Neutrinos: active, sterile or tachionic ?

M.Laveder (Univ. of Padua & INFN-PD)

Turin – 6/12/2011

Il cannocchiale di Galileo sembra infrangere le incorruttibili sfere e rimuovere l'orizzonte

Neutrinos: active

La soluzione Tolemaica

Matrice di mixing dei neutrini

La matrice di mixing dei neutrini $U_{\rm MNSP}$ è molto diversa dalla matrice di mixing dei quark $U_{\rm CKM}$

$$U_{MNSP} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

 $\theta_{13} \rightarrow 0 \implies$ La matrice 3x3 di mixing diventa il prodotto di due matrici 2x2. La conoscenza di θ_{13} prelude ad ogni futura ricerca di violazione di CP leptonica.

Neutrini Atmosferici

Unknown

Neutrini Solari

J-PARC Facility (KEK/JAEA)

Gev

Linac

FFF

Neutrino Beam (to Kamioka)

30 Gev Main Ring

Construction JFY2001~2008

North 1

Wednesday, March 16, 2011

ND280 off-axis detector overview

Two main target regions:

- Pi-0 Detector (P0D): optimised for (NC) π^0 events
- *Tracker: optimised for charged particle final states* **Both regions have passive water planes**

A. Rubbia

XIV International Workshop on Neutrino Telescopes (2011)

ETH

ND280 off-axis event gallery

A. Rubbia

Wednesday, March 16, 2011

Reconstructed v energy cut ($E_{rec} < 1250 \text{ MeV}$) : Final cut

June 2011 breakthrough: new <u>T2K</u> and MINOS appearance results!

→ "Evidence of θ₁₃>0 from global neutrino data analysis" [Fogli, EL, Marrone, Palazzo, Rotunno, arXiv:1106.6028]

013 Preliminary Results

First neutrino oscillation data release of DC at LowNull @ Seoul (Korea)

Far detector data only

No-Oscillation: reactor flux prediction

Rate + Shape Analysis: $sin^2(2\theta_{13}) = 0.085 \pm 0.029(stat) \pm 0.042(syst)$

Rate Only: $sin^{2}(2\theta_{13}) = 0.093 \pm 0.029(stat) \pm 0.073(syst)$

Global θ_{13} Hunt

DC results consistent with T2K results

Major impact in θ I3 knowledge today by DC

Combined effect: $\sin^2(2\theta_{13})$ >0 @ 3 σ

Words of caution, from someone we all miss:

"Half of all 3 σ results are wrong."

J.N. Bahcall

No doubt: we need further experimental tests of θ_{13} >0 and, in particular, at least a single result at >3 σ level !

But, it would be very surprising if the current evidence were just due to a conspiracy of fluctuations in rather different categories of neutrino oscillation experiments.

In planning future v beams/detectors, useful to consider the likely possibility that $sin^2\theta_{13}\sim0.02$

Vertex distribution of v_e candidate events

 \rightarrow Perform several checks. for example

- * Check distribution of events outside FV \rightarrow no indication of BG contamination
- * Check distribution of OD events \rightarrow no indication of BG contamination
- * K.S. test on the R² distribution yields a p-value of 0.03

Status of 3v oscillation parameters, circa 2011

G.L.Fogli, E.L., A.Marrone, A.Rotunno (Univ. & INFN, Bari), A. Palazzo (TUM, Munich) "Evidence of θ_{13} >0 from global neutrino data analysis", arXiv:1106.6028v2 Vacuum frequency $\delta m^2/2E$ (unknown sign) interferes with v_e interaction energy $\sqrt{2G_FN_e}$ (known sign) in solar matter: MSW

→ Get (v_1, v_2) hierarchy: state with largest v_e component is the lightest of the two - conventionally, v_1

Main features of matter effects: established | Spectral details: need higher stat, lower E

Here at TAUP 2011: Final SNO data analysis and first Borexino pep flux data!

