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Institut de F́ısica d’Altes Energies
Universitat Autónoma de Barcelona

Barcelona, Spain
2014

ABSTRACT

The T2K experiment is a long baseline neutrino experiment that has observed for first time the ap-

pearance of electron-neutrinos in a muon-neutrino beam. Thanks to this analysis, the last unknown

neutrino mixing angle θ13 is measured with a good precision. The main background to this mea-

surement is the contamination of electron-neutrinos produced in the neutrino beam together with the

dominant muon-neutrino component. This is an irreducible component that needs to be measured and

controlled. The prediction of this component at SuperKamiokande is based on the constrain of the

neutrino flux and cross sections by a muon-neutrino selection at the T2K near detector ND280. To

confirm this prediction, we measure the electron-neutrino event rates at ND280 before the oscillations

occur, establishing that the electron-neutrino component is correctly reproduced by the simulation at

the 10% level.

In addition, studying the electron-neutrino component is interesting to investigate the abnormal be-

haviour of some neutrino experiments. The reactor neutrino experiments as well as the results from

the calibration of solar neutrinos detectors containing gallium, using radioactive sources, have observed

a deficit of electron-neutrino at very short distances from the neutrino source. This depletion is not

compatible with standard neutrino oscillation, but it can be explained by invoking a fourth neutrino

with a mass of the order of 1 eV2. This neutrino does not feel any of the forces of the Standard Model,

and hence is called sterile neutrino. Assuming that it mixes with the electron-neutrinos, it would

be responsible of the short base-line electron-neutrino disappearance due to neutrino oscillation. The

T2K near detector is located at a position short enough to study the light sterile neutrino oscillations.

A oscillation model with an additional sterile neutrino apart from the three active species is tested,

constraining to the oscillation parameters and comparing our results with the literature.
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Medida de la componente de neutrinos electrónicos en el haz de T2K y

búsqueda de desaparición de neutrinos electrónicos en el detector cercano

de T2K
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Institut de F́ısica d’Altes Energies
Universitat Autónoma de Barcelona

Barcelona, Spain
2014

RESUMEN

T2K es un experimento de oscilaciones de neutrinos de largo recorrido en el que por primera vez se

ha observado la aparición de neutrinos electrónicos en un haz de neutrinos muónicos. Aśı pues, el

único ángulo de mezcla que quedaba por conocer, θ13, es medido con gran precisión. El background

principal de esta medida es la contaminación de neutrinos electrónicos producida en el haz junto con

la componente de neutrinos muónicos. Ésta es una componente irreducible que ha de ser medida y

controlada.

La componente intŕınseca de neutrinos electrónicos es medida antes de las oscilaciones en el detector

cercano de T2K confirmando la predicción de la simulación con un precisión del 10%. Se establece que

el background de neutrinos electrónicos está bien reproducido y que la principal medida del experimento

T2K es exacta.

Por otro lado, estudiar la componente de neutrinos electrónicos es interesante para investigar el com-

portamiento anómalo de algunos experimentos. Estudios en reactores nucleares y resultados en la

calibración de experimentos de neutrinos solares con Galio han observado un déficit de neutrinos elec-

trónicos a cortas distancias de la fuente. Este déficit no es compatible con oscilaciones de neutrinos

estándar, pero puede ser conciliado en el marco de las oscilaciones, mediante la introducción de un

cuarto neutrino con una masa del orden de 1 eV2. Este nuevo neutrino no sentiŕıa ninguna fuerza del

Modelo Estándar y por ello es comúnmente llamado neutrino estéril. Asumiendo que se mezcla con los

neutrinos de tipo electrónico, explicaŕıa la desaparición a cortas distancias de los mismos. El detector

cercano de T2K se encuentra a una distancia de la fuente óptima para el estudio de oscilaciones de neu-

trinos estériles ligeros. Investigamos el modelo más simple de neutrinos estériles con un sólo neutrino

adicional, definiendo intervalos de confianza para los parámetros de oscilación y comparándolos con la

literatura.
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Outline of this thesis

This thesis describes the analysis of the electron-neutrino (νe) contamination in the T2K muon-neutrino

(νµ) beam. The work is performed at the near detector of the T2K neutrino experiment (ND280) and it

is intended to confirm the prediction of the νe component and, in addition, to study the short base-line

anomalies observed in others neutrino experiments that lead to the idea of light sterile neutrinos.

In the first part, after an historical introduction to neutrinos in Chapter 1, the neutrino physics are

presented, from its definition in the Standard Model until the future neutrino experiments. Special

emphasis is given to the neutrino oscillation, as it defines the theoretical framework of the T2K exper-

iment. Models with sterile neutrinos are presented in Chapter 2, as well as the experimental anomalies

that motivatates its existence.

In the second part, the T2K experiment is described in Chapter 3, with special attention to the νe

contamination in the neutrino beam, that is the target of the present work. The design of the whole

experiment including accelerator facilities, near detectors and far detector are described in Chapter 4.

The most updated oscillation results are presented in Chapter 5, with a special mention to the reduction

of the uncertainties on the flux and cross sections predictions, using the νµ measurement at ND280.

The third part is main block, where the two complete analyses are presented. A selection of νe inter-

actions at ND280 is performed in Chapter 6 together with a selection of two control samples described

in Chapter 7. A complete study of the systematic uncertainties is provided in Chapter 8. The beam

νe measurement is presented in Chapter 9 where we compare it with the prediction and discuss the

level of compatibility. In Chapter 10, the νe disappearance due to light sterile neutrino oscillations is

investigated using the simplest model, and the confidence contours provided by the data are calculated

through frequentist techniques. Finally, in the last chapter [Chapter 11], we summarize our results and

provide the outlook for both analyses.

I will use the natural units convention } = c = 1 throughout the text. Nevertheless, I apologize as some

figures present a different convention and some c factors are present.
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Chapter 1

Neutrino physics

Neutrino physics is nowadays one of the most active fields in particle physics. The well established

observation of the neutrino oscillation phenomenon by many experiments is not sustained considering

massless neutrinos. The fact that neutrinos are massive is to date the only clear indication of physics

beyond the Standard Model (SM). Neutrino oscillations also imply lepton flavour violation in the SM,

that had never been observed before, although it is not a fundamental symmetry in the SM.

There are still many questions regarding the nature of the neutrinos that need to be addressed: absolute

scale of neutrino masses, nature of neutrino mass (Dirac or Majorana), mass hierarchy, whether the

CP symmetry is violated or not in the leptonic sector (CPV) or the number of neutrino families,

are the main ones. Whereas collider experiments, as LHC, have not yet succeeded in finding new

physics, many neutrino experiments are being built to study those remaining unknowns. Moreover,

neutrinos provide interesting information about the Sun (solar neutrinos), the Earth (geoneutrinos and

atmospheric neutrinos) and about the whole Universe through astrophysics or cosmology. In addition,

they have interesting features that can be exploited for application in communications or controlling

nuclear activities for instance.

1.1 Brief history of the neutrinos

At the end of the 19th century, it was observed that some elements can emit particles, which were

called alpha and beta. The radioactivity had been discovered [20]. Lately, it was known that the beta

emission were indeed electrons (e−) emitted by the nucleus of radioactive elements. In the beta decay,

an element turns into a lighter one trough the emission of an electron

A
ZX →A

Z+1 X + e−
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1. Neutrino physics

According to this model, the energy of that electron must be peaked at the mass difference between

the mother and the daughter elements

Ee− = M
ZX −MZ+1X

However, Chadwick in 1920 measured a continuous energy spectrum for the electron emitted in beta

decays. At the beginning, the option of the violation of the energy conservation was considered by

Bohr, but there was also the problem of the conservation of the angular momentum, that was violated

by 1/2 in the beta processes.

In 1930, Pauli solved both problems proposing a new particle ν that carries part of the energy in the

decay, with a mass smaller than the electron mass, neutral and with spin 1/2 [126]. He named it

neutron, as the neutron (n) was not discovered until 1932 [30] by Chadwick. Enrico Fermi called this

particle neutrino (“little neutron”) in 1933, and also proposed the first model of beta decay called the

Fermi interaction [85]

n→ p+ e− + ν

being p the proton. Nowadays we know that that new particle is indeed an anti-neutrino ν̄.

The first idea for neutrino detection is due to Pontecorvo, who proposed to use the inverse beta decay

(IBD) as a signature of the neutrino interaction [128]

ν̄ + p→ n+ e+

where e+ is the positron, the anti-particle of the electron. However, H. Bethe and R. Peierls estimated

its cross-section using the theory of Fermi to be of the order of 10−44 cm2 for neutrinos around an

energy of 1 MeV [22]. It means that experiments need a very intense source of neutrinos and large

target masses to detect some interactions.

At that moment, the best neutrino source candidate was the nuclear fission reactors. The first detection

of the neutrino was achieved in 1956 with the experiment of C.L. Cowan and F. Reines using the nuclear

reactor at Savanaah River Plant [76]. It was their second attempt after the unclear observation in the

experiment at Handford 3 years before. They detected an increase in the event rate when the reactor

was on with respect to when it was off. Those extra events could only come from neutrinos produced in
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1.1. Brief history of the neutrinos

the reactor core. This is the first indirect observation of the neutrino. They measured a cross-section

of 6×10−44 cm2, well compatible with the theoretical estimations from the studies of the β decay. This

measurement paved the way to study the neutrino properties and further achievements were produced:

the discovery of parity violation in processes involving neutrinos [142, 90] or the measurement of the

neutrino helicity [98]. As conclusion the neutrinos were left-handed massless particles.

In 1960 appeared the first proposal to study the weak interaction with neutrinos produced in pion

decays. The idea was to use accelerators to produce pion beams that eventually would decay into

neutrinos [134]. There were suspects that the neutrinos coming from that source and the ones coming

from beta decays were different:

π decay: π+ → µ+ + ν1

β decay: A
ZX →A

Z+1 X + e− + ν2

Indeed, two years later at Brookhaven, a new neutrino that produced “mu-mesons” instead of electrons

was discovered [77]. It was the first experiment using a ν beam from π decays. At this point it was

understood that the neutrino produced in the β decay was the electron-neutrino (νe) and the one from

π decays the muon-neutrino (νµ). Later on, with the discovery of the last lepton τ in 1975 [127], the

existence of a new neutrino tau-neutrino (ντ ) was postulated. In 2000 it was detected by the first time

in the DONUT experiment [61].

In 1973 a new neutrino interaction, the neutrino elastic scattering (ES), was discovered. A neutrino

scatters with a nucleon or an electron transferring some momentum without producing new particles

ν + (e−, N)→ ν + (e−, N)

The first event of this type was seen at CERN bubble chamber experiment Gargamelle and it was an

νµ-electron scattering [102]. In these processes only one particle (either a lepton or a hadron) could be

seen, being different from the IBD where the neutrino produces a charged lepton apart from hadrons.

This new event belongs to the category called neutral current (NC) interactions while the IBD is a

charged current (CC) interaction.

In a NC interaction the neutrino and the target (nucleon or lepton) are coupled with the Z0 boson and

it produces the same signature regardless the neutrino flavour. The number of neutrino species that
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1. Neutrino physics

couples to the Z0 boson was measured by the LEP experiment [10] to be

Nν = 2.984± 0.008

establishing that the number of active neutrino species below MZ/2 , where MZ = 91 GeV is the mass

of the Z0 boson, is three.

1.1.1 First neutrino oscillations observation

The history of the neutrino oscillation starts with the solar neutrino anomaly. After the discovery

of the neutrinos and knowing that the Sun produces a huge neutrino flux, the scientific community

started thinking in the possibility of detecting and studying them. According to the Solar Standard

Model (SSM), the Sun produces only νe at different energies [Fig. 1.1] around the MeV, so they can

be detected by IBD as proposed by Bruno Pontecorvo in 1946 [128] with the reaction

νe +37 Cl→37 Ar + e−

The first experimental attempt is the Homestake Experiment [78] built in the Sixties. In 1968 they

announced their first results showing a depletion of ∼ 2/3 on the total neutrino flux. Over the whole

period of 25 years they measured the total flux to be 2.56 ± 0.16(stat.) ± 0.16(syst.) SNU1 while the

prediction is 7.6+1.3
−1.1 SNU [15]. This was called the solar neutrino problem.

Among some other exotic choices, there were two main solution trends: the prediction of the SSM was

incorrect and it must be changed or the SSM is correct but neutrinos oscillate from the electron flavour

to another flavour that do not produce IBD reactions. Provided the SSM was tested to be accurate,

the latter was an elegant solution proposed by Pontecorvo in 1957 [100], based on the recent neutral

kaons oscillations discovery [32]. At the beginning, he considered ν � ν̄ oscillations, but after the

discovery of the νµ in 1962, he adapted his model to νe � νµ. In the same year and independently

from Pontecorvo, the two neutrino mixing was proposed by Z. Maki, M. Nakagawa, S. Sakata [116] and

the theory of the neutrino oscillation was further developed during the Seventies. For the investigation

of the solar neutrino problem, matter effects were introduced in neutrino oscillation by Wolfenstein

1Solar Neutrino Unit: it corresponds to the neutrino flux that produces 10−36 captures per target per second
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1.2. Neutrinos in the Standard Model

Fig. 1.1: Decay chain in the Sun (left) and solar neutrino energy spectrum for each branch (right). The
two-body decays give definite energies unlike the three-body decays that provide a range of energies.
Only νe flavour are produced in the Sun. Above the right figure we find the energy threshold for the
different experiments.

(1978), Mikheyev and Smirnov (1985) in the so-called MWS effect [141]. During the following 30 years,

some other experiments confirmed the result of the Homestake Experiment. For instance we name

Gallex [107], Sage [44], Kamiokande [133] and SuperKamiokande [89], whose results are summarized in

Fig. 1.2.

It was in 1998 when the SuperKamiokande detector reported a clear proof of the neutrino oscillations

but in the atmospheric neutrino sector [143]. Finally, the solution to the solar neutrino problem was

established by the Sudbury National Observatory (SNO) in 2001, that proved that solar νe oscillate to

νµ and ντ but that the total neutrino flux, measured through NC, is conserved [130, 131].

1.2 Neutrinos in the Standard Model

The Standard Model of the fundamental particles is built to include the following features:

◦ there are three neutrino flavours.

◦ neutrinos interact only through the weak force in two different ways: one where the neutrino

scatters with a fermion (lepton or nucleon) and then escapes from the interaction point with

different kinematics (NC) and other where the neutrino produces a lepton of its same flavour

(CC)

9



1. Neutrino physics

Fig. 1.2: Illustration of the solar neutrino problem and its solution: predictions and measurements for
the solar neutrino flux in different experimental targets. There exist a general deficit in the measure-
ments except for the SNO NC measurement.

◦ Neutrinos are found to be always left-handed and anti-neutrinos always right-handed

◦ Neutrinos are massless. This is not consistent with the observation of the neutrino oscillations

since the SM was set up before the observation of that phenomenon.

The SM describes each elementary particle and their interactions. Years of developments have yielded

to the final picture sketched in Fig. 1.3. There exist

◦ three charged leptons: electron (e), muon (µ), and tau (τ)

◦ three neutral leptons or neutrinos: electron-neutrino (νe), muon-neutrino (νµ) and tau-neutrino

(ντ )

◦ six quarks: up (u), down (d), charm (c), strange (s), top (t) and bottom (b)

◦ four gauge bosons that carry the interaction information: gluons (g), photons (γ), W± and Z0

◦ Higgs boson H: provides mass to the fermions

In addition, each particle in the leptonic and quark sectors have their corresponding anti-particles

with same mass but opposite charges. The last piece of the SM, the Higgs boson, has been recently

discovered at the LHC [60, 57] and it is the last of the multiples successes of the SM, that has become

the most precise theory, and its predictions have been confirmed to date by the observations.
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1.2. Neutrinos in the Standard Model

Fig. 1.3: Standard Model of the elementary particles.

Formally, the SM is described by the gauge theory based on the SU(3)×SU(2)L×SU(1)Y gauge sym-

metry. Leptons, that are fermions of spin 1/2, are introduced through two fields: one SU(2) doublet

left-handed LlL and one singlet right-handed lR

LlL =

 lL

νLl

 lR

where l runs over the three families. Leptons are color-less and particularly neutrinos are charge-less as

well, so that they only couple to the weak force described by the Lagrangian of the electroweak model

L =LCC + LNC =
g√
2

∑
l

ν̄Llγ
µlLW

+
µ + h.c. +

g

2 cos θW

∑
l

ν̄Llγ
µνLlZ

0
µ (1.1)

where g is the coupling constant, θW is the Weinberg angle and γµ are the Pauli matrices. LCC gives

the CC interactions driven by the gauge bosons W± and LNC the NC interactions driven by Z0.

