottengono dalla quantizzazione delle equazioni di Maxwell. In luogo di quanti immateriali si hanno particelle con una massa di riposo finita e anche esse con due possibilità di polarizzazione. Anche qui *come nel caso della radiazione*, sono presenti i mezzi quanti di riposo della energia e della quantità di moto, salvo che il loro segno è opposto in apparente relazione con la diversa statistica. Essi non costituiscono pertanto una difficoltà specifica e allo stato attuale della teoria debbono anche qui essere considerati come semplici costanti addittive prive di significato.

TEORIA RELATIVISTICA DI PARTICELLE CON MOMENTO INTRINSECO ARBITRARIO

Nota di ETTORE MAJORANA

(1932)

Sunto. - L'autore stabilisce equazioni d'onda lineari nell'energia e relativisticamente invarianti per particelle aventi momento angolare intrinseco comunque prefissato.

Quando si cercano le soluzioni di (16) corrispondenti a onde piane con massa positiva si trovano tutte quelle che derivano per trasformazione relativistica dalle onde di momento nullo. Per queste l'energia è data da

$$W_{0} = \frac{mc^{2}}{j+\frac{1}{2}}$$

Massa dell' "Higgs" (J=0) = 3 volte la massa del bosone Z(J=1) \rightarrow 273 GeV !!!

laboratori Gran Sasso

Cu cryostat

Ge diodes

ultrapure H_2O

Testable Implications

[Giunti, Laveder, PLB 706 (2011) 200, arXiv:1111.1069]

COMPLEMENTARITY relation :

 $\theta_{12} \sim 32^o \qquad \theta_{es} \sim 13^o \qquad \theta_{12} + \theta_{es} = 45^o$

Quale relazione tra il Neutrino di Majorana e la Dark Matter ?

A.G. Riess et al. astro-ph 1103.2976

Sciencexpress

Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices

V. Mourik,¹* K. Zuo,¹* S. M. Frolov,¹ S. R. Plissard,² E. P. A. M. Bakkers,^{1,2} L. P. Kouwenhoven¹[†]

¹Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, Netherlands.

²Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands.

*These authors contributed equally to this work.

+To whom correspondence should be addressed. E-mail: I.p.kouwenhoven@tudelft.nl

Majorana fermions are particles identical to their own antiparticles. They have been theoretically predicted to exist in topological superconductors. We report electrical measurements on InSb nanowires contacted with one normal (Au) and one superconducting electrode (NbTiN). Gate voltages vary electron density and define a tunnel barrier between normal and superconducting contacts. In the presence of magnetic fields of order 100 mT we observe bound, mid-gap states at zero bias voltage. These bound states remain fixed to zero bias even when magnetic fields and gate voltages are changed over considerable ranges. Our observations support the hypothesis of Majorana fermions in nanowires coupled to superconductors.

... if they are roses they'll flower...

... A BRIGHT FUTURE for Majorana ν physics !!!

New Neutrino Facility in the CERN North Area

100 GeV primary beam fast extracted from SPS; target station next to TCC2; decay pipe I =100m, $\emptyset = 3m$; beam dump: 15m of Fe with graphite core, followed by μ stations. Neutrino beam angle: pointing upwards; at -3m in the far detector ~5mrad slope.

SPSC_Open Presentation April 2012

Global 3+1 Fit of SBL Data

[Giunti, Laveder, arXiv:1109.4033, arXiv:1111.1069]

- Simplest scheme beyond standard three-neutrino mixing which can partially explain the data.
- It corresponds to the natural addition of one new entity (a sterile neutrino) to explain a new effect (short-baseline oscillations).

LAr + NESSiE v_{μ} disappearance

GRAZIE Milla !!!

BEYOND STANDARD MODEL : spin 0 composite particle massive Majorana neutrinos

massive Dirac neutrinos

STANDARD MODEL : SM HIGGS BOSON

massless neutrinos

Combined exclusion limit

Expected exclusion at 95% CL: 120-555 GeV

Observed exclusion at 95% CL: 110-117.5, 118.5-122.5, 129-539 GeV

Observed exclusion at 99% CL: 130-486 GeV