Development of the SSM after 2004: impact on neutrino fluxes

Model	pp	pep	⁷ Be	⁸ B	¹³ N	¹⁵ O	¹⁷ F	Y _{surf}	R _{cz} /
	×10 ¹⁰	×10°	×10 ⁹	×10°	×10°	×10°	×10°		Sun
BS04	5.94	1.40	4.88	5.87	5.62	4.90	6.01	0.0169	0.7148
BS04(¹⁴ N)	5.99	1.42	4.89	5.83	3.11	2.38	5.97	0.0170	0.7153
BS05 (OP,GS98)	5.99	1.42	4.84	5.69	3.07	2.33	5.84	0.0170	0.7138
BS05(OP, AGS05)	6.06	1.45	4.34	4.51	2.01	1.45	3.25	0.0126	0.7280
BPSH2011	5.98	1.44	5.00	5.58	2.96	2.23	5.52	0.0170	0.7124
GS98	[6.03]	[1.47]	[4.56]	[4.59]	[2.17]	[1.56]	[3.40]	[0.0134]	[0.7231]
[AGSS09]									

- 1. BS04(¹⁴N) accounts for new S_{1,14} for ¹⁴N(p,γ)¹⁵O [A. Formicola et al 2004]
- 2. BS05(OP,GS98) accounts for new opacities
- BS05(OP,AGS05) accounts for new calculations of surface abundances: Z/X ~ 0.023 -> ~ 0.018

Solar Standard Model metallicity problem

Borexino and SNO solar neutrino measurement of ⁷Be and ⁸B

CNO to probe metallicity problem

	CNO FLUX (10 ⁸ cm ⁻² s ⁻¹)
HIGH Z SSM	5.24 ± 0.84
LOW Z SSM	3.76 ± 0.60
$\Delta \Phi$	28%

CNO interaction rate

Assuming MSW-LMA

Solar neutrinos survival probability: after Borexino including pep v_e 's

The first v_{τ} candidate event Phys. Lett. B 691 (2010) 138

EPILOGUE

at the

Three (v) gondolas are safe in the harbor... ...but that's not what they are made for. New gondolas might join, and all lead us towards new (physics) horizons

Thank you for your attention

Neutrinos: sterile

A long standing set of anomalies

Summarizing

Reactors

0.6 0.7	0.8	0.9	1	1.1	1.2	1.3	1.4			
hilini	m		hhu	ЩШ	ПШ	ΠЦ	uluu			
ROVNO88_3S			H		0.938	+0.006	+0.058			
ROVNO88_2S		-	-		0.959	±0.009	±0.075			
ROVNO88_1S		-	-		0.972	±0.009	±0.076			
ROVN088_21		-			0.948	+0.009	+0.065			
BOVN088_11					0.917	×0.008	+0.063			
SRP-II 23.8 m					1.019	±0.010	+0.038			
SRP-I		-	•		0.953	±0.006	±0.035			
Krasnoyarsk-III 57.3 m			- ·		0.954	±0.010	+0.046			
Krasnoyarsk-II	H	1	-	+	0.960	+0.190	+0.053			
Krasnoyarsk-I		-			0.944	±0.034	+0.062			
ILL 8.76 m	H				0.801	+0.059	+0.048			
Goesgen-III			-		0.924	+0.043	+0.055			
Goesgen-II 46.0 m		-			0.991	±0.024	+0.059			
Goesgen-I		-			0.966	+0.023	+0.058			
Bugey3 95.0 m	+				0.873	±0.115	=0.044			
Bugey3 40.0 m					0.948	×0.009	+0.047			
Bugey-3/4		-	-		0.943	+0.004	+0.047			
ROVNO91		- 1	•		0.940	+0.023	+0.028			
Bugey-3/4					0.943	+0.000	+0.028			
τ _n =885.7s Av	erage	H	1		0.943	±0.022				
ևուհում	ասհո	пЦ	հետ	uluu	ılın	du	uluu			
0.6 0.7	0.8	0.9	1	1.1	1.2	1.3	1.4			
V _{Measured} / V _{Expected}										