Unlike the quark sector, as neutrinos are mass-less, there is no flavour mixing, so the lepton number is

conserved by families and neutrino oscillations are not allowed.
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1. Neutrino physics

Including a bare mass term for the leptons in Eq. (1.1) violates gauge invariance. So they are built

massless and they get their masses ml by spontaneous symmetry breaking via the Higgs mechanism

[56, 59]. To produce the mass term, the Higgs couples to the left and right-handed leptons by a Yukawa

interaction

−LY ukawa = Y lL̄lLφlR + h.c.→ Symmetry breaking→ mlL̄
l
LlR

where Y l is the Yukawa coupling, that is a free parameter in the theory. The mass becomes

ml =
v√
2
Y l (1.2)

where v ∼ 246 GeV is the vacuum expectation value of the Higgs field. We observe that we cannot

get a mass term of this type if we do not have a corresponding right-handed lepton. The belief that

neutrinos are massless was the reason not to include right-handed neutrinos in the SM.

Nevertheless, neutrino oscillations implies massive neutrinos and hence, physics beyond the SM. A

mass term for them must be built. The simplest extension of the SM consists on including right-

handed neutrinos νR so that they can acquire mass through the Higgs mechanism, as well as the others

leptons. It generates the so-called Dirac mass term that after symmetry breaking has the form

LD = −mD(ν̄LνR + ν̄RνL)

where mD = v√
2
Y ν is the Dirac neutrino mass. To match the scale of the neutrino masses ∼ 0.1 eV,

we need Y νl ∼ 10−11. Such a tiny Yukawa coupling is consider unnatural (the typical for the leptons

ranges Y l ∼ 10−6 − 10−3) and very unlikely.

Another way of including neutrino masses is through the Majorana mass term, that has the form:

LD = −1

2
mM (ν̄Lν

c
R + ν̄cRνL) = −1

2
mM (ν̄LCν̄

T
L + νTLCνL) =

1

2
mM ν̄MνM

where νcL ≡ Cν̄TL = νR being C the charge-conjugation operator that inverts the charges of the neutrino

state. νM is the Majorana field that fulfills

νM ≡ νL + νcR = νcM
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1.2. Neutrinos in the Standard Model

So the neutrino becomes his own anti-particle. This term breaks gauge symmetries, so it is only possible

for charge-less particles as the neutrinos, otherwise the charges would not be conserved. One advantage

of this scenario is that we do not need an extra field (νR) as the left and right-handed states are just

related by the operator C. On the other hand, this mass term violates lepton number by two units

since the neutrino has lepton number 1 and the anti-neutrino -1.

An elegant model that explains the smallness of the neutrino masses arises mixing a Majorana term for

νR with the Dirac term. If the mass mR of νR is very large, mR � mD, we produce two neutrino mass

states: one very heavy mR, typically above the electroweak symmetry breaking scale so that cannot be

observed, and another light state of the order of ∼ m2
D/mR. This is the so-called see-saw mechanism

[120].

1.2.1 ν interactions at T2K energies

Neutrino weak Charged Current (CC) and Neutral Current (NC) interactions are produced within

the material of the detectors. Both neutrino-lepton and neutrino-nucleus interactions exist, but the

cross-section of the former is ∼ 2 × 103 smaller than the latter at T2K energies, so, from now on, we

will only consider neutrino interactions with nuclei. The CC quasi-elastic (CCQE) interaction is the

one that dominates the T2K energy range (∼ 0.5 GeV), where a neutrino νl interacts with a nucleon

to create a charged lepton l and to change the nucleon:

νl + n→ p+ l− ν̄l + p→ n+ l+

Above the pion production threshold, neutrinos can produce a pion coherently (CCCoh) without break-

ing the nucleus:

νl +A→ A+ π+ + l−

At higher energies, the CC resonant interaction (CCRes) starts to dominate. In this reactions, a ∆

resonance is produced and it decays to hadrons, usually pions and nucleons:

νl + p→ l− + ∆++ → p+ π+ + l−
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1. Neutrino physics

For very large energy, the neutrinos interact directly with the quark content of the nucleon, breaking

it and producing more than one pion:

νl + p→ p+Nπ + l−

This is called CC deep inelastic scattering (CCDis). The energy threshold for a CC production is

approximately the mass of the lepton in the case of νe and νµ and twice its mass in the ντ case. The

predicted cross-sections for each of the interaction modes are shown in Fig. 1.4. The inclusive CC

cross-section becomes linear above 1 GeV and around 0.7× 10−38/Eν [cm2/GeV].

Fig. 1.4: Contributions of the different cross-sections to the total charged current cross-section (CC
Inclusive) as function of energy. At low energy there is additional data: N Baker et al., 1982; ∗ Baranov
et al., 1979; � Ciampolillo et al., 1979; ? Nakajima

These interactions have their NC versions as well, where no lepton is produced and the neutrino only

scatters with the nucleon, what is called, elastic scattering (ES) or produces charged or neutral pions.

As the π0 is an important background in the T2K νe analyses, we separate the NC producing a π0

(NCπ0) and the rest that does not create it (NCOther). A summary of all these processes is in Fig. 1.5

and a complete review of the neutrino cross-sections across the energy scales is reported in [88].

Neutrino interaction models predict cross-sections and kinematics of neutrinos scattering off bound

or unbound nucleons. For bound nucleons within a nucleus, we call the neutrino-nucleon vertex the

primary neutrino interaction vertex. The final state hadrons resulting from this interaction, for example
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1.3. Neutrino oscillation theory

Fig. 1.5: Feynman diagrams for the typical neutrino interactions at T2K energies.

the proton from a CCQE interaction or the pion from a CCRes interaction, must propagate through

the nuclear medium before observation. Since these particles interact via the strong force, there is

a significant probability of re-interaction within the nucleus prior to escape. We refer to this re-

interaction as a final state interaction (FSI). FSI affects the observable final state via particle absorption,

scattering and particle production. This masks the interaction mode of the primary vertex, making

direct measurements of pure CCQE, CCRes, etc. cross-sections difficult.

1.3 Neutrino oscillation theory

Neutrino oscillations are not possible in a model without neutrino masses. The unambiguous observa-

tion of the neutrino oscillation implies non-zero neutrino masses and hence, physics beyond the SM. In

general, the flavour eigenstates |να〉 (α = e, µ, τ, . . . ) will be related with the neutrino mass eigenstates
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|νj〉 (j = 1, 2, 3, . . . ) by linear combination

|να〉 =
∑
j

U∗α,j |νj〉 |νj〉 =
∑
α

Uα,j |να〉

where Uα,j represent the terms of an unitary matrix U . In the standard three neutrino picture, this

matrix is known as the Pontecorvo-Maki-Nakaya-Sakata (PMNS) matrix [116]. This expression is

completely general for any number of neutrino flavour and mass eigenstates, so, to not lose generality,

we consider the mixing of n neutrino with non-degenerate masses mj .

If the mass eigenstates are different and non-degenerate, the flavour state |να〉 will evolve in time

following the time dependent Schrödinger equation. This phenomenon is known as neutrino oscillation

and it is equivalent to the one observed in the quark sector driven by the Cabbibo-Kobayashi-Maskawa

(CKM) matrix [109]. After a time t, the probability that |να〉 evolves to |νβ〉 is given, according to the

quantum mechanics principles, by the scalar product

Pαβ = P (να → νβ) = | 〈νβ |να(t)〉 |2 = |
∑
j,k

Uβ,jU
∗
α,k 〈νj |T |νk〉 |2

where T is the temporal evolution operator that has the form T = e−iHt, with H the Hamiltonian

operator. In the approximation of the neutrino as a plane wave: H |νj〉 = Ej |νj〉, and the probability

acquire the form

Pαβ = |
∑
k

Uβ,kU
∗
α,ke

−iEkt|2 =
∑
j,k

U∗α,jUβ,jUα,kU
∗
β,ke

−i(Ej−Ek)t

Provided that neutrinos are relativistic and are considered to have very small masses, they fulfill

Ej =
√
m2
j + p2

j ≈ pj +m2
j/2pj pj ≈ Ej ≈ E t ≈ L

where pj and Ej are the momentum and the energy for the eigenstate j, E is the energy associated to

the neutrino flavour state and t and L are the time and the length traveled by the neutrino in the lab

frame. Thus, we get

Pαβ =
∑
j,k

U∗α,jUβ,jUα,kU
∗
β,ke

−i
(m2
j−m

2
k)L

2E

Developing last expression we get the general neutrino oscillation formula valid for n neutrino mass
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1.3. Neutrino oscillation theory

states

Pαβ = δαβ − 4
∑
j>k

<(W jk
αβ) sin2

(
∆jk

2

)
± 2

∑
j>k

=(W jk
αβ) sin(∆jk) (1.3)

where

W jk
αβ = U∗α,jUβ,jUα,kU

∗
β,k ∆jk =

(m2
j −m2

k)L

2E
≡

∆m2
jkL

2E

and we have used the unitary matrix condition

∑
i

= U∗α,iUβ,i =
∑
j

Uα,jU
∗
β,j = δαβ (1.4)

The positive sign in the last term of Eq. (1.3) applies to neutrinos and the negative to anti-neutrinos. If

this term is not null, the oscillations measured for neutrinos and anti-neutrinos are different and hence,

this term is called the CP violation (CPV) term. In the neutrino disappearance case as α = β, W jk
αβ is

real and the CPV has no effect in the neutrino oscillation. The Eq. (1.3) has an oscillatory behaviour

along the distance traveled by the neutrino, of period

LT =
4πE

∆m2
jk

(1.5)

and an amplitude proportional to W jk
αβ , combination of the matrix elements Uα,i.

An unitary matrix, as the PMNS matrix, is the result of the product of n(n − 1)/2 rotation matrices

whose main block are

R =

 cos θ sin θe−iδ

− sin θe−iδ cos θ


and a diagonal matrix containing n phases. Altogether, we have n(n−1)/2 mixing angles and n(n+1)/2

phases of which 2n− 1 can be absorbed redefining the wave function and hence, do not play any role

in the oscillations. For the standard three neutrino case, we get 3 mixing angles θij and 1 complex

phase δ. In neutrino experiments, the matrix elements are not measured directly, but it is assumed the
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1. Neutrino physics

unitarity of the PMNS matrix and choose an appropriate parametrization. The most common is

U =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
−iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1



=


c12c13 s12c13 s13e

iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23

 (1.6)

where cij ≡ cos(θij) and sij ≡ sin(θij). If neutrinos are Majorana, there are some phases that cannot

be absorbed by the neutrino mass eigenstates and they have to be taken into account. Nevertheless,

the neutrino oscillation effect is the same regardless these phases, so there is no need to include them

in this calculation.

1.3.1 Two neutrino approximation

The maximum of the neutrino oscillation effect is located at LT /2 [Eq. (1.5)] from the neutrino source.

As the mass eigenstates are separated by some orders of magnitude (see Section 1.4), an experiment

in a given position is sensitive to only one ∆m2. In practice, we can neglect the terms in Eq. (1.3)

where the dominant ∆m2 is not involved. It is equivalent to make the approximation of having only

two effective neutrino mass eigenstates. In this case the PMNS matrix can be parametrized with only

one mixing angle and none complex phases

U =

 cos θ sin θ

− sin θ cos θ


and the complicated Eq. (1.3) becomes

Pαβ = δαβ − |Uα2|2|Uβ2|2 sin2

(
∆21

2

)
(1.7)

= δαβ − (2δαβ − 1)sin2(2θ) sin2

(
1.27∆m2[ eV2]

L[m]

E[ MeV]

)

The oscillatory behaviour with respect to E/L can be appreciated in Fig. 1.6. The probability is

exactly the same for neutrinos and for anti-neutrinos, as the term with Im(W jk
αβ) disappeared, so this
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1.3. Neutrino oscillation theory

model cannot lead to CPV. The two neutrino approximation fits very well in most of the experimental

situations, specially for the short base-line experiments were the standard oscillations are negligible.

Fig. 1.6: Survival probability Pαα as a function of the ratio E/L in the two neutrino approximation.

In practice, experiments do not have a monochromatic neutrino flux neither a perfect neutrino energy

reconstruction, so what is measured is the average probability in an energy window given by

〈Pαβ〉 =

∫
dEφ(E)σ(E)ε(E)Pαβ(L/E)∫

dEφ(E)σ(E)ε(E)
(1.8)

where φ is the flux, σ is the neutrino cross-section for CC interactions and ε the efficiency of the neutrino

interaction selection. The integral runs over the energy window. For E/L� ∆m2 we enter in the fast

oscillation regime, where neutrinos of similar energy are in a different phase of the oscillation [Fig. 1.6].

In general, the neutrino energy is above the MeV scale, so experiments reach this regime for very long

base-lines or when exploring large ∆m2. At this point the detector is not sensitive to the oscillatory

behaviour and the probability becomes an averaged along the energy range and it approximates by

〈Pαβ〉 ≈
∫
dEPαβ(L/E)∫

dE
≈ δαβ − (2δαβ − 1)

1

2
sin2(2θ) (1.9)

So, for a very long base-line experiment we are not sensitive to ∆m2 and the oscillation effect is half

of the maximum amplitude. The most sensitive position for an oscillation experiment is the first

maximum, as the amplitude diminishes as we go further.

1.3.2 Matter effects

The presence of matter modifies the mixing angle and the oscillation wavelength. This occurs due

to the coherent scattering of neutrinos with matter through the channels shown in Fig. 1.7. The NC
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1. Neutrino physics

modes affect the same to all the neutrino families unlike the CC mode that only applies to νe since

there are no µ or τ in stable matter. This is expressed by an effective potential V that affects to the

νe and to be add to the Hamiltonian in vacuum

V = ±
√

2GFNe

being GF the Fermi constant and Ne the electron density in the medium. Positive sign applies to νe

and negative to νe. When diagonalizing the total Hamiltonian, new effective oscillation parameters,

θM for the mixing angle and ∆m2
M for the mass splitting are defined as

∆m2

4Eν
≡ ∆→ ∆M =

√
(∆ cos 2θ − V/2)2 + (∆ sin 2θ)2

tan 2θ → tan 2θM =
∆ sin 2θ

∆ cos 2θ − V/2

where θ and ∆m2 are the corresponding oscillation parameters in vacuum. If Ne changes smoothly

(like within the Sun), the adiabatic condition applies and the mass eigenstates become also energy

eigenstates, so that each of them evolve independently without mixing. However, the flavour compo-

sition depend on the density. For the so-called resonant density NR
e that fulfills V/2 = ∆ cos 2θ, the

eigenstates pass from being mainly νe to mainly νµ. This level crossing at the resonant point is called

MSW effect [141]. The survival probability for a νe state in the adiabatic regime is

Pee =
1

2
(1 + cos 2θM cos 2θ)

If (∆m2 cos 2θ) and V/2 have opposite signs, the level crossing does not occur, so the MSW effect only

realizes for neutrinos if ∆m2 > 0 and for anti-neutrinos if ∆m2 < 0.

Fig. 1.7: Interactions of neutrinos with stable matter. The CC channel is only permitted for νe.
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1.4. Neutrino oscillation measurements

1.4 Neutrino oscillation measurements

Nowadays, the picture of the neutrino oscillation is almost complete. All the mixing angles and mass

differences have been measured with a good precision. The first well established measurement was for

θ23 in the atmospheric neutrinos studies of SuperKamiokande (SK) in 1998 [143] and only 14 years

later the Daya Bay experiment [34] measured the last one: θ13. A complete picture of the parameters

for the neutrino oscillation is in Tab. 1.1.

This first reliable evidence of neutrino oscillations was revealed in the SK detector for atmospheric

neutrinos. Cosmic rays interact with the atmosphere producing a shower of particles, like pions and

kaons that decay producing four types of neutrinos: νµ, νµ,νe and νe, in a approximate proportion

of 2νµ per νe. A neutrino flux of typically 100 m−2s−1sr−1GeV−1 reaches the detector from every

direction. For the νµ flux, SK showed an asymmetry on the number of events coming from above

respect to the ones coming from below. This dependency on the zenith angle is due to the fact that

neutrinos coming from above travel much less distance than the one coming from below, so the latter

have time to oscillate. The neutrino survival probability is

Pµµ = 1− sin2(2θ23) sin2

(
1.27∆m2

31[ eV2]
L[m]

E[ MeV]

)

This effect was only seen for νµ’s and not for νe’s, so the hypothesis that the disappearance was due to

interaction with the Earth was rejected. The neutrino oscillation model was confirmed [143] and the

measured parameters were

∆m2
31 ∼ 10−3 eV2 sin2(2θ23) > 0.82

Nowadays these parameters have been more precisely measured by accelerator experiments like K2K

[63], MINOS [68] or T2K [54].

The second measurement was performed by the solar neutrino experiments and the reactor experiment

KamLAND which study the solar parameters: ∆m2
21 and θ12. KamLAND is a 1kTon ultra-pure liquid

scintillator detector located in Japan at ∼ 180 km average distance from 53 power reactors and that is

very sensitive to the solar neutrino parameters [11]. As it is an experiment in vacuum, it is not sensitive

to the sign of ∆m2, as both terms in Eq. (1.3) are symmetric under the permutation i ↔ j. On the

other hand, solar experiments are sensitive to the sign of ∆m2 due to the strong matter effects, but

21



1. Neutrino physics

not to its absolute value. This is explained by two facts:

◦ Low neutrino energy: matter effects are negligible and the oscillations occur as in vacuum. They

arrive to the Earth in the fast oscillation regime Eq. (1.9) so the detectors cannot observe any

energy pattern, but just a depletion in the electron neutrino rate.

