Neutrino News 2014

M.Laveder (Univ. of Padua & INFN-PD)

Turin – 26/09/2014

NEUTRINO UNBOUND www.nu.to.infn.it

Ce

March 2-6 2015

Pro In

FOLLOW THIS LINK and STAY TUNED !!

RENO anomaly (3.6 σ) @ Nufact 2014

Fraction of 5 MeV excess (%) to total expected flux

Near : 2.303 +/- 0.117 (stat.) +/- 0.395 (sys.) +/- 0.492 (expected shape error) Far : 1.468 +/- 0.390 (stat.) +/- 0.499 (sys.) +/- 0.482 (expected shape error)

Explanations?

Direct summation of latest ENSDF database, assuming allowed beta-spectrum shape Dwyer and Langford, 2014

This direct summation, as all other direct summations, does not agree with the Schreckenbach total beta-spectrum.

β -spectrum from fission

²³⁵U foil inside the High Flux Reactor at ILL

Electron spectroscopy with a magnetic spectrometer

Same method used for ²³⁹Pu and ²⁴¹Pu

For ²³⁸U there is a recent measurement by Haag *et al.* 2013.

Schreckenbach, et al. 1985.

RENO anomaly (3.6 σ) @ NOW 2014

DATA/PREDICTION

Without 5 MeV excess

With 5 MeV excess

DYB anomaly (4.1 σ) @Nufact 2014

Deduced antineutrino spectrum

- ♦ Extract a reactor antineutrino spectrum $S_{obs v}(E_v)$:
 - \diamond It supplies data outside [2, 8] MeV and could be used for flux and spectrum prediction.

Normalize the unfolded spectrum to *cm²/fission/MeV*.

$$S_{obs_{-}\bar{v}_{e}}(E_{\bar{v}_{e}}) = \frac{S_{unfolded}(E_{\bar{v}_{e}})}{P_{eff}(E_{\bar{v}_{e}},L) \cdot N_{p} \cdot F_{total}}$$

where

 N_p is number of protons per unit target mass; $P_{eff}(E_{\overline{v}_e}, L)$ is suvival probability of \overline{v}_e weighted by flux; F_{total} is total number of fissions of all reactors.

$$S_{pred_{\bar{v}_{e}}}(E) = \left(\sum_{k} \alpha_{k} S_{k}(E) + c^{ne}(E) + SNF(E)\right) \cdot \sigma_{IBD}(E)$$

where

 α_k are the effective fission fractions of Daya Bay

Compare Daya Bay spectrum $S_{obs_v}(E_v)$ and Huber+Mueller Prediction $S_{pred_v}(E_v)$:

 Same rate deficit as flux measurement, and same shape deviation structure as in comparison of positron spectrum.

DYB anomaly (4.1 σ) @Nufact 2014

DYB anomaly (4.1 σ) @ICHEP 2014

Reactor 5 MeV anomalies @TAU 2014

Data (normalized to prediction)

- Daya Bay near [ICHEP2014]
- Double Chooz far [Nu2014]
 - RENO near [Nu2014]

All three experiments

T2K anomaly @EPS 2013

T2K anomaly @EPS 2013

data	MC	poisson	cumulative	p-value		
3	2	0,180447	0,85712346	0,142877		
1	1,8	0,297538	0,46283689	0,537163		
2	2	0,270671	0,67667642	0,323324	90	10
3	2	0,180447	0,85712346	0,142877	cnt	
6	2,3	0,020614	0,99063807	0,009362	fev	
8	2,4	0,002477	0,99913802	0,000862	cr o	
1	2,4	0,217723	0,30844104	0,691559	qui	5
1	2,5	0,205212	0,2872975	0,712703	Ν	
3	2,6	0,217572	0,73600164	0,263998		

Neutrino News 2014 : Beyond 3 v paradigm !