Sources

Accelerators

ν_e Disappearance in Gallium radioactive source experiments

 $R \equiv$ wheighted average value of the ratio of measured and predicted ^{71}Ge production rates (p) :

$$R \equiv \frac{p(\text{measured})}{p(\text{predicted})} = 0.87 \pm 0.05$$

arXiv:0901.2200[nucl-ex]

Ga radioactive source exp. results may be interpreted as an indication of the disappearance of ν_e due to active-sterile oscillations! hep-ph/0610352 Carlo Giunti & ML

[Giunti, Laveder, PRD 82 (2010) 053005, arXiv:1005.4599]

 $\Delta m^2_{
m SBL} \gtrsim 1\,{
m eV}^2$ is OK, but $\sin^2 2artheta_
u > \sin^2 2artheta_
u$

Parameter Goodness of Fit = 0.2%

CPT violation? [Giunti, Laveder, PRD 82 (2010) 113009, arXiv:1008.4750]

C. Giunti – Sterile Neutrino Fits – 17 Mar 2011 – 22/27

Borexino test exp

► Borexino:

[lanni, Montanino, Scioscia, EPJC 8 (1999) 609, arXiv:hep-ex/9901012]

Interesting Tension (2.3σ difference)
Plan to have at least double current data set by this Summer.

- Data taking interrupted by target failure on Feb. 26
- Plan to have new target in April

Mar. 15, 2011

...does not show up in 2011 data!

The Reactor Antineutrino Anomaly and implications

Th. Lasserre (CEA-Saclay, Irfu SPP & APC)

The 4th neutrino hypothesis

Combine all rate measurements, no spectral-shape information
 Fit to anti-v_e disappearance hypothesis

Absence of oscillations disfavored at 98.6% C.L.

34

The neutrino run

- (A) electron-like neutrino data. Comparison between the data (black dots) and the calculated distributions due to misidentified v_{μ} events (red)—and genuine v_e events (blue). The sum is indicated in black. One notices an anomaly at low energies, which is incompatible with LNSD predictions.
- (B) according to Giunti & Laveder scaling of the events is applied with a factor 1.26, within the permitted uncertainty of F = 1.24 ± 0.21 and gives an acceptable fit to the data. The v_e with and without scaling and disappearance are also shown.

Intermezzo sulla fisica di Majorana

Natura del neutrino

Nuovo Cimento **14** (1937) 171-184

TEORIA SIMMETRICA DELL'ELETTRONE E DEL POSITRONE

Nota di Ettore Majorana

Sunto. - Si dimostra la possibilità di pervenire a una piena simmetrizzazione formale della teoria quantistica dell'elettrone e del positrone facendo uso di un nuovo processo di quantizzazione. Il significato delle equazioni di DIRAC ne risulta alquanto modificato e non vi è più luogo a parlare di stati di energia negativa; nè a presumere per ogni altro tipo di particelle, particolarmente neutre, l'esistenza di « antiparticelle » corrispondenti ai « vuoti » di energia negativa.

We show that it is possible to achieve complete formal symmetrization in the electron and positron quantum theory by means of a new quantization process. The meaning of Dirac equations is somewhat modified and it is no more necessary to speak of negative-energy states; nor to assume, for any other type of particles, especially neutral ones, the existence of antiparticles, corresponding to the "holes" of negative energy.

Najorana Neutrino

laboratori Gran Sasso

Cu cryostat

Ge diodes

ultrapure H_2O

Implications of Gallium and Reactor Anomalies

 β Decay

 $(\beta\beta)_{0\nu}$ Decay

₽ 9 99.73% 99.73% Gallium Gallium Reactors œ Reactors œ Tritium Tritium Ga + Re + Tr Ga + Re + Tr 99% 99% ŝ 9 ²۲2 ${}^\Delta\!\chi^2$ 4 95.45% 90% 90% 2 2 68.27% 68.27% 0 10^{-3} 10^{-2} 10⁻¹ 10⁻² 10⁻¹ $|U_{e4}|^2 \sqrt{\Delta m^2}$ [eV] $|U_{o4}|\sqrt{\Delta m^2}$ [eV] $m_{eta}^2 = \sum_k |U_{ek}|^2 m_k^2$ $m_{\beta\beta} = \left| \sum_{L} U_{ek}^2 m_k \right|$