◦ High neutrino energy: The MSW effect realizes for neutrinos only if ∆m2 > 0 and the νe survival

probability becomes independent from ∆m2

Pee ' sin2 θ12

As the MSW effect is observed at high energy Fig. 1.2 by Homestake and SNO, ∆m2 must be positive.

Hence, combining solar experiments with KamLAND we finally get:

∆m2
21 = 7.9+0.6

−0.5 × 10−5 eV2 tan θ12 = 0.40+0.10
−0.07

The final important measurement concerning sin2(2θ13) was given by the T2K νe appearance analysis

and by reactor experiments (Daya Bay [34, 35], Double Chooz [39] and RENO [36]) by observing νe

disappearance. In reactor experiments the νe disappearance depends only on sin2(2θ13), the background

is very small and the cross-section for IBD is very well known. This allows reactor experiments to

perform a pure measurement of sin2(2θ13), while the accelerator νe appearance measurement depends

also on the sin2(2θ23) and on the δCP phase. The most precise is the Daya Bay measurement [35]

sin2(2θ13) = 0.089± 0.010(stat)± 0.005(syst)

that exclude the non-oscillation hypothesis by 7.7σ, but the first evidence of a non-zero and a large

sin2(2θ13) was given by T2K in 2011 [37].

A global fit in the general three neutrino picture has been done in [87], yielding the results showed in

Tab. 1.1. The current picture of the neutrino oscillation theory is summarized in Fig. 1.8.
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1.4. Neutrino oscillation measurements

Parameter best-fit

∆m2
21[ eV2] 7.54+0.26

−0.22 × 10−5

|∆m2|[ eV2] 2.43+0.06
−0.10(2.42+0.07

−0.11)× 10−3

sin2(θ12) 0.307+0.018
−0.16

sin2(θ23) 0.386+0.024
−0.21 (0.392+0.039

−0.22 )
sin2(θ13) 0.0241± 0.0025(0.0244+0.0023

−0.0025)

Table 1.1: Most updated measurements for the oscillation parameters in the complete three neutrino
picture. They correspond to the best fit values after a global fit of all the available data for the neutrino
oscillation experiments [87]. ∆m2 represents the mass difference from the third state to the mean of
the first and second mass states. The results in brackets are for inverted hierarchy while the rest is for
the normal one.

Fig. 1.8: Illustration of the mass eigenstate ordering. On the left there is the so-called normal hierarchy
( ∆m2

31 > 0) and on the right the inverted hierarchy ( ∆m2
31 < 0). Colors correspond to the mixing of

the weak flavours with the mass eigenstates given by the PMNS matrix terms.
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1.5 Future challenges for oscillation neutrino experiments

There are still some open questions concerning the art of the neutrino oscillations. Future experiment

must reach enough precision to be sensitive to:

◦ Measure whether sin2(2θ23) is maximal or not: if θ23 is not maximal it is important to measure

the octant of the angle.

◦ Mass hierarchy: the sign of the larger mass splitting is unknown yet. As ∆m2
31 is slightly smaller

in the inverted than in the normal hierarchy (see Fig. 1.8), we can measure it from very precise

experiments in vacuum [114]. On the other hand, long base-line experiments with large matter

effects is another technique to measure this unknown.

◦ CPV: this can be observed in beam accelerator-based neutrino oscillation experiments that op-

erate with neutrinos and anti-neutrinos. As the value of sin2(2θ13) is large, beam experiments

become a realistic choice for this measurement.

More intense beams and larger detectors is the proposal of the main next generation neutrino experi-

ments. On the short term period, the NOνA experiment [69] is designed to be more sensitive to matter

effects and hence measuring the mass hierarchy. In addition, together with the T2K data can constrain

more the CPV phase in the near future. LBNE [64] and LBNO [65] are good candidates future long

base-line experiments to measure both aspects: mass hierarchy and CPV. Specially sensitive to CPV is

the Hyper-Kamiokande proposal [62]. It correspond to the next upgrade of the T2K experiment with

a much larger far Cerenkov detector and an improved near detector.
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Chapter 2

Sterile neutrinos

We have seen in the previous chapter that the three-flavour neutrino mixing is very well established

and supported by many experimental data. Nevertheless, there are several experiments that observe

an unexpected behaviour in their measurements of ν interaction rates that cannot be explained in the

context of the PMNS matrix. They are essentially short base-line (SBL) experiments with an abnormal

number of ν interaction that does not match the expectation. These experiments strongly depend on

the ν flux prediction and cross-sections models and a solution to these anomalies could be corrections

on those quantities due to systematic errors or backgrounds not properly accounted.

Another solution is proposing non-standard neutrino oscillations what implies new physics. In these

experiments, the flight path of the neutrino is of the order of meters and in general the ratio L/E is

very small. Provided that the standard mass differences are ∆m2
21 ∼ 10−5 eV2 and ∆m2

31 ∼ 10−3 eV2,

the three-flavour oscillations in the regions explored by these experiments is negligible [Eq. (1.5)].

Then, to explain this in the oscillation scenario, we need to invoke an additional neutrino with a large

∆m2 ∼ 1 eV2. This neutrino cannot be couple to the Z0 boson as we would see it in the Z0 decay

experiments [10]. Hence, it does not feel the weak interaction, so they are called sterile neutrinos. They

would only reveal themselves by the mixing with the others active species.

Active and sterile neutrino mixing was originally proposed by Pontecorvo in one of its first models

[129].

2.1 Sterile neutrino theory

A sterile neutrino is a right-handed neutrino that transforms as a singlet under SU(2). The SM does

not include them, so we have to extend it to take them into account. As they are singlets they do not

take part in the weak interactions except by mixing with active neutrinos.

To play a role in the oscillations, they must have a mass. A Majorana mass term can be built for
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the right-handed neutrinos. This term is added to the Dirac mass term and Majorana mass term for

left-handed neutrinos mentioned in Section 1.2. For simplicity, we study the case of one single neutrino

generation (one active and one sterile), but the scenario can be extended easily for n neutrinos. The

general neutrino mass term in the Lagrangian is then

−LνM = mD(ν̄LνR + ν̄RνL) +
1

2
mL(ν̄LCν̄

T
L + νTLCνL) +

1

2
mR(ν̄RCν̄

T
R + νTRCνR)

where we have sequentially: the Dirac mass term and the Majorana mass terms for the left-handed

and right-handed neutrino fields. It can be written defining the mass matrix M :

−LνM =
1

2

(
ν̄L ν̄cL

) mL mD

mD mR


︸ ︷︷ ︸

M

 νcR

νR

+ h.c. (2.1)

This is the so-called Dirac-Majorana mass term and it has the same structure of a Majorana mass

term. After diagonalizing the matrix M , it acquires the form

−LνM =
1

2

∑
k=1,2

mkν̄kνk

where mk are the mass eigenvalues and νk are the mass eigenstates that fulfill

νk = νL + νcR = νck

They are two Majorana mass eigenstates, being the flavour eigenstates linear combination of them. It

allows mixing between active and sterile neutrinos of the same chirality. It is interesting to highlight

several special cases:

The pure Dirac case appears by imposing mL = mR = 0. For the case with 3 sterile neutrinos, they

are identified as the right-handed component of the Dirac neutrino field, similar to the case discussed

in Section 1.2.

For mD = 0 we obtain the pure Majorana case where the sterile neutrino decouples and active and

sterile neutrinos do not mix each other.

Considering a very heavy sterile neutrino mR � mD we get the so-called see-saw mechanism, discussed

in Section 1.2. The diagonalization of M yields one light neutrino mass eigenstate ∼ m2
D/mR and a
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very heavy state of mass mR. The light state is mainly active while the heavier one is mainly sterile.

Both are pure Majorana particles. In this case, the SM is considered a good low energy theory as it is

justified that we only find three active neutrinos, while the sterile neutrinos are out of scope.

Nevertheless, regardless a very heavy sterile neutrino could exist, we are interested in relatively light

sterile neutrino, as they are the ones involved in the SBL anomalies (see Section 2.2). This scenario

appears in the case of mR below the symmetry breaking scale and hence, the SM is not a good effective

theory anymore. Furthermore, to get a significant mixture of active and sterile states, we need small

but non-zero Dirac and Majorana masses, being a strong challenge for a theory. On the other hand,

neutrino oscillation are the same regardless the type of mass term taken into account (see Section 1.3).

So the way the sterile neutrino is introduced in an extension of the SM does not affect to the neutrino

oscillation effect.

2.1.1 Light sterile neutrino oscillations

In general, if we include n sterile right-handed neutrinos we have n new flavour states |νs〉i and n new

mass eigenstates |ν〉i+3 where i goes from 0 to n. The Fig. 2.1 illustrates this. The sterile and active

states of same chirality can mix each other and lead to SBL oscillation if the new neutrino mass state

is of m ∼ 1 eV. In this scenario the formula Eq. (1.3) is still valid and, in the following, we analyze two

cases: models with only 1 or 2 sterile neutrinos.

The 3+1 neutrino model

The minimal extension of the neutrino standard model that we can built is adding to the active species

one new state of mass m4 that corresponds to a mostly sterile neutrino state s. Then, the PMNS matrix

becomes a 4 × 4 matrix with new elements Uα4 and Usi, where α = e, µ, τ, s and i = 1, . . . , 4. In the

study of a ∆m2 ∼ 1 eV2 at SBL, the standard oscillations are negligible, so we can consider the three

active mass states as one effective state and approximate by the two neutrino model [Section 1.3.1].

The survival probability of a νe or a νµ is given by Eq. (1.3) and acquires the form:

Pee ≡ P (νe → νe) = 1− 4|Ue4|2(1− |Ue4|2) sin2

(
1.27 ∆m2

41[ eV2]
L[ m]

E[ MeV]

)
(2.2)

Pµµ ≡ P (νµ → νµ) = 1− 4|Uµ4|2(1− |Uµ4|2) sin2

(
1.27 ∆m2

41[ eV2]
L[ m]

E MeV

)
(2.3)
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2. Sterile neutrinos

Fig. 2.1: Mass eigenstates in the 3+n neutrino model. The three states at the bottom correspond to
the mostly active flavours. The colors indicate the mixing with the flavour eigenstates. A new sterile
flavour νs (blank) has been added that mixes mildly with the three standard mass eigenstates and
strongly with the new ones.

The νe and νµ disappearance probabilities are independent each other, since steriles can mix with one

flavour and not with the other. For the case of oscillation between actives species we obtain:

Peµ ≡ P (νµ → νe) = P (νe → νµ) = 4|Ue4|2|Uµ4|2 sin2

(
1.27 ∆m2

41[ eV2]
L[ m]

E MeV

)
(2.4)

where we have invoked the unitarity of the PMNS matrix [Eq. (1.4)].

From Eqs. (2.3) and (2.4), the maximum of the oscillations occur at the same L/E ratio and the period

[Eq. (1.5)] is the same in the three cases. Like in the standard oscillations, we parametrize the new

matrix defining 3 new mixing angles

sin2(2θee) = 4|Ue4|2(1− |Ue4|2)

sin2(2θµµ) = 4|Uµ4|2(1− |Uµ4|2)

sin2(2θeµ) = 4|Ue4|2|Uµ4|2

This is the most common convention and the one we adopt along this thesis. If |Ue4|, |Uµ4| are small,

at first order we have

sin2(2θeµ) ≈ 1

4
sin2(2θee)sin

2(2θµµ) (2.5)
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This means that the appearance channel is coupled with the disappearance, so observing νe appearance

implies both νe and νµ disappearance to exist. It is important to remark that CPV is not allowed in

the two neutrino approximation, so in this model, neutrino and anti-neutrino behave in the same way.

The 3+2 and 1+3+1 model

Adding two sterile neutrinos introduces much more freedom in the model. The oscillation probabilities

become more complicated and we will only treat these models qualitatively. One more sterile neutrino

implies an extra ∆m2, but also the possibility of having a complex phase that would drive the CPV at

the SBL experiments. These models allow different behaviour for neutrinos and anti-neutrinos.

We distinguish a model in which two steriles are heavier than the three standard states called 3+2

and another with one state heavier and one lighter, called 1+3+1. The latter model implies that the

standard mass eigenstates have masses of the order of ∆m2 ∼ 1 eV2. The performances of these models

on reproducing the neutrino experiments data are discussed in Section 2.2.4.

2.2 Experimental hints to sterile neutrinos

There are some oscillation experiments difficult to be reconcile with the standard three neutrino frame-

work. These anomalies can be the smoking gun of the existence of sterile neutrinos.

The first experiment that found an abnormal neutrino rate was the LSND experiment in 1998. It

reports an unexplained excess of νe event interactions at SBL compatible with νµ → νe oscillation for

a ∆m2 ∼ 1 eV2. Some other hints were found in calibration with intense radioactive sources of solar

neutrino detectors with Gallium. The MiniBooNE experiment, designed to test LSND, found excesses

of νe at low energies using neutrinos and anti-neutrinos. The most recent piece of the puzzle appeared

in 2010 with a re-evaluation of the neutrino flux at nuclear power plants. The new flux over-predicts

the observed neutrino rates leading to a general deficit of νe measured in the reactors.

Together with these anomalies that can be considered evidences of sterile neutrinos, there are other ex-

periments that, on the contrary, perfectly agree with the standard oscillations. Namely, the KARMEN

experiment, the νµ disappearance searches at SciBooNE/MiniBooNE and the MINOS experiment.

We will start describing the SBL νe disappearance experiments in Section 2.2.1, stressing the anomalies
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in reactors and Gallium experiments, followed by the νe appearance in Section 2.2.2, νµ disappearance

in Section 2.2.3, a discussion about the global picture in Section 2.2.4 and a summary in Section 2.2.5.

2.2.1 νe → νs: νe disappearance

We find two groups of anomalies known as the reactor anti-neutrino anomaly and the gallium anomaly.

They both observe a deficit in the νe interaction rates near the neutrino source for neutrino energies of

the order of the MeV. Interpreting this depletion as νe disappearance in the 3+1 model [Section 2.1.1],

these experiments lead to measurements on sin2(2θee) and ∆m2
41.

The reactor anti-neutrino anomaly

Reactors are a powerful source of neutrinos. The β− decay of a nuclei rich in neutrons provides a flux

of ∼ 1020νe/s at the core, with an energy of the order of 1 MeV. νe are observed at detectors through

IBD. An accurate theoretical prediction of this flux is very difficult as it needs precise core monitoring,

knowledge of branching ratios of every decay chain and anti-neutrino cross-sections.

The thermal power is continuously monitored and the νe flux is predicted from the fission rate. Each

fission triggers a chain of, typically, 6 beta decays that produces 6 νe per fission. However, in practice

there are many decay branches with many nuclei of different charges. So the total νe product is the

sum of all of them. Finally the νe flux is used to calculate the positron energy spectrum observed at

detectors through IBD. The cross-section for this process has been measured to be consistent with the

prediction at the 1.4% level [81] and it is:

σ =
2π2

m5
efp.s.τn

Eepe × 10−42 cm2

where me, Ee and pe are the mass, energy and momentum of the positron when the recoil of the

neutron is neglected, fp.s. = 1.7152 is the phase-space factor of the free neutron, including outer

radiative corrections, and τn the neutron lifetime, precisely measured with an uncertainty of 0.2% [19].

A calculation of the νe flux from first principles is very difficult and the errors reach the 10% level, so

a data-driven prediction is needed. The first one was performed in the 1980s at the Grenoble reactor

of ILL [84]. They measured the electron energy distribution (coming from the β−) and inferred the νe

flux as both are directly related. The final errors were of the order of 5% and the prediction was in
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agreement with following reactors: ILL-Grenoble [105], Goesgen [145], Rovno [8], Krasnoyarsk [113],

Savannah River [99] and Bugey [82].

In 2010 the situation changes due to three factors:

◦ A more precise flux calculation was developed to be used in the Double Chooz experiment [39].

This new calculation is based on an ab initio approach where the total νe flux is predicted from

the sum of all beta-branches of all fission products modeled by a simulation. The final conclusion

is that the flux is predicted to be 3% larger than the standard one [122].

◦ More precise techniques leads to better knowledge of the neutron life time whose measurement

decreased in the past 30 years, increasing the predicted cross-section of the IBD by 1%.

◦ The long-lived isotopes accumulating in the reactors are taken into account increasing the flux

by 1%.

All the reactor neutrino experiments need to be re-evaluated in this new scenario. Since in the past, ex-

periments presented a good agreement, currently there appears a slight deficit mostly compatible within

1σ if the experiments are considered individually. However, the overall ratio, if all the experiments are

combined, becomes 0.927 ± 0.023 (Fig. 2.2 [119]) (being 0.980 ± 0.024 with the old flux). Then, the

significance of the deficit turns to be of 3.0σ. This the so-called reactor anti-neutrino anomaly.

Fig. 2.2: Ratio between the measured and predicted νe flux at the different reactors for experiment
ordered by base-line distance . A deficit of 3σ is present in the global fit [122]. Three cases for νe
disappearance due to sterile neutrino mixing are shown for illustration.

Two kinds of studies can be performed to measure the oscillation parameters: a rate only analysis and

a rate plus νe energy shape analysis. The first one is a simple counting experiment while the second
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also includes the energy spectrum information. The study with rate and shape informations [110] is

compatible with sterile oscillation with parameters |∆m2
41| = 1.75 eV2 and sin2(2θee) = 0.10, excluding

the only active oscillation by 99.7%CL. The allowed regions in the oscillation parameter space for

sin2(2θee) and ∆m2
41 are given in Fig. 2.3.

A complete picture with all the reactor experiments at short and long base-lines (LBL) as a function

of the distance is shown in Fig. 2.4.

Fig. 2.3: ∆m2
41, sin2(2θee) plane of the new oscillation parameters for the hypothetical neutrino sterile

in the reactor anomaly. The blue line represents the rate-only analysis, while the colored regions shows
the result with also the νe energy shape information.

The gallium anomaly

The GALLEX ([107], running during 1991-1997) and SAGE ([44, 45], running during 1989-2010) ex-

periments were designed to study the solar neutrino problem. As Homestake, they detect neutrino

interactions by IBD. The relevant feature of these experiments is the usage of 71Ga instead of 37Cl,

whose threshold for IBD is much smaller (233 keV instead of 814 keV), allowing to investigate the whole

neutrino energy range, especially the pp flux that is the most intense source [Fig. 1.1]. In addition,

SAGE and GALLEX are very massive detectors of about 50 and 30 tonnes respectively.

They were calibrated using intense radioactive sources located inside the tanks. 51Cr and 37Ar were

chosen and neutrinos were produced by electron capture:

e− +51 Cr →51 V + νe

e− +37 Ar →37 Cl + νe
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Fig. 2.4: Ratio of the νe event with respect the prediction for reactor experiments at different base-
lines. For illustration, the 3+1 model is shown in black while the standard oscillation hypothesis is in
dotted gray. The first dip and the ratio lower than 1 up to 1 km for the 3+1 model is due to the sterile
neutrino oscillation. The 19 experiments that compose the reactor anomaly are the ones below 100 m.
The second dip is driven by the atmospheric oscillations where detectors like Palo Verde [23], Chooz
[58], Double Chooz [39] or Daya Bay [35] are located and the third dip is due to solar oscillations with
the KamLAND [11] experiment exploring that region.

The dynamics of these interactions (energy of the νe, cross-sections and branching ratios) are known

with high precision so that they are good candidates for detector calibration. The amount of radioactive

material is the only parameter needed to calculate the νe flux. The νe are detected in the same way as

the solar neutrinos using the reaction

νe +71 Ga→71 Ge+ e−

whose cross-section is very well known from measurements of electron capture in 71Ge. After the

exposure of typically 1 month, the 71Ge is chemically extracted and Germane is produced (GeH4) to

be used as a proportional counter to measure the amount of 71Ge. This technique is applied several

times during the years of running. After the exposure, the amount of Ge was smaller than expected as

shown in Fig. 2.5, where the gray band shows the best fit value that corresponds to a ratio with respect

to the prediction of R = 0.87 ± 0.05 [46]. The neutrino flight path is of the order 1 m so that we can

explore regions of ∆m2
41 ∼ 1 eV2. The best fit values for the 3+1 model for the gallium anomaly are

sin2(2θee) = 0.50, ∆m2
41 = 2.24 eV2
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with a significance of 2.7σ, being the allowed parameter region in Fig. 2.6.

Fig. 2.5: Ratio for the measured and predicted production of 71Ge by IBD from artificial sources inside
the GALLEX and SAGE gallium detectors. The unexpected low interaction rates is the so-called
gallium anomaly.

Fig. 2.6: Allowed regions for the oscillation parameters in the νe → νs hypothesis for the gallium
anomaly, [97].

Other experiments

Solar neutrinos Experiments measuring the solar neutrino flux are Chlorine [33], GALLEX/GNO

[108], SAGE [45], Super-Kamiokande I-IV [47], SNO [131] and Borexino [38]. Also the KamLAND [11]

results are included in this set as it is a very long base-line neutrino experiment. Considering the 3+1

model, the survival probability of the νe becomes

PSUNνe→νe ' P
st
νe→νe

(
1− 2(|Ue3|2|Ue4|2)

)
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where P stνe is the νe survival probability with standard oscillations. Therefore Ue3 and Ue4 are highly

degenerate as they have the same effect suppressing the survival probability. Nevertheless, in the

presence of steriles there are corrections of P stνe→νe in the case that |Ue3|2 6= 0 or |Ue4|2 6= 0 as |Ue1|2 +

|Ue2|2 = 1 − (|Ue3|2 + |Ue4|2). In addition, as the sterile do not feel the NC potential, it leads to

modifications of the probability if we include sterile species. Specifically, the SNO measurement on NC

is able to measure the probability 1− PSUNνe→νs that breaks the degeneracy of Ue3 and Ue4.

The allowed parameter region is just a straight vertical line as shown in Fig. 2.7 because this measure-

ment is not sensitive to ∆m2 due to the fast oscillations. The contour at the 95%CL excludes partially

the gallium anomaly.

Cross-section on carbon measurements KARMEN [91] and LSND [14] experiments measure the

νe cross-section in carbon in function of the energy

νe +12 C →12 Ngs + e−

As both measurements are consistent each other as well as with the prediction, they set some constraints

to the νe disappearance channel. This analysis provides the confidence region shown in Fig. 2.7, that

agrees with the solar results and excludes part of the gallium anomaly.

Long base-line reactor experiments Reactor experiments with a base-line of the order of ∼ 1 km

are included in this category. These experiments are Palo Verde [23], Chooz [58], Double Chooz [39],

Daya Bay [35], RENO [36]. They are not sensitive to the sterile neutrino oscillation pattern as the

neutrinos arrive in the fast oscillation regime. Then, they only measure an overall ratio on the number

of events as in the solar case. To break the degeneracy of Ue3 and Ue4, the precise measurement of

sin2(2θ13) from Daya Bay and RENO is needed. The allowed region is shown in Fig. 2.7, excluding

slightly more than the solar constraint.

2.2.2 νµ → νe: νe appearance

We study three neutrino beam experiments: LSND and MiniBooNE that present anomalies, and KAR-

MEN that is compatible with the standard oscillations. They study the νµ → νe oscillation and hence

are sensitive to the parameter sin2(2θeµ) and ∆m2
41.
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Fig. 2.7: Allowed regions at the 95%CL for the space of oscillation parameters. It shows the reactor
anomaly, gallium anomaly, LBL reactor experiments and the solar neutrino results including Kam-
LAND. The contour for the global analysis of the νe (νe) disappearance measurements discussed in
Section 2.2.4 is provided as well.

The LSND experiment

The LSND experiment (1993 - 1998, [14]) in Los Alamos National Laboratory (LANL, US) searched

for νe appearance in a ∼ 30 MeV νµ beam at 30 m from the source. The ratio L/E is optimal for the

study of ∆m2
41 ∼ 1 eV2.

Protons are accelerated up to 800 MeV thanks to the LAMPF accelerator and strike a 30 cm long

water target producing π+ that decay at rest producing νµ and µ. The background coming from

µ+ → e+ + νµ + νe is expected to be 10−3 of the νµ flux. The dominant νµ component travels 30 m

until a 167t mineral oil Cerenkov detector that detects the νe IBD. Thus, the detector is completely

transparent to νµ and only νe events can be detected. An excess of data is observed [4], compatible

with νe appearance in a νµ beam due to SBL oscillations. The allowed parameter space presented at

Fig. 2.9 shows that the results are compatible at the 99%CL with

∆m2
41 > 1 eV2 sin2(2θeµ) ∼ 10−3 (2.6)
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The KARMEN experiment

The KARMEN experiment (1986 - 2002) uses the ISIS synchrotron at Rutherford Appleton Laboratory

(RAL, UK) [91]. It presents many similarities with the LSND experiment. It looks for the same signal

as LSND in the same neutrino energy range, through the same detection signature (IBD) and at almost

the same distance (17.7 m).

The detector is a segmented liquid scintillator of 56t located at an angle of 100◦ from the beam direction.

It compensates the smaller fiducial mass with a very good energy resolution and a smaller background

than LSND (approximately a factor of two smaller). The final e+ selection shows no discrepancies

with the predicted backgrounds. They observe 15 events with respect to a prediction of 15.8± 0.5 for

background only [12]. These results exclude the νe appearance due to oscillations to steriles at 90%CL

as it is showed in Fig. 2.9, so it is strongly in tension with the LSND results.

The MiniBooNE experiment

The MiniBooNE experiment at Fermilab (US) collects data since 2002 in both neutrino [2] and anti-

neutrino modes [3] using a beam with a mean energy of 0.7 GeV. The usage of magnetic horns allows

to focus or defocus the mesons depending on their charge, and hence to enhance the neutrino beam

with νµ or νµ.

The neutrinos travel 540 m arriving to a spherical Cerenkov detector at ∼ 500 m filled with 800t of

mineral oil (CH2), and interact with the Carbon nuclei through CC interactions

Neutrino mode: νe + C → C∗ + p+ e−

Anti-neutrino mode νe + C → C∗ + n+ e+

The selected events for both runs are shown in Fig. 2.8. They both show an unexpected excess at low

energy that lead the allowed regions in the oscillation parameter space shown in Fig. 2.9.

2.2.3 νµ → νs: νµ disappearance

The νµ disappearance analyses at SBL are sensitive to the 3+1 model parameters sin2(2θµµ) and

∆m2
41. Up to date, none of the experiments has shown evidence of νµ or νµ disappearance, what
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Fig. 2.8: Reconstructed neutrino energy of the final selected events for the νe on the left and νe on the
right at MiniBooNE.

Fig. 2.9: Allowed oscillation parameter region for the LSND and MiniBooNE anomalies along with the
not abnormal KARMEN experiment. Some other experiments as well as the result for a global fit of
all of them are shown [110].
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presents serious problem of consistency with the νµ → νe appearance measurement for LSND and

MiniBooNE, as discussed in Section 2.1.1.

MiniBooNE and SciBooNE

SciBooNE is a detector operated in the same beam line as MiniBooNE. It is located at 100 m from the

source, closer than MiniBooNE (540 m), so it plays the role of near detector in the joint study. The

SciBooNE detector is made of a fully active scintillator detector of 16t (SciBar), an electronic calorimeter

and a muon range detector. In both experiments νe CC interactions are detected. The sample of stopped

muons in SciBooNE is fitted together with the sample of muons detected at MiniBooNE.

A good agreement with the expectation is reported [115, 31]. The same analysis was performed for the

νµ beam with equivalent results. Both analyses are compatible with the null oscillation hypothesis for

νµ (νµ) SBL disappearance, setting strong constrains to the νµ mixing with νs.

MINOS

The most stringent constraint at ∆m2
41 ∼ 1 eV2 comes from the MINOS long base-line experiment [40].

MINOS is located at the NuMi beam line at Fermilab and count with a near detector (ND at 1.04 km)

and a far detector (FD at 735 km). They measure the neutral current (NC) rate in both detectors.

The analysis uses a selection at the ND and the ratio of the data over the simulation is used to reweight

the predicted number of νµ events at the FD that is compared with the data. The 3+1 model is tested

with the assumption that no oscillation can be detected at the ND within the systematic uncertainties.

This assumption is estimated to be correct between the range 0.3 < ∆m2
41 < 2.5 eV2. As we are

in the fast oscillation regime, we are not sensitive to the ∆m2
41, so MINOS set a constrain only in

sin2(2θµµ) (green dashed region in Fig. 2.10). There are no evidences of disappearance and the results

are compatible with SciBooNE and MiniBooNE νµ (νµ) analyses.

CDHSW and CCFR

These are two SBL neutrino old experiments from 1984: the Cern Dortmund Heidelberg Saclay Warsaw

(CDHSW) [83] and the Chicago Columbia Fermilab Rochester (CCFR) [136, 137]. The CDHSW

(CCFR) have two detectors located in the beam line at 130 m (∼ 800 m) and 885 m (∼ 1200 m) from
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the source for a neutrino energy peaked at 3 GeV (40 GeV to 230 GeV for νµ and 165 GeV for νµ). We

see that the CCFR energy range is much larger than all the other experiments so it explores mixing at

10 eV2 > ∆m2 > 1000 eV2. A joint analysis of the near and the far detectors was performed for each of

the experiments in order to minimize the systematic uncertainties. The results for both experiments is

shown in Fig. 2.10. The constraint at high ∆m2
41 comes from the CCFR experiment while the one at

∆m2
41 ∼ 5 eV2 from CDHSW.

Fig. 2.10: Rejected oscillation parameter space for the null searches of νµ disappearance of Sci-
BooNE/MiniBooNE, MINOS, CDHSW and CCFR.

2.2.4 Global fits

It is interesting to discuss the global picture in which joint fits of different analysis are worked out. The

results we presented above can be classified in:

◦ Disappearance experiments: νe(νe) → νs and νµ(νµ) → νs channels, they are only sensitive to

one of the mixing matrix element (sin2(2θee) or sin2(2θµµ)).

◦ νe appearance experiments: sensitive to both mixing angles through Eq. (2.5).

The νe(νe) disappearance experiments are essentially compatible among them. If we fit both reactor

and gallium anomalies we are able to reject the non oscillation hypothesis by 99.9%CL (3.6σ) [110]. The

LBL and solar experiments are slightly in tension with the gallium anomaly, so including them in the

joint fit makes broader the confidence intervals. The final allowed parameter space for the global fit on
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Model χ2 Goodness-of-fit
3+1 712/(689-9) 1.2× 10−4

3+2 701/(689-14) 0.34× 10−4

1+3+1 694/(689-14) 21.0× 10−4

Table 2.1: χ2 values for the global fits. The goodness-of-fit shows the consistency between the appear-
ance versus the disappearance experiments.

the νe disappearance data is in Fig. 2.7 and its best fit point sits in sin2(2θee) = 0.09, ∆m2
41 = 1.78 eV2

rejecting the null hypothesis by 99.8%CL.

νe disappearance is sensitive to sin2(2θee) while νµ disappearance is sensitive to sin2(2θµµ). It means

that a combination of both channels is sensitive to the νe appearance parameter sin2(2θeµ) since the

mixing angles are related through Eq. (2.5). A combined analysis of disappearance and appearance data

shows that the experiments are strongly in tension [110]. The three different sterile neutrino models

described in Section 2.1.1 (3+1, 3+2, 1+3+1) are used to fit the data and their allowed parameter

spaces are shown in Fig. 2.11. We observe that any of the models is able to reconcile appearance

and disappearance experiments. Tab. 2.1 quantify the tension between both data sets showing the

goodness-of-fit. The poor values indicate that the probability that both experimental sets agree is

below 0.2%. The 1+3+1 is slightly favoured respect to the others and the 3+2 is the model giving

the worst agreement with the data. On the other hand, the 1+3+1 model implies a sum of the active

neutrino masses of about ∼ 3 eV2, what might be in tension with recent cosmological results [70].

νe disappearance measurements are not in direct conflict with other data, as the mixing angles that

drive the oscillations are different. The tension is mainly driven by the fact that the νe appearance

detected at MiniBooNE and LSND predicts νµ disappearance, which has not been observed.

Fig. 2.11: Left: allowed regions for the oscillation parameter space sin2 θµe and ∆m2 in the 3+1 model.
Middle: 3+2 model. Right: 1+3+1 model. Figures show contours for the disappearance experiments
only, appearance experiments only and global fits.
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Experiment Channel Result

Reactor anomaly
νe → νe

sin2(2θee) = 0.10 and |∆m2
41| = 1.75 eV2 (3.0σ)

Gallium anomaly sin2(2θee) = 0.50 and ∆m2
41 = 2.24 eV2(2.7σ)

Reactor + Gallium sin2(2θee) = 0.17± 0.04 and |∆m2
41| > 1.5 eV2 (3.6σ)

Solar + KamLAND sin2(2θee) < 0.1 (95%CL)

LSND

νµ → νe

∆m2
41 > 1 eV2, sin2(2θeµ) ∼ 10−3(90%CL)

KARMEN ∆m2
41 < 1 eV2(90%CL)

NOMAD sin2(2θeµ) < 10−3 and ∆m2
41 < 0.2 eV2 (90%CL)

MiniBooNE (ν mode) ∆m2
41 < 1 eV2(90%CL)

MiniBooNE (ν̄ mode) sin2(2θeµ) ∼ 10−3 and ∆m2
41 > 1 eV2 (90%CL)

MiniBooNE + SciBooNE

νµ → νµ

sin2(2θµµ) < 0.05 eV2 at ∆m2
41 ∼ 10 eV2 (90%CL)

MINOS sin2(2θµµ) < 0.05 eV2 at ∆m2
41 ∼ 1 eV2 (90%CL)

CDSHW sin2(2θµµ) < 0.05 eV2 at ∆m2
41 ∼ 10 eV2 (90%CL)

CCFR sin2(2θµµ) < 0.05 eV2 at ∆m2
41 ∼ 100 eV2 (90%CL)

Table 2.2: Summary of the SBL neutrino interaction rate measurements. Anomalies and results com-
patible with standard oscillations are presented together.