[Giunti, Laveder, In Preparation]

C. Giunti – Sterile Neutrino Fits – 17 Mar 2011 – 25/27

COMPLEMENTARITY relation :

 $\theta_{12} \sim 32^o \qquad \theta_{es} \sim 13^o \qquad \theta_{12} + \theta_{es} = 45^o$

A.G. Riess et al. astro-ph 1103.2976

... if they are roses they'll flower...

... A BRIGHT FUTURE for Majorana ν physics !!!

Two detectors at the CERN-PS neutrino beam

Two positions are foreseen for the detection of the neutrinos The far (T600) location at 850 m from the target: L/E ~ 1 km/GeV; The new location at a distance of 127 m from the target: L/E 0.15 km/GeV

Venice_March2011

Sensitivity to disappearance anomaly

Sensitivities (90% CL) in the $\sin^2(2\theta_{new})$ vs. Δm_{new}^2 for an integrated intensity of (a) at the 30 kWatt beam intensity of the previous CERN/PS experiments, (b) the newly planned 90 kWatt neutrino beam and (c) a 270 kWatt curve. They are compared (in red) with the "anomalies" of the reactor + Gallex and Sage experiments. A 1% overall and 3% bin-to-bin systematic uncertainty is included (for 100 MeV bins).

Venice_March2011

Comparing sensitivities (arXiv:0909.0355)

Expected sensitivity for the proposed experiment exposed at the CERN-PS neutrino beam (left) for 2.5 10²⁰ pot and twice as much for anti-neutrino (right). The LSND allowed region is fully explored both for neutrinos. The expectations from one year of at LNGS are also shown.

Venice_March2011

The detector layout at FAR/NEAR sites

Liquid Argon is the best option for v measurements in the PS beam energy range (electronic bubble chamber): o full measurement of v interactions \circ electron π^0 discrimination at 10⁻³ level \circ NC rejection at 10⁻³ with 90% v_e identification efficiency Memorandum to SPSC, 09/03/2011

Spectrometer is essential to allow o full Charge ID o systematics control o clean separation nu and anti-nu NESSiE proposal (t.b.s.)

Identical LAr-TPC + spectrometer combination at near site.

Our Goal

(full simulation AND reconstruction)

Neutrinos: tachionic ?

Summary of the principle for the TOF measurement

Results

For CNGS v_{μ} beam, $\langle E \rangle = 17$ GeV:

 $\delta t = TOF_c - TOF_v =$

 $(1043.4 \pm 7.8 \text{ (stat.)}) \text{ ns} - 985.6 \text{ ns} = (57.8 \pm 7.8 \text{ (stat.)}^{+8.3}\text{-}_{5.9}(\text{sys.})) \text{ ns}$

relative difference of neutrino velocity w.r.t. c:

 $(v-c)/c = \delta t / (TOF_c - \delta t) = (2.37 \pm 0.32 \text{ (stat.)}^{+0.34} \text{ (sys.)}) \times 10^{-5}$

(730085 m used as neutrino baseline from parent mesons average decay point)

6.2σ significance

Short-bunch wide-spacing neutrino beam

4x10¹⁶ pot accumulated
Proton bunch-length 3ns
35 beam-related events

20 events selected

Results with the bunched-beam

 $\delta t = 62.1 \pm 3.7 \text{ (stat.)}$

The systematic uncertainties are equal or smaller than those affecting the result with the nominal CNGS beam

These result excludes biases affecting the PDF based analysis

Imaginary mass in matter ?

F.Tamburini & ML 1109.5445

Excellent data vs MC agreement !

F.Tamburini & ML 1111.4441

GRAZIE Milla !!!