2.2.5 Summary

We have described the anomalies that motivate the introduction of sterile neutrinos. They are difficult

to fit in the scenario of the standard neutrino oscillations. Nevertheless, even introducing one sterile

neutrino at ∆m2
41 ∼ 1 eV2 there are still some tensions between experiments. A summary table with

all the experiment discussed in this section (anomalous and standard ones) together with the impact

in a 3+1 neutrino model is provided in Tab. 2.2.
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T2K overview

The T2K (Tokai to Kamioka) experiment is a long baseline neutrino oscillation experiment located in

Japan that started taking data in March 2010 and continues its operations since then [5]. It produces

a neutrino beam using the Japan Proton Accelerator Research Complex (J-PARC) on the east coast

of Japan (Tokai village) pointing to the Kamioka laboratory (West Japan) where the far detector

(SuperKamiokande) stands. The neutrinos travel for 295 km with a mean energy of ∼ 600 MeV, so

its design is optimized to study neutrino oscillations at the atmospheric mass difference ∆m2
23. Near

detectors (ND280 and INGRID) placed at 280 m from the hadron production point provide valuable

information of the neutrino beam before they oscillate. In short, the experimental overview [Fig. 2.12]

is:

◦ We produce a > 90% muon neutrino beam with a narrow energy distribution at the maximum

of the oscillations thanks to the off-axis setup. T2K is using near and far detectors not collinear

with the beam-line, but displaced by a small angle (off-axis). Protons are accelerated to 30 GeV

and strike a Carbon target to produce hadrons (pions and kaons) that decay mainly into νµ;

◦ Neutrino interactions are measured before the neutrino oscillation using near detectors placed

at 280 m from the source to reduce the flux and cross-section systematic uncertainties at the

far detector. The near detectors also measure neutrino cross-sections and participate in sterile

neutrino searches;

◦ Observe neutrino interactions at the far detector, where the neutrino beam composition is signifi-

cantly affected by the oscillations. Comparing the observed neutrino spectrum with the expected

one allows to measure precisely the oscillation parameters sin2(2θ13) through νe appearance, and

sin2(θ23) and ∆m2
23 through νµ disappearance.
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Fig. 2.12: Sketch of the T2K experiment.
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Chapter 3

The T2K neutrino beam

Muon neutrinos are produced through the decays of hadrons coming from high energy proton-Carbon

interactions. A horn system focuses hadrons of a positive (negative) charge, that decay into neutrinos

(anti-neutrinos) and reduces the contamination of anti-neutrinos (neutrinos). To enhance νµ’s of definite

energy at the oscillation maximum, the off-axis technique is applied.

3.1 The neutrino beam-line

The J-PARC facilities provide the intense neutrino beam that is studied firstly at the near detectors

hall, located inside J-PARC, and then at SK. The production of the neutrino beam is sketched in

Fig. 3.1 and is summarized as follows:

1. The J-PARC complex accelerates protons up to 30 GeV and injects them in the neutrino beam-

line, where they are bent towards the direction of SK;

2. The protons hit a graphite target producing hadrons, mainly pions and kaons;

3. The hadrons of a specific charge are collimated using a system of three magnetic horns while the

opposite charged hadrons are defocused. They enter in a ∼ 96 m Helium tunnel where decay to

neutrinos and other particles like muons;

4. A beam dump stops most of the particles that are not neutrinos.

3.1.1 The J-PARC accelerator

It consists of three accelerators: a linear accelerator (LINAC), a rapid-cycling synchrotron (RCS) and

the 1567.5 m circumference main ring (MR) synchrotron. A picture of J-PARC with its accelerators is
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Fig. 3.1: Sketch of the neutrino beam production.

in Fig. 3.2. It injects ∼ 3×1014 protons per spill of 5.6µs in the target station, with a maximum power

of 750kW.

An H− beam is accelerated up to 400 MeV (181 MeV at present) by the LINAC, and is converted to

an H+ beam by charge-stripping foils at the RCS injection. The beam is accelerated up to 3 GeV by

the RCS with a 25Hz cycle. The proton beam injected into the MR is accelerated up to 30 GeV. The

number of bunches in the MR is eight (six before June 2010, corresponding to the first T2K run). There

are two extraction points in the MR: slow extraction for the hadron beam-line and fast extraction for

the neutrino beam-line. In the fast extraction mode, that is the one used by the neutrino facility,

the eight circulating proton bunches are extracted within a single turn by a set of five kicker magnets

[75]. A precise measurement of the extracted proton beam timing is crucial to discriminate various

backgrounds in the neutrino detectors, like the cosmic rays.

Fig. 3.2: Aerial view of the J-PARC complex.
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Fig. 3.3: Sketch of the beam line (left) and detail of the secondary beam-line (right).

3.1.2 The primary beam-line

At this stage the extracted proton beam is transported to line it up in the direction of the secondary

beam-line and bent to point to SK.

In the preparation section (first 54 m), the extracted proton beam is tuned with a series of 11 normal

conducting magnets (four steering, two dipole and five quadrupole magnets) so that the beam can

be accepted by the next section called arc section. This runs over the next 147 m and the beam is

bent toward the direction of Kamioka by 80.7◦, with a 104 m radius of curvature, using 14 doublets

of superconducting combined function magnets. There are also three pairs of horizontal and vertical

superconducting steering magnets to correct the beam orbit. The downstream part is the focusing

section, where ten normal conducting magnets (four steering, two dipole and four quadrupole magnets)

guide and focus the beam onto the target, while directing the beam downward by 3.637◦ with respect

to the horizontal.

The intensity, position and profile of the proton beam in the primary sections are precisely monitored by

the proton beam monitor (five current transformers, 21 electrostatic monitors, 19 segmented secondary

emission monitors and 50 beam loss monitors). A well-tuned proton beam is essential for stable neutrino

beam production, and to minimize beam loss in order to achieve high-power beam operation.

3.1.3 The secondary beam-line

The secondary beam-line [Fig. 3.3] consists of three sections: the target station, decay volume and

beam dump. The target station contains: a baffle which is a collimator to protect the magnetic horns;
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an optical transition radiation monitor to monitor the proton beam profile just upstream of the target;

the target to generate secondary pions; and three magnetic horns provided with 250 kA (designed

for up to 320 kA) current pulse to focus the pions; all these components are located inside a helium

vessel. The produced pions enter the decay volume and decay mainly into muons and muon neutrinos.

All the hadrons, as well as muons below 5 GeV, are stopped by the beam dump while the neutrinos

pass through the beam dump. Most of the muons above 5 GeV pass through the beam dump and are

monitored in the MUMON to characterize the neutrino beam.

The target The target core is a 1.9 interaction length (91.4 cm long), 2.6 cm diameter and 1.8 g/ cm3

graphite rod. If a material significantly denser than graphite were used for the target core, it would

be melted by the pulsed beam heat load. The core and a surrounding 2 mm thick graphite tube are

sealed inside a titanium case which is 0.3 mm thick. The target assembly is installed inside the bore of

the first horn inner conductor and it is cooled by helium gas flowing through the gaps at a flow speed

of ∼ 250 m/s. When the 750 kW proton beam interacts with the target, the temperature at the center

is expected to reach 700◦C (assuming that the radiation damage reduces the thermal conductivity of

the material by a factor of four).

The horns The T2K beam-line uses three horns of different sizes located in the target station. Each

magnetic horn consists of two coaxial (inner and outer) conductors which encompass a closed volume

[139, 125]. A toroidal magnetic field is generated in that volume. The field varies as 1/r, where r is

the distance from the horn axis. The first horn collects the hadrons that are generated at the target

installed in its inner conductor. The second and third horns focus the pions. When the horn is run with

a operation current of 320 kA, the maximum field is 2.1 T and the neutrino flux at SK is increased by

a factor of 16 (compared to horns at 0 kA) at the spectrum peak energy (0.6 GeV). They are optimized

to maximize the neutrino flux; the inside diameter is as small as possible to achieve the maximum

magnetic field, and the conductor is as thin as possible to minimize pion absorption while still being

tolerant of the Lorentz force, created from the 320 kA current and the magnetic field, and the thermal

shock from the beam.

The decay volume The decay volume is a ∼ 96 m long steel tunnel filled with Helium to reduce the

pion absorption. The cross-section is 1.4 m wide and 1.7 m high at the upstream end, and 3.0 m wide

and 5.0 m high at the downstream end. It is wider at the end of the tunnel to increase the acceptance
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of higher angle particles. The decay volume walls and concrete are cooled down to below 100◦C using

water in order to dissipate the heat produced by the hits of the pions.

The beam dump and the muon monitor The beam dump sits at the end of the decay volume.

The distance between the center of the target and the upstream surface of the beam dump along the

neutrino beam direction is 109 m. The beam dump core is made of 75 tons of graphite (1.7 g/cm3 ),

and is 3.174 m long, 1.94 m wide and 4.69 m high. It is contained in the helium vessel. Fifteen iron

plates are placed outside the vessel and two inside, at the downstream end of the graphite core, to give

a total iron thickness of 2.40 m. Only muons above ∼ 5 GeV can go through the beam dump to reach

the downstream muon pit.

The neutrino beam intensity and direction can be monitored on a bunch-by-bunch basis by measuring

the distribution profile of muons, because muons are mainly produced along with neutrinos from the

pion two-body decay. The neutrino beam direction is determined to be the direction from the target

to the center of the muon profile. The muon monitor (MUMON, [117, 118]) is located just behind the

beam dump. The muon monitor is designed to measure the neutrino beam direction with a precision

better than 0.25mrad, which corresponds to a 3 cm precision of the muon profile center. It is also

required to monitor the stability of the neutrino beam intensity with a precision better than 3%. A

detector made of nuclear emulsion was installed just downstream of the muon monitor to measure the

absolute flux and momentum distribution of muons.

3.2 The off-axis technique

One of the most important features of the T2K beam is that the direction of the proton beam and the

axis of the target and horns is 2.5◦ away from the direction to the far detector. This is called off-axis

technique and it was first proposed by the BNL experiment E889 [18]. It allows to produce a narrow

band beam at the oscillation maximum with the following advantages:

1. Improves the sensitivity to the oscillation parameters. The off-axis configuration produces an

energy peak at the first oscillation maximum at the far detector with a larger neutrino flux than

the on-axis setup [Fig. 3.4]. It increases the number of neutrinos that oscillate, enhancing the νµ

disappearance and νe appearance.
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3. The T2K neutrino beam

2. At ∼ 600 MeV the dominant interaction is the CCQE interaction [Fig. 1.4]. As it is better known,

this interaction has less uncertainties and hence, reduces the cross-section systematic errors that

affect the oscillation measurements.

3. Minimizes the background for νe appearance analysis. It reduces the beam νe contamination in

the analysis region around the ∼ 600 MeV. This is because the νe’s come from three body decays

that behave differently than the two-body decays when the off-axis technique is applied.

This technique is useful only in the case we know the relevant ∆m2 precisely, as in the current situation.

The source of a neutrino beam is mainly pions decay. A charged pion decays ∼ 100% to a muon and a

muon neutrino:

π+ → νµ + µ+ π− → νµ + µ−

This is a two-body decay that yields an energy for the outgoing neutrino of [111]

Eν =
(1−m2

µ/m
2
π)Eπ

1 + γ2 tan θ2

where Eν , Eπ are the energy of the neutrino and the pion, mπ, mµ are the pion and muon rest masses,

γ = Eπ/mπ and θ is the off-axis angle. For the neutrinos collinear with the pions (θ = 0), the neutrino

energy is strictly proportional to the energy of the pion. For neutrinos with an angle different from zero

the relation becomes more complex as can be seen in Fig. 3.5, where the dependency with Eπ is weaker

with respect to the on-axis neutrinos. It means that the pions of a broad energy band contribute to

almost the same neutrino energy and hence, we have more intensity in the energy region of interest.

3.3 The neutrino beam composition

When the protons hit the Carbon target, charged pions and kaons are produced. They decay to

neutrinos according to the branching ratios given in Tab. 3.1. We observe that most of the decays yield

νµ that will be the dominant beam component. The 94.4% comes directly from secondaries or tertiary

charged pions while the 5.4% comes from charged kaons. The remainder is a negligible component
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3.3. The neutrino beam composition

Fig. 3.4: Effect of the off-axis angle in the neutrino beam flux. The curves are normalized by area,
but still the off-axis configurations have more neutrinos at the oscillation maximum than the on-axis
in absolute numbers.

Fig. 3.5: Energy of the neutrino versus the energy of the pions for different off-axis angles.
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3. The T2K neutrino beam

from neutral kaons. The pion component dominates the neutrino source at the peak while the kaons

form the high energy tail of the neutrino flux. Nevertheless, the beam is not made of pure νµ as some

negative mesons are not sufficiently defocused by the horns and they decay mainly in νµ according to

the conjugated channels of Tab. 3.1. They form the second component in the neutrino flux of about

the 6.2% of the total flux. Finally, a 1.1% of νe and a negligible 0.1% of νe are expected. The Fig. 3.6

shows the predicted neutrino flux at SK and ND280 divided by neutrino flavour.

Particle ( GeV) Decay channel Branching ratio (%)
π+ → µ+νµ 99.9877

→ e+νe 1.23× 10−4

K+ → µ+νµ 63.55
→ π0µ+νµ 3.353
→ π0e+νe 5.07

K0
L → π−µ+νµ 27.04

→ π−e+νe 40.55

Table 3.1: Branching ratios for the meson decays that yield neutrinos.

Fig. 3.6: Neutrino flux distributions in neutrino energy predicted at SK (left) and ND280 (right). The
colors show the contributions for the different neutrino families.

3.3.1 The νe contamination

The νe contamination is the main background for the νe appearance analysis at SK [Section 5.2] and

it has three sources:

◦ Direct pion and kaon decays: In Tab. 3.1 we see that some channels provide νe. As the branching

ratio for the pions is very small, this component is negligible while the νe coming from kaon is

large;
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3.4. Neutrino flux prediction

◦ Muon decay in flight: a residual of muons is produced after π± and K± decays Tab. 3.1. Some

of them decay according to:

µ+ → e+νeνµ µ− → e−νeνµ (∼ 100%)

before being stopped by the beam dump.

The muons that are stopped at the beam dump decays also in neutrino, but since they decay at rest

they provide a low energy isotropic νe flux that is negligible at ND280 and SK distances. Some muons

overcome the beam dump decaying also to νe, but again it becomes a negligible low energy component.

The νe fluxes at SK and ND280 divided by neutrino parent is in Fig. 3.7. As the νe’s from muons come

from a sequential decay of pion or kaons to muons and then to νe, they populate the low energy region

of the spectrum below 1 GeV. On the other hand, the νe coming from kaons are more energetic and

they populate the high energy tail above 1 GeV.

Fig. 3.7: Electron neutrino flux component predicted at SK (left) and ND280 (right).

3.4 Neutrino flux prediction

The neutrino flux at INGRID, ND280 and SK is predicted by a Monte-Carlo simulation based on

experimental data. The full secondary beam-line is simulated by the beam Monte-Carlo developed

by the T2K collaboration. The interactions inside the graphite target and the baffle are simulated

by FLUKA [86] and the kinematic information for particles emitted from the target is transferred to a

program called JNUBEAM that simulates the neutrino production from the hadron decays. JNUBEAM is a

GEANT3-based Monte-Carlo [24] that propagates the outgoing hadrons through the secondary beam-line
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3. The T2K neutrino beam

until the detectors, including hadron secondary interactions outside the target (mainly in the aluminum

of the primary horn) using the GCALOR software [146].

The uncertainties in the flux prediction are large mainly because of the poor knowledge of the hadron

production. Then, to reduce the flux errors, the hadron production is constrained using external data.

In order to do this, the FLUKA simulation is tuned by the results of the NA61/SHINE experiment

[Section 3.4.1]. A small component of the flux uncertainty comes from errors in the beam alignment

that are small thanks to the INGRID monitoring. A summary of the final flux uncertainties is in

Fig. 3.9 and for a more detailed explanations see [6].

In a second step, the neutrino flux is also measured along with the neutrino cross-section using the νµ

event rates at ND280 Section 5.1. This reduces the error in the neutrino flux from 20% to not more

than 10%.

3.4.1 The NA61/SHINE experiment

The NA61/SHINE [7] (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose facility to study

hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super

Proton Synchrotron (SPS). It performs a precise hadron production measurement at the same proton

energy using a thin target and a T2K replica target to improve the knowledge of the initial neutrino

beam flux. The layout of the NA61/SHINE detector is sketched in Fig. 3.8 and it consists on a large ac-

ceptance hadron spectrometer with excellent capabilities in charged particle momentum measurements

and identification by a set of six Time Projection Chambers as well as Time-of-Flight detectors [7].

The phase space of interest for T2K purpose is fully covered by the NA61/SHINE experiment. It

provides results for the pion [43, 41] and the kaon [42] interaction cross-sections, so that the neutrino

flux at T2K is tuned accordingly. This data driven prediction reduces the neutrino flux errors to

10%−15% as can be seen in Fig. 3.9, where the largest contribution comes from the hadro-production.

Furthermore, the uncertainty on the ratio of the flux predictions at the far and the near detectors is

less than 2% around the peak.
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3.4. Neutrino flux prediction

Fig. 3.8: Sketch of the NA61/SHINE detectors

Fig. 3.9: Neutrino flux errors at ND280 as a function of the neutrino energy evaluated with the NA61
experiment and the beam monitor, divided by neutrino flavours. The errors are broken down by
components where the largest one is clearly the hadro-production.
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Chapter 4

The T2K Detectors

4.1 The near detectors

The Near Detector Complex is installed at a distance of 280 m from the target. It is formed by the main

off-axis detector (ND280) that is a magnetized tracking detector with very good particle identification

capabilities, and the scintillator on-axis detector (INGRID) that accounts mainly on beam alignment

measurements. The design of the complex is shown in Fig. 4.1.

4.1.1 On-axis detector: INGRID

The Interactive Neutrino GRID (INGRID) is a scintillator neutrino detector located on-axis at 280 m

and designed to monitor the neutrino beam direction and intensity by means of neutrino interactions

in Iron. Using the number of observed neutrino events in each module, the beam center is measured

to a precision better than 10 cm that corresponds to 0.4mrad precision.

Design

It consists on 14 identical modules arranged as a cross of two identical groups along the horizontal

and vertical axis, and two additional separate modules located at off-axis directions outside the main

cross, as shown in Fig. 4.1. Each INGRID module is a cube of 124 cm3 made of a sandwich of 9 Iron

plates and 11 scintillator layers surrounded by veto scintillator planes that track interactions outside

the module. The Iron plates serves as neutrino interaction target (7.1t per module) and the scintillator

layers and the veto planes are made of 24 and 22 doped polystyrene scintillator bars, respectively.

In addition, an extra module different from the others called the Proton Module, has been added in

order to detect protons together with muons produced in νµ CC neutrino interactions. It lacks on Iron

plates and has a finer segmentation for the scintillator planes, so the tracking capabilities are improved.
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Fig. 4.1: Near detectors at 280 m from the neutrino source. At the top is ND280 in an off-axis position while at the bottom is the on-axis INGRID
detector.
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Readout and tracking

In the INGRID modules the charge is readout by the Hamamatsu Multi-Pixel Photon Counter (MPPC,

[144, 121]), photosensors ([132]) attached to the wavelength-shifting (WLS) fibers that collect the light

within the scintillator bars an derive it to the MPPC. It provides the position and the timing of the

charge deposit and the tracking to the particles produced in the neutrino interactions.

4.1.2 Off-axis detector: ND280

The off-axis near detector of T2K has the important role of characterizing the neutrino spectra that

arrives to SK measuring neutrino interaction rates before the oscillation. It was built to fulfill several

requirements:

◦ it must provide information to determine the expected ν spectra at SK detector.

◦ the νe contamination of the beam must be measured as a function of neutrino energy

◦ it must have the capability to reconstruct neutral current single π0 events to control the second

most important background of νe appearance at SK.

ND280 consists on a combination of different detectors placed inside a magnet. It is constituted by the

following elements shown in Fig. 4.1:

◦ the refurbished UA1/NOMAD magnet instrumented with scintillator to perform as a muon range

detector (SMRD). Inside its cavity, a metal frame container, called the “basket” sits.

◦ The basket is surrounded by an electromagnetic calorimeter (ECAL) divided in 13 separated

pieces.

◦ Inside the basket is placed the π0 scintillator detector (P0D) and the section called the tracker,

made of a sandwich of gaseous detectors (Time Projection Chamber, TPC) and the active targets

(Fine Grained detectors, FGD).

A display of a charged particle crossing the entire ND280 is shown in Fig. 4.2.
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4. The T2K Detectors

Fig. 4.2: Typical event display in ND280.

The UA1 magnet

ND280 uses the same magnet used at CERN for UA1 [1] and NOMAD [13] experiments, providing

a dipole magnetic field of 0.2T. It creates a magnetic field orthogonal to the beam direction bending

particles upside or downside depending on their charge. It enables the measurement of the momentum

and the sign of the charge of the particles produced in neutrino interactions.

Design The magnet consists on water-cooled aluminum coils, which create the horizontally oriented

dipole field, and a flux return yoke. The dimensions of the inner volume of the magnet are 7.0 m ×

3.5 m × 3.6 m. The external dimensions are 7.6 m × 5.6 m × 6.1 m and the total weight of the yoke is

850 tons. The coils are made of aluminum bars with 5.45 cm x 5.45 cm square cross-sections, with

a central 23 mm diameter bore for water to flow. When the magnet is in an open position, the inner

volume is accessible, allowing access to the detectors.

Side Muon Range Detector (SMRD)

The SMRD performs multiple functions. Firstly, it records muons escaping with high angles with

respect to the beam direction measuring their momenta. Secondly, it triggers on cosmic ray muons

that enter or penetrate the ND280 detector. Finally, it helps identify beam-related event interactions

in the surrounding cavity walls and the iron of the magnet.
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4.1. The near detectors

Design The SMRD consists of a total of 440 scintillator modules which are inserted in the 1.7 cm air

gaps between 4.8 cm thick steel plates which make up the UA1 magnet flux return yokes. Each yoke

consists of 16 steel plates and hence has 15 air gaps in the radial direction. For every yoke, there are

three layers of scintillator modules on the top and bottom. All of the SMRD modules populate the

innermost gaps so as to be able to detect particles escaping the inner detectors.

π0 detector (P0D)

The primary aim of the P0D is to control the second more important background for the νe appearance

analysis at SK: the π0 production. It aims to measure the NC process

νµ +N → νµ +N + π0 +X

on a water (H2O) target and so, under the same conditions that in SK. The idea is having a fillable

detector that allows to perform neutrino interaction rates measurement with and without water, so

that it allows to extract a pure neutrino cross-section on water analysis by a subtraction method.

Design The 2103 mm×2239 mm×2400 mm scintillator P0D detector consists on 40 scintillator mod-

ules formed by 134 vertical and 126 horizontal polystyrene scintillator bars, each of one instrumented

with a WLS fiber inside (Kuraray double-clad Y11 of 1 mm diameter) and attached to a MPPC at one

end. The modules are interleaved with fillable water target bags and lead and brass sheets. This ar-

rangement forms a neutrino target where the P0D operates with the water target bags filled or emptied.

The mass of the detector with and without water is 16.1 tons and 13.3 tons respectively.

Fine Grained Detector (FGDs)

ND280 is equipped with two scintillators FGD that provide the target mass for neutrino interactions

in the tracker part combined with tracking performances for particles exiting the interaction vertex.

They are located in between the TPCs and the combination allows a precise track reconstruction of

particles. The upstream FGD is fully active extruded polystyrene scintillator while the second one

alternates scintillator with water layers in order to allow cross-section measurements in water.
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Design Each FGD is 2300 mm width 2400 mm height 365 mm depth and contains 1.1 tons of target

material. The first FGD consists on 5,760 scintillator bars, arranged into 30 layers of 192 bars each, with

each layer oriented alternately in the x and y directions perpendicular to the neutrino beam to allow 3D

hit reconstruction. The second FGD is a water-rich detector consisting of seven XY modules of plastic

scintillator alternating with six 2.5 cm thick layers of water (for a total of 2,688 active scintillator bars

and 15 cm total thickness of water). Each scintillator bar has a reflective coating containing TiO2 and

a WLS fiber going down a hole in its center with one end connected to an MPPC.

Time Projection Chambers (TPCs)

The TPCs are the most important device in ND280. They provide:

◦ precise tracking: the charged particles are very well tracked and they cross the light gaseous

material without scatter;

◦ momentum and charge measurement: thanks to the magnetic field inside the basket, the particles

are curved with a radius that is proportional to the momentum of the track. Measuring the radius

allows to measure the momentum and the charge;

◦ particle identification: the ionization produced by the charged particles that cross the gas is drifted

and collected on the TPC readout system (MicroMegas [95]). The combined measurement of the

deposited energy and the momentum of the particle provides a powerful tool for its identification.

Their goal is to measure the neutrino event rates as a function of the neutrino energy and to allow

ND280 to measure the νe contamination and neutrino cross-sections for different topologies. Its layout

is in Fig. 4.3.

Design Each TPC [21] consists of a copper-clad inner box (x = 1808 mm × y = 2230 mm × z =

854 mm) that holds Ar:CF4:iC4H10 (95:3:2) gas, contained within an Aluminum outer box that holds

CO2 as an insulating gas as showed in Fig. 4.3. On the central cathode, a 25kV voltage is applied

producing an electric field in the gas volume that drift the electrons on the readout planes installed on

the two sides of each TPC. Each TPC has two readout planes where the deposited charge is amplified

and read using 12 Bulk MicroMegas modules ([95]) per readout plane. The modules are arranged in two

vertical columns that are offset so that the small inactive regions between modules are not aligned to
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4.1. The near detectors

Fig. 4.3: Time Projection Chamber layout.

allow at least partial reconstruction of horizontal tracks entering in a dead zone. The Bulk MicroMegas

Detector are planes of 342× 359 mm2 segmented in 36× 48 (1728) pads of 6.85× 9.65 mm2 providing

a 3 m2 active region per TPC and a resolution of typically 0.7 mm per column.

The TPC principle The cornerstone of the νe analysis is the powerful particle identification in the

TPC. A general gaseous detector works in the following way:

1. The charged particle ionize the gas producing ions and electrons.

2. The electric field inside the TPC drifts the electrons to the readout plane where the ionization is

amplified and the deposited charge is measured.

3. The curvature of the track due to the magnetic field is reconstructed what provides a measurement

of the momentum.

4. As the speed of the electrons is constant and depends on the gas composition, a measurement of

the arrival time of the electrons allows a three-dimensional reconstruction.

The detection of the drifted electrons and the measurement of the ionization is performed by Micro

Mesh Gaseous detectors modules (MicroMegas, [95]) attached to the walls opposite to the cathode.

They amplify the deposited charge applying a strong electric field of ∼ 40kV/cm in a thin region of

about 100µm. A mesh that separate the drift region from the amplification region provides this high
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potential. When a drifted electron crosses the mesh, it gets accelerated triggering a shower that is

detected by the read out pads in the MicroMegas. Clusters are formed consisting of neighbouring pads

within a column (row) for roughly horizontal (vertical) tracks.

TPC momentum measurement A magnetic field exists inside the ND280 tracker region allowing

the measurement of the momentum. Neutrino energy estimation in CCQE events is limited at about

the 10% level due to the Fermi motion of the struck nucleons. Thus, the TPC goal is to achieve a

resolution in the momentum of δp⊥/p⊥ < 0.1p⊥[ GeV] (where p⊥ is the component of the momen-

tum perpendicular to magnetic field direction). This requirement is fulfilled as the precision on the

momentum measurement is ∼ 10% for tracks of momentum ∼ 1 GeV.

TPC particle identification The particle identification (PID) is based on a combination of precise

measurements of the momentum and the ionization energy. The ionization energy depends on the

relativistic βγ factor through the well known Bethe-Bloch formula Fig. 4.4:

−dE
dx
∝ βγ =

p

m
(4.1)

where p is the momentum and m the mass at rest of the particle. So measuring the momentum

and comparing the expected energy loss at that momentum for each particle hypothesis with the

measured one, allows the identification of the particles. This is illustrated in Fig. 4.5 where we show

the dependency of the ionization as a function of the momentum for several particle hypotheses (lines).

The deposited energy of electrons in 1atm Argon gas is roughly 40% larger than for muons over

the momentum range of interest. Then to distinguish electrons from muons the requirement in the

ionization resolution needs to be better than 10%.

The resolution on the deposited energy is computed by taking the mean value of the charge deposited

by the particle crossing the gas. As the ionization is affected by long tails (Landau tails) the resolution

substantially improves if we cancel those tails. This is what is called the truncated mean method. This

method is optimized and the truncated mean of the energy loss CT is defined as the mean of the 70%

of the MicroMegas columns with less charge.

To discriminate among the different particles we define the pulls δα for each particle hypothesis α =
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Fig. 4.4: Deposited energy in function of the βγ. It shows the case of the positive muons in Copper.

Fig. 4.5: Energy loss calculated using the truncated mean method CT versus the momentum of the
negative (left) or positive (right) particle measured by the TPC. The different curves represent the
prediction for different hypothesis and the colored histograms correspond to the data.

e, µ, p, · · · as

δα =
CmeasT − CαT

σα
(4.2)

where CmeasT is the measured CT and CαT and σα are the predicted CT and its resolution for the

hypothesis α. The distribution of the pulls in the electron and muon hypotheses are shown in Fig. 4.6,

where we observe that electrons and muons are clearly distinguishable. The CT resolution is about 7.8%

for minimum ionizing particles (below the requirement). This allows muons to be distinguished from

electrons in the TPCs being the muon misidentification probability well below 1% for any momentum

range.
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Fig. 4.6: Pulls δα in the electron (left) and muon (right) hypotheses for Monte-Carlo (color) and data
(dots) for the total data exposure.

Electromagnetic Calorimeters (ECal)

The ECal is made of 13 modules surrounding the whole surface of the inner detectors (P0D, TPCs

and FGDs) providing full coverage for all particles exiting the inner detector volume. Its role is

reconstructing particles produced in neutrino interactions at high angle, providing particle identification

(track vs. shower separation) and detecting the photons that do not convert in the tracker. The ECal

performs a key function in the νe analysis as it provides complementary PID capabilities to the ones

of the TPC, allowing a better distinction of electrons and muons.

Design The ECal is made of 13 independent modules of three different types arranged as in Fig. 4.1:

six Barrel-ECal (BrECal) modules surround the tracker volume on its four sides parallel to the z

(beam) axis; one downstream module (DsECal) covers the downstream exit of the tracker volume; and

six P0D-ECal modules surround the P0D detector volume on its four sides parallel to the z axis.

Each module is instrumented with polystyrene scintillator bars of 4.0 cm× 1.0 cm of cross-section with

a WLS going through it and a MPPC in one or both ends. The DsECal module consists of 34 layers (50

2.04 m bars each) with lead sheets of 1.75 mm thickness, BrECal modules have 31 layers each with the

same lead sheets, the P0DECal modules are made of 6 active scintillator layers separated by five layers

of 4 mm thick lead converter. Consecutive layers have their bars at 90◦ to allow three-dimensional

reconstruction of electromagnetic clusters and charged particle tracks.

The BrECal and P0DECal modules were constructed in 2009-10 and were installed in ND280 in July-

October 2010, so the T2K first data run lacks on this detectors.
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The ECal particle identification The general principle of an electromagnetic calorimeter is that

muons pass through the material as minimum ionizing particles (MIP) and hence, they are recon-

structed as tracks. On the other hand, electrons and photons shower when they cross an ECal module

releasing most of their energy, thus they are reconstructed as electromagnetic showers. The MIPs are

distinguished from the showers using the following features:

◦ Circularity: distribution of the hits in the cluster and how round it is. Being the short and thick

electron/photon-like and large and thin MIPs.

◦ QRMS: standard deviation of the hit charges in the cluster. Showers tend to be more spread than

MIPs.

◦ Truncated Max ratio: ratio between the highest and the lowest charge collected by an ECal layer.

The highest and the lowest charge hits are remove before computing the total charge per layer in

order to reduce the noise and the number of saturated channels.

◦ Front Back Ratio: total charge in the back quarter divided by the one in the front quarter. As

a typical shower deposits most of the charge at the first ∼ 1/4 of the path, this number helps to

disentangle between shower-like and MIP-like events.

For each ECal cluster a log-likelihood ratio is built with these four observables and summing the

likelihood for both the shower and MIP hypothesis. The discriminator (called MipEM) is set to be < 0

for MIP-like and > 0 for shower-like clusters as it is illustrated in Fig. 4.7. Another ECal observable

that we use to exploit the ECal PID is the total energy deposition (EMEnergy). A MIP deposits

typically 300 MeV crossing the whole ECal independently of the momentum, while electrons release

their whole energy. If the particle has higher momentum than 300 MeV, the EMEnergy is a very good

discriminant between muons and electrons.

4.2 The far detector: SuperKamiokande

The world’s largest water Cerenkov detector, SuperKamiokande [48], is used as far detector in the T2K

experiment. It is located 1 km deep (2700 m.w.e.1) and 295 km west from J-PARC and it is used

to measure neutrino interactions after the oscillations. Since its construction in 1996 as a neutrino

1meters-water-equivalent: equivalent depth in water regarding the absorption of the cosmic rays by the medium
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Fig. 4.7: MipEM (ECal discriminant) distribution for muons and electron particle guns for Monte-Carlo
(lines) and through-going muons and photon conversions for data (dots). This variable is set to be > 0
for shower-like and < 0 for MIP-like clusters.

observatory and to look for proton decay [135, 104, 123], the famous detector has achieved lots of

neutrino measurements over the running periods called SK-I SK-II, SK-III and the last SK-IV still

in progress. Among them, the most important one are the measurements on the flux of the solar

neutrinos [89] and the historical atmospheric neutrinos oscillation observation in 1998 [143]. Because

of its long-running operation, the behavior of SK is well understood and the calibration of the energy

scale is known to the percent level.

Design

SK is a cylindric Cerenkov detector filled with 50kt of ultra-pure water surrounded by 13,000 photo-

multipliers tubes (PMT) to catch the dim Cerenkov light produced by the leptons traveling faster than

light in the water [106]. It consists of two major volumes separated by a stainless steel vessel: the inner

detector (ID) of 33.8 m in diameter and 36.2 m in height and with 11,129 50 cm PMTs on its walls; and

the outer detector (OD) that is concentric to the ID, houses a space of 2 m between the ID and the

outer walls and has 1,885 outward-facing 20 cm PMTs. To optically separate both spaces, a stainless

steel scaffold of 50 cm covered by plastic sheets stands in the middle. A drawing of SK is in Fig. 4.8.

The 50 cm PMTs (Hamamatsu R3600, [138]) in the ID provide 40% surface coverage and an accurate

timing response as well as a large photosensitive area that converts the Cerenkov light in an electron

flux. These features make this device able to reconstruct vertex point interactions for the large flux of

the neutrino beam. A schematic view of the ID PMTs is in Fig. 4.9.
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4.2. The far detector: SuperKamiokande

Fig. 4.8: SuperKamiokande, far detector of the T2K experiment. In the drawing, features and parts
of this Cerenkov detector can be distinguished as well as an scheme of its location down the mount
Ikenoyama.

Fig. 4.9: Scheme of a 50 cm PMTs (Hamamatsu R3600, [138]) used in SK ID reconstruction.

Reconstruction and particle identification

The principle of a neutrino Cerenkov detector is the following:

◦ a neutrino interacts with a nuclei in the water producing a lepton,

◦ if the lepton travels faster than light in the water, a shock light wave is produced and the particle

emits light in a direction θ with respect to the lepton direction such that

cos θ = 1/βn
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4. The T2K Detectors

where β is the speed of the lepton in units of c and n the refraction coefficient of the medium

(water in this case). This is called the Cerenkov effect [106].

◦ the light forms a cone whose axis is collinear with the path of the lepton. It arrives to the ID

walls where the PMTs collect its light detecting a light ring.

The Cerenkov angle is maximal for very fast particles and it becomes narrower as the energy of the

particle is smaller. It is not produced for particles with an energy below the Cerenkov threshold Emin

that for water is:

Emin ∼
4√
5
m (4.3)

where m is the mass of the particle.

Thanks to this technique, many features of the out-coming lepton can be measured: the position

and time of the interaction or the energy and direction of the lepton. In addition, looking at the

characteristics of the rings we can perform a primary particle identification. The idea is that the muon,

heavier and resilient to change its momentum, travels very straight. On the other hand, electrons are

lighter and use to scatter on the water or to produce electromagnetic showers at the T2K energies. This

results in a very sharp reconstructed Cerenkov ring for the muons and a fuzzy ring for the electrons as

can be appreciated in Fig. 4.10.

In addition, SK is able to disentangle between electrons and π0. The π0 decays immediately in two

photons that leave two electron-like Cerenkov rings instead of only one as for the νe CC interaction.

However, the reconstruction of both rings is very hard in the case that photons are emitted almost

collinear (the two rings overlap) or one of the photons is very low energetic (the ring is very small).

A new reconstruction algorithm developed in 2013 permits to reduce the π0 background in the νe

appearance analysis a factor of 4 with respect to the previous analyses.
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4.2. The far detector: SuperKamiokande

Fig. 4.10: Cerenkov light ring reconstructed at SK. The left plot corresponds to a muon-like event and
the right one to an electron-like event.
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Chapter 5

T2K oscillation results

The main analysis of T2K is the search for νe appearance and νµ disappearance at SK. In order to

measure the oscillation parameters accurately, the neutrino flux and the neutrino cross-section need to

be constrained at the ∼ 10% level. The neutrino flux is monitored at ND280 where a study of the νµ

interactions is done to measure and further constrain the uncertainties in the flux and cross-section.

5.1 νµ CC analysis at ND280

A measurement in situ of the neutrino flux as a function of the neutrino energy is performed studying

the νµ CC interaction rates at ND280. The neutrino interaction rates depend on the flux but also on

the neutrino cross-section, so that this analysis places further constraints in both: the T2K flux and

the cross-section models. This technique reduces the flux and cross-section uncertainties as well as

introduces a correlation among them. With the ND280 νµ analysis we decrease the systematic errors

in the νµ component, but also in the νe component due to two reasons:

◦ The νµ and νe fluxes are very correlated: kaon decays produce both, νµ and νe. In addition, the

muons that contribute to the νe component at low energy, come from the same pion decays that

produce the main νµ component.

◦ The νµ and νe cross-sections are very similar: at first order they are the same and only differences

of about 3% arise mainly from Final State Interaction and radiative corrections differences [79].

Hence, constraining cross-section models for νµ also does it for νe.

νµ CC interactions at ND280 are selected and classified in three different samples. The idea is to look

for muons produced in the upstream FGD and reconstructed in the TPCs, and characterize the event

attending to the other tracks emitted in the neutrino interaction. For the last step it is important the

proper identification of the π+. This is done by reconstructing them in the TPC or by looking for time
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5. T2K oscillation results

delayed energy depositions in the FGD due to the decay of the π+ in a muon and then in an electron

(called Michel electron). In short, the selection is:

◦ Select the highest momentum negative track in the event starting inside the FGD and with at

least one TPC segment.

◦ Apply the TPC particle identification to select muons and reject electrons, pions and protons

◦ Classify topologically the event:

1. CC-0π: events without reconstructed pions or electrons in the tracker;

2. CC-1π+: events with a reconstructed π+ in the tracker and without π− or electrons;

3. CC-Other: the rest of the events.

After the data reduction we select 25589 events in total while 29477 are predicted by the simulation.

Tab. 5.1 shows the number of events entering in each sample for data and Monte-Carlo. The momentum

and angular distributions [Fig. 5.1] are fit to measure the flux and cross-section. The distributions before

and after the fit are shown in Fig. 5.2. The uncertainties in the flux prediction are reduced from 20%

to ∼ 10% and the flux and cross-section errors in the prediction of the number of neutrino interactions

at SK become the 6%. The impact of this measurement on the SK analyses are shown below and for

further details and the effect in our analysis we refer to Chapter 8.

Selection Data Monte-Carlo Prediction after νµ fit
νµ-0π 17369 19980 17352
νµ-1π+ 4047 4953 4110
νµ-Other 4173 4545 4119

Total 25589 29477 25581

Table 5.1: Number of selected events in the ND280 CCνµ samples for data and Monte-Carlo.

5.2 νe appearance

The measurement of the sin2(2θ13) mixing angle through νe appearance was the main purpose of the

T2K experiment. The last of the mixing element remained unknown until 2011 [34], due to its small

value. In 2011, the T2K collaboration published the first indication of electron neutrino appearance

from a muon neutrino beam at 2.5σ significance based on a data set corresponding to 1.43× 1020 POT
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Fig. 5.1: Momentum (left) and angular (right) distributions for the νµ selection at ND280 before the
fit for data and Monte-Carlo separated by neutrino interaction modes. From top to bottom: CC-0π,
CC-1π+ and CC-Other

[50]. This result was followed by the publication of further evidence for electron neutrino appearance

at 3.1σ in early 2013 [51]. Here we present the first significant observation of νe appearance in a νµ

beam described in [55].

After traveling 295 km to SK, the νµ oscillate into νe with a probability given by Eq. (1.3) that after
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Fig. 5.2: Momentum (left) and angular distributions (right) for the muons selected at ND280. The
selection is divided by topology in (from top to bottom): CC-0π, CC-1π+ and CC-Other. The colored
histograms show the expected distributions before and after the νµ fit.

developing it, acquires the form:

P (νµ → νe) = sin2 θ23sin2(2θ13) sin2 ∆m2
31L

4E

− sin 2θ12 sin 2θ23

2 sin θ13
sin

∆m2
21L

4E
sin2(2θ13) sin2 ∆m2

31L

4E
sin δCP

+ CP term, solar term, matter effect term

where we observe that this channel is sensitive to sin2(2θ13) and CPV. A good measurement implies a

precise knowledge of the rest of the parameters in the PMNS matrix.
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5.2. νe appearance

To look for the νe appearance, we select νeCC events at SK looking for electrons using the power of

the particle identification [Section 4.2]. Although the main νµCC interactions are rejected, a sizable

background of π0 produced in νµNCπ0 interactions dominates (9.0 events and 3.9 for the rest of the

background). Thanks to a new algorithm implemented in 2013, we are able to distinguish between

νeCC events and π0 events removing ∼ 80% of the νµNCπ0 events with a reduction in the νe efficiency

of only 2% [Fig. 5.3]. The last analysis of SK reveals 28 νe-like events from which only 4.92± 0.55 are

expected without oscillations. Now, the main background for this channel is the irreducible νe intrinsic

component of the beam that we pointed out in Section 3.3.1. 3.2 events are expected to come from νe

background, while only 1.1 NC interactions. Measuring this component to check our prediction is key

to rely on the final results for sin2(2θ13). The only way to control the νe contamination is measuring

it before the neutrino oscillation at the ND280 near detector.

The data reduction for the selection chain is shown in Tab. 5.2. The reconstructed neutrino energy

distribution ERecν for the final νe events is shown in Fig. 5.4 along with the small expected background.

It is also shown the reduction of the systematic errors thanks to the νµ ND280 flux and cross-section

measurements. The best fit value sin2(2θ13) = 0.140+0.038
−0.032 is measured assuming |∆m2

32| = 2.4 ×

10−3 eV2, sin2 θ23 = 0.5 and δCP = 0 for normal hierarchy, and sin2(2θ13) = 0.170+0.045
−0.037 for the

inverted hierarchy, giving a significance of 7.3σ with respect to the null hypothesis.

The last unknown element in the PMNS matrix, δCP , can only be measured in the νµ → νe channel by

comparing neutrino and anti-neutrino channels (as established in Section 1.3). Currently, comparing

our present measurement of sin2(2θ13) with the one given by the reactor experiments, that are only

sensitive to sin2(2θ13), allows to constrain δCP . The value sin2(2θ13) = 0.098± 0.013 [101] is obtained

from reactors and δCP values outside the region 0.19π and 0.80π for the normal hierarchy and between

−0.97π and 0.04π for the inverted hierarchy are excluded at the 90%CL [Fig. 5.5].

Selection Data νµ → νe νµ + νµCC νe + νeCC NC Total MC
Fiducial volume 377 26.2 247.8 15.4 83.0 372.4

Single ring 193 22.7 142.4 9.8 23.5 198.4
e-like ring 60 22.4 5.6 9.7 16.3 54.2

pe > 100 MeV 57 22.0 3.7 9.7 14.0 49.4
No decay-e 44 19.6 0.7 7.9 11.8 40.0

ERecν 39 18.8 0.2 3.7 9.0 31.7
Non π0-like 28 17.3 0.1 3.2 1.0 21.6

Table 5.2: Expected number signal and background events passing each cut of the νe selection at SK
assuming sin2(2θ13) = 0.1, sin2(θ23) = 0.5, ∆m2

32 = 2.4× 10−3 eV2, δCP = 0 compared to the data.
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5. T2K oscillation results

Fig. 5.3: Criteria to discriminate π0 events from νe CC events at SK. The X axis corresponds to the
reconstructed π0 mass making the hypothesis of two electron-like rings. The Y axis represents the
likelihood ratio between the π0 and the electron hypothesis. The events above the red line are rejected,
corresponding with the peak of the π0 background (blue).
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Fig. 5.4: Reconstructed neutrino energy distribution for νe events at SK. Left: In blue is shown the
expected events while the dots represent the data. A clear excess due to the νµ → νe is observed.
Right: effect of the ND280 νµ constrain of the systematic errors.

5.3 νµ disappearance

The most precise measurement on sin2(θ23) is set by the T2K νµ disappearance analysis. The νµ

survival probability is

P (νµ → νµ) ' 1− 4 cos2 θ13 sin2 θ23 sin2

(
1.267

∆m2[ eV2]L[ km]

Eν [ GeV]

)
− 4 cos4 θ13 sin4 θ23 sin2

(
1.267

∆m2[ eV2]L[ km]

Eν [ GeV]

)

where ∆m2 is the relevant mass splitting according to the hierarchy (∆m2
32 for the normal and ∆m2

13

for the inverted). The first term dominates since sin2(2θ13)� 1. A precise measurement of sin2(θ23) is
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5.3. νµ disappearance

Fig. 5.5: Left: allowed regions for the sin2(2θ13) as a function of δCP for normal (top) and inverted
(bottom) hierarchy. The shaded region shows the sin2(2θ13) constrain from [101]. Right: −2∆ lnL
value as a function of the δCP for the analysis of T2K νe data plus the reactor measurement from the
PDG2012 [101]. Critical values (horizontal lines) are calculated with the Feldman-Cousin method [92]
and the points of the curves above those lines are exclude at 90%CL.

interesting for constraining models on neutrino mass generation and determining if sin2(θ23) is larger

or smaller than π/4 (the octant of sin2(θ23)). After a publication with the first results [52], the results

for an analysis with the entire data set [54] is presented here.

We select 120 νµ events after the selection criteria that enhance the νµ CCQE component. 446.0±22.5

events are expected if oscillation does not occur. The events are distributed in reconstructed neutrino

energy as it is shown in Fig. 5.7. The best fit value sits in the point sin2(θ23) = 0.514+0.055
−0.056 and

∆m2
32 = 2.51 ± 0.10 × 10−3 eV2 for the normal hierarchy and sin2(θ23) = 0.511 ± 0.055 and ∆m2

13 =

2.48±0.10×10−3 eV2 for the inverted one. The rest of the parameters are treated as nuisance parameters

within the constraints: sin2 θ13 = 0.0251±0.0035, sin2 θ12 = 0.312±0.016, ∆m2
21 = 7.50±0.20×10−5 eV2

and δCP constrained to the physical boundaries [−π, π]. Matter effects are included as well with a

value of the Earth density of ρ = 2.6g/ cm3. The confidence contours on the parameter plane based on

the Feldman-Cousin technique [92] are shown in Fig. 5.7, being the measured value compatible with

maximal mixing.
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5. T2K oscillation results

Fig. 5.6: Reconstructed neutrino energy distribution for νµ events at SK. Left: The Monte-Carlo
(colored histograms) shows the best fit on the data (dots). At the bottom there is the ratio with
respect to the non oscillation hypothesis. The disappearance of νµ events is evident. Right: reduction
of the systematic uncertainties due to the ND280 νµ fit.

Fig. 5.7: Confidence intervals in sin2(θ23) and ∆m2 from the latest T2K νµ disappearance data at SK.
The T2K results are shown for normal (black) and inverted (red) hierarchies together with the SK
atmospheric neutrino data and MINOS measurements.

5.4 Others and future measurements

δCP

Data of anti-neutrino is being collected this year (2014) enabling the neutrino-antineutrino comparison

in the νe appearance channel. A combined analysis of T2K and the NOνA experiment that is starting
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5.4. Others and future measurements

the data taking this year, can constrain further the δCP [17].

Neutrino cross-sections

Using the large statistics at ND280 together with its capabilities, precise cross-section measurements

in function of the neutrino energy can be performed. [53] describes the measurement of the inclusive

νµ CC cross-section on the Carbon of the upstream FGD. 4485 νµ CC events are selected at ND280

measuring a flux-averaged total cross-section of

σ(νµCC) = (6.91± 0.13 stats. ± 0.84 systs. )× 1039 cm2nucleon−1

for a neutrino mean energy of 0.85 GeV, agreeing the prediction of the neutrino event generator NEUT

[103].

A similar analysis with νe events to measure νeCC interactions in Carbon has been performed and will

be published soon, reporting a measured cross-section compatible with the prediction. This analysis

is described in the T2K internal paper [26] and corresponds to the first measurement of the νe cross-

section at the T2K energies in Carbon. Neutrino NC cross-section on Oxygen is measured at SK [49].

The Oxygen nuclei gets excited due to the NC quasi-elastic (NCQE) interaction:

ν +16 O → ν + n+15 O∗

Afterwards, the Oxygen de-excites emitting a photon that can be detected at SK. This process is

dominant at T2K energies and the expected cross-section is 2.01× 10−38 cm2 while the measured one

is

σ(NCQE) = 1.35+0.59
−0.29 × 10−38 cm2

consistent at the 90%CL with the expectation.

The anti-neutrino T2K data being collected at this moment (2014) will allow future measurements of

anti-neutrino cross-sections in Carbon and Oxygen.
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Part III

ND280 νe analyses
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Analyses overview

In this part we present two different analyses performed in the tracker of ND280:

◦ Measurement of the νe interaction rates and comparison with the predicted by the ND280 νµCC

analysis

◦ Search of νe disappearance at SBL due to oscillations to light sterile neutrinos

Both analyses are based on a νe selection using the ND280 tracker described in Chapter 6. The

cornerstone of the selection is the PID capabilities of the TPCs and ECALs, that can reduce the

dominant muon component of the beam below 1%. At low momentum, photon conversion becomes the

dominant background, so a sample rich in pairs electron-positron coming from photons is selected in

Chapter 7 to control it. The second most important background are the misidentified muons, that are

measured in Chapter 7.

The measurement of the νµ CC interaction rates at ND280 described in Section 5.1 allows to reduce

the flux and the cross-section uncertainties in the νe interaction rate prediction. This is possible since

the νµ and νe fluxes are highly correlated and also their cross-sections are similar (see Section 5.1). A

complete study of the set of systematic errors that applies to the analyses is presented in Chapter 8.

The maximum likelihood method is performed to measure the νe beam component and estimate the

compatibility with the Monte-Carlo prediction in Chapter 9. It describes the work published in [74].

The second analysis is presented in Chapter 10, where the likelihood ratio technique is applied to cal-

culate the sensitivity of ND280 to νe disappearance in the 3+1 model [Section 2.1.1] and the confidence

intervals in the oscillation parameter space using the total amount of available data. A paper on this

second analysis is being written and will be published as soon as it gets the approval of the T2K

collaboration (we refer to the T2K internal note, [28]).

A diagram of the analysis flow is shown in Fig. 5.8 to clarify the overall technique.
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General information

Data set In both analyses the whole data collected by ND280 between January 2010 and May 2013

are used. It corresponds to an exposure of 5.9×1020 protons on target (POT). The data are subdivided

into different run periods as shown in Tab. 5.3. A small fraction of Run III data (∼ 15%) was collected

with magnetic horns operating at 205 kA instead of the nominal 250 kA.

Monte-Carlo The simulated data used in this analysis corresponds to more than ten times the POT

of the data [Tab. 5.3]. The whole ND280 detector is simulated in a code where the various experimental

conditions of the different data taking periods are reproduced. Run I lacks on BrECAL, there are data

runs with or without water in the P0D detector layers and we ignore the right-side BrECal entirely for

Runs III and IV as some channels were broken during the 2011 earthquake.

The neutrino interaction generator that we use by default in this analysis is NEUT 5.1.4. [103].

After NEUT triggers a neutrino interaction in ND280, the final state particles are propagated through

the detector and their energy deposit simulated using GEANT4 [9]. The response of the active detectors

including the electronics are simulated by the elecSim package [71] developed by the T2K collaboration.

Analysis framework In general for data and Monte-Carlo, ROOT [25] is used as framework and it

provides the data storage that is arranged using the Tree format.

The selection was developed using the highland (high level analysis at the near detector) framework

[72], which provides a set of common tools for every ND280 analysis. The framework benefits from the

global reconstruction provided by the oaAnalysis package [73].

The detector systematic errors estimation is done also within the highland framework, while the

propagation is performed directly in the νe analysis framework. The package called T2KReweight

calculates the effect of the flux and cross-section variations on the selected sample, providing the

framework for the propagation of the systematic uncertainties coming from the flux and cross-section.

The fitting code used for the νe analyses has been developed by a part of the ND280 νe group and

profits on the highland outputs and the T2KReweight tool.
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Fig. 5.8: Sketch of the analysis flow.

T2K run Dates Data POT MC POT

Run I Jan. 2010 – Jun. 2010 1.7 × 1019 1.7 × 1020

Run II Nov. 2010 – Mar. 2011 7.9 × 1019 7.9 × 1020

Run III Mar. 2012 – Jun. 2012 15.6 × 1019 16.0 × 1020

Run IV Jan. 2013 – May. 2013 33.8 × 1019 33.5 × 1020

Total Jan. 2010 – May. 2013 59.00 × 1019 59.02 × 1020

Table 5.3: Definition of T2K runs and the amount of data and Monte-Carlo POT used in the analysis.
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Chapter 6

νe CC event selection

The selection of νe charged current (νeCC) interactions in ND280 is difficult due to the small fraction

of νe that we have in the T2K beam. This component is expected to be of the order of 1.2% of the

total neutrino flux and to select it we have to reject the large amount of νµ interactions producing

muons in the final state. We define our signal as νeCC interaction in the FGD that creates an electron.

We classify the νe interactions in CC quasi-elastic (νeCCQE) or CC non-quasi-elastic (νeCCnonQE)

as follows:

νeCCQE : νe + n(12C,16O)→ e− + p

νeCCnonQE : νe + n(12C,16O)→ e− + p+ (π±, π0, γ, . . .)

where neutrino interactions on Carbon occurs in both FGD’s while interactions on Oxygen only happens

in the water layers of FGD2. We aim to identify the electrons on these interactions and detect the other

particles to characterize the event. A fundamental tool for this analysis is the particle identification

(PID): combining the TPC and the ECAL PID capabilities we reject more than 99.8% of the µ coming

from νµ interactions.

Nevertheless νµ interactions can also generate photons in ND280, through π0 production, that can

convert inside the FGD producing electrons entering the TPC and mimic in some cases a νe interaction.

As we will show, this electromagnetic process is the main source of background for our analysis, larger

than the few muons that are misidentified as electrons. An important point to stress is that for these

two backgrounds we do not simply rely on the Monte-Carlo but we measure and control them using the

data. Other backgrounds coming from misidentified pions and protons that are selected in the analysis

are small as it will be shown in the next sections.

In summary we define the following categories to differentiate the contributions of signal and background

in our selection:
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6. νe CC event selection

◦ Signal : νeCCQE interactions

◦ Signal : νeCCnonQE interactions

◦ Background : electrons coming from photon conversion

◦ Background : misidentified muons

◦ Background : any other case

We have developed and optimized a criteria to select νeCCQE and νeCCnonQE interactions candidates

with a good purity and high statistic for the current data exposure. We distinguish four stages with

different aims:

1. Quality cuts: select a lepton created within a time window compatible with the one of the bunches

of the neutrino beam and inside the FGD to reject cosmic events and interaction outside Carbon;

2. Electron identification: require the lepton to be compatible with an electron to reject the dominant

component of νµ CC interactions;

3. Backgrounds suppression: reject as much as possible the large component of low energy electrons

produced by photon conversions due to νµ interactions inside or outside the FGD;

4. νeCCQE/νenonCCQE separation: classify events according to their topology and further reject

some background events.

A sketch of the whole selection criteria flow is shown in Fig. 6.1 and details are given in the following

subsections. We stress that the Monte-Carlo that we show in this section correspond with the nominal

Monte-Carlo, i.e. the prediction before the νµ ND280 measurement of the flux and cross-section.

6.1 Quality cuts

Beam trigger

We analyze only events associated to the beam trigger, i.e. compatible with one of the 8 (6 for Run I)

bunches of the beam spill. We accept events within 4σ (σ = 15ns) from the center of each bunch. In

this way the background coming from the cosmic neutrinos is largely reduced.
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6.1. Quality cuts

Fig. 6.1: Sketch of the selection flow applied for the νeCCQE and νeCCnonQE samples.

Electron candidate selection

In a CC interaction, most of the energy is carried by the lepton, so we choose the highest momentum

forward-going track reconstructed in a TPC (if any) as the most probable candidate to be a lepton.

We do not use the upstream TPC as we look for interactions in the FGD’s and the lepton is usually

produced forward-going. As we want to select ν events and get rid of the ν̄, we only look for the most

energetic track among the negative tracks. This track has at least a TPC segment connected to an

FGD segment. Since at very low momentum the selection is completely dominated by low energetic

photon conversions, we remove the tracks with momentum lower than 200 MeV. This is what we call

the electron candidate.

93



6. νe CC event selection

Fiducial volume

We define a fiducial volume (FV) inside both FGD as shown in Fig. 6.2, where we require the electron

candidate to start. This is aimed to:

◦ reject the copious background of muons produced in a νµ interaction in the sand or the concrete

walls of the ND280 pit (called in jargon sand muons or through-going muons);

◦ reject neutrino interactions inside ND280 but outside the FGD, as the interaction type is very

difficult to address;

◦ reduce neutrino interactions in other materials but Carbon and Oxygen (water).

Fig. 6.2: Definition of the FGD fiducial volume.

TPC track Quality

A good TPC track quality ensures the smallest muon contamination. It is demonstrated that the PID

performances of the TPC become sensibly worse when reducing the number of clusters that are used

to calculate the energy deposition (that goes from 7% with 72 cluster, to 12% to 24 clusters [93], [94]).

In our analysis we want to keep a high quality as we need to get rid of the dominant muon background,

so we require the electron candidate to have more than 35 clusters in the TPC.
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6.2. The particle identification

The momentum of the electron candidate after these first basic cuts is shown in Fig. 6.3. We are

dominated by muons and there are other backgrounds at low momentum.
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Fig. 6.3: Momentum of the electron candidate, after the first four cuts. The left plot shows the Monte-
Carlo broken down by the particle type, and the right plot broken down by signal and background
categories.

6.2 The particle identification

To select electrons, we use a combination of the PID capabilities of the TPCs and the ECals [Sec-

tion 4.1.2]. The electron efficiency and purity are largely enhanced if the ECal is used combined with

the TPC. Nevertheless, this is not always possible since sometimes the electron candidate is not re-

constructed in an ECal module, so we can only use TPC information. As the ability of the ECal to

discriminate between muons and electrons degrades for low momentum particles, we ignore any ECal

information if the momentum of the track, as it enters the ECal, is less than 300 MeV and only the

TPC is used in those cases.

We have optimized the PID criteria attending to whether the ECal is used or not, which ECal module

is used and the energy of the particle. We distinguish three different PID paths: only TPC, TPC with

DsECal and TPC with BrECal. In Tab. 6.1 is shown the fraction of events, efficiency and purity per

case and in Fig. 6.4, the momentum distribution broken down in each case. At high momentum most

of the tracks enter the DsECal since the angular acceptance and the reconstruction efficiency is larger,

whilst at low momentum there is a larger variety of paths taken.
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6. νe CC event selection

FGD1 vertices FGD2 vertices
Category events (%) eff. (%) pur. (%) events (%) eff. (%) pur. (%)
TPC only 45.4 56.6 92.6 34.1 53.1 90.9

TPC+DsECal 32.0 82.6 97.2 59.0 89.1 93.8
TPC+BrECal 22.6 86.1 91.4 6.9 88.6 86.5

Table 6.1: Fraction of electrons entering each PID branch. The efficiency of selecting νeCC interactions
occurring in the FGD is shown as well as the electron purity per branch.

Electron momentum (MeV/c)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
n
tr

ie
s

0

2000

4000

6000

8000

10000

12000

TPC­only

TPC + DS mipEm

TPC + DS energy

TPC + Barrel mipEm

TPC + Barrel energy

TPC­only

TPC + DS mipEm

TPC + DS energy

TPC + Barrel mipEm

TPC + Barrel energy

Fig. 6.4: Momentum of the tracks after the quality cuts divided in the different PID criteria.

Using only the TPCs

In this category we find low momentum tracks that do not reach the ECals or tracks whose TPC and

ECal matching failed. In this case we can only use the TPC PID information. We require the track

to be electron-like, not muon-like, and not pion-like. In order to do this we define the electron pull

δe, muon pull δµ and pion pull δπ [Eq. (4.2)] and apply the following cuts to the most upstream TPC

segment of the reconstructed track:

− 1 < δe < 2 |δµ| > −2.5 |δπ| > −2

These cuts are shown sequentially in Fig. 6.5.

Using the Downstream ECal

For tracks reconstructed in the DsECal, we use a combination of the most upstream TPC and DsECal

informations and develop the following criteria attending to the ECal PID variables in Section 4.1.2:
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6.2. The particle identification

◦ −2 < δe < 2.5

◦ mipEm > 0 if the momentum of the track as it enters the ECal is less than 1 GeV

◦ EMEnergy > 1100 MeV if the momentum of the track is greater than 1 GeV

We have loosen the electron pull cut and require only compatibility with an electron. We do not use

the TPC discriminant δµ nor δπ since it is more efficient to use the ECal capabilities instead of the

TPC to reject non-electron-like particles. These cuts are shown sequentially in Fig. 6.6.

Using the Barrel ECal

For tracks with a BrECal segment, we use the same selection criteria as for tracks that enter the DsECal.

There are much less clusters reconstructed in the BrECal than the DsECal since the acceptance is lower

at high angles: the electron candidate is typically produced very straight, so it crosses the DsECal more

likely than the BrECal, and only the low energetic electrons are bended crossing the BrECals. The

cuts are shown sequentially in Fig. 6.7.
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Fig. 6.5: PID criteria for tracks using only a TPC: δe (left), δµ (middle) and δπ (right). From left to
right the cuts are applied sequentially. Top (bottom) figures show the Monte-Carlo broken down by
particle type (signal/background categories).

97



6. νe CC event selection

Overall PID

After applying the whole PID selection, we have the sample shown in Fig. 6.8. We find that 99.8% of

muons are rejected by the selection obtaining a sample 91.7% pure in electrons. However, the majority

of these electrons come from photon conversions, rather than νe interactions, as shown in Tab. 6.2.
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Fig. 6.6: PID criteria for tracks using TPC and DsECal: δe (left), mipEm (middle) and EMEnergy
(right). From left to right the cuts are applied sequentially. Top (bottom) figures show the Monte-Carlo
broken down by particle type (signal/background categories).
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Fig. 6.7: PID criteria for tracks using TPC and BrECal: δe (left), mipEm (middle) and EMEnergy
(right). From left to right the cuts are applied sequentially. Top (bottom) figures show the Monte-Carlo
broken down by particle type (signal/background categories).
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Fig. 6.8: Momentum of the electron candidate passing the full PID selection.

Category Purity (%) MC expected events
νe CCQE 9.6 253.5
νe CCnonQE 17.9 474.2
γ background 64.7 1710.8
µ background 3.3 88.4
Other 4.4 115.5

Table 6.2: Composition of the νe selection after the PID selection.

6.3 Background suppression

To achieve a clean sample of νe interactions we need to reduce the backgrounds that dominate the

selection. Specifically, the photon conversion is abundant due to production of π0 in νµ CCDIS and

NC interactions and we have developed a criteria to reduce its contamination below the 50%. One way

to reduce this background is applying vetoes to reject events with activity upstream to the electron

candidate. The majority of the νe interactions produce particles in the direction of the νe, so if we

detect other tracks upstream to the electron candidate, it is probably a background event coming from

a γ conversion. Another way is reconstructing directly the γ conversion if the positron is detected.

Upstream TPC veto

We remove the events with activity in the upstream TPC. We localize the starting point of the second

highest momentum particle in the event and calculate the distance with the electron candidate. The
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6. νe CC event selection

difference between the z coordinates of their starting points is:

∆zTPC = z2 − z1

and its distribution ∆z is shown in Fig. 6.9 where we see that at low values we have mostly background

events. Then, we accept the events with

∆zTPC > 150 mm
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Fig. 6.9: Upstream TPC veto. ∆z defined as the distance between the starting point of the electron
candidate and the second highest momentum track in the event.

e+e− pair rejection

This cut aims to directly reduce the dominant photon conversion component. It is very effective in the

case in which both the e+ and the e− produced by the photon reach the TPC. We have developed an

algorithm to reject these events in which we look for a secondary track in the same event that fulfills

the following conditions:

◦ It starts inside the FV;

◦ It is close to the electron candidate: the distance between their starting points must be smaller

than 10 cm;

◦ It has charge opposite to the one of electron candidate;
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6.3. Background suppression

◦ It has a TPC PID compatible with an electron (|δ(e)| < 3).

Using the kinematic information of the electron candidate and the secondary track, the invariant mass

minv is reconstructed under the hypothesis of a photon conversion:

minv =
√

2m2
e + 2

(
E2

+E
2
− − p2

+p
2
−
)

(6.1)

where p± is the measured momentum of each track and E2
± = m2

e + p±
2 is the energy of each track

assuming an electron. The distribution of minv is shown in Fig. 6.10 where we observe that the

majority of the γ background is concentrated at low minv as if they come from a γ conversion has to

be compatible with zero. We accept the event only if

minv > 100 MeV

and the momentum of the electron candidate passing this cut is shown in Fig. 6.10.
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Fig. 6.10: Pair rejection. Left: minv distribution for the selected pair; right: momentum distribution
of the electron candidate passing this cut.

P0D, FGD and ECal vetoes

We further reject activity upstream to the electron candidate to reduce the backgrounds. If the electron

candidate starts in the upstream FGD we require that there are no other reconstructed objects in the

P0D in the same event. On the contrary, if it starts in the downstream FGD, we also require no tracks

reconstructed in the upstream FGD. The number of P0D and FGD objects in each event are shown in

Fig. 6.11.
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6. νe CC event selection

We keep rejecting upstream activity looking now at the ECal. The cut is similar to the TPC veto

but applied to ECal objects reconstructed in the same event. If there are ECal objects in the same

event, we calculate the distance between the cluster and the starting position of the electron candidate

∆zECal. The low values are populated with photon conversions as shown in Fig. 6.11. The two peaks

in the figure correspond to the distance between the DsECal and each of the FGDs. We only accept

events that fulfill

∆zECal > 150 mm

After applying the vetoes we have an inclusive νeCC selection with a purity of 59% [Tab. 6.3]. The

γ background has been reduced from 64.7% to 29.3% and it is not the dominant component of the

selection anymore, although it is still the most important background. The momentum distribution of

the selected electrons at this point is in Fig. 6.11.
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Fig. 6.11: P0D, FGD and ECal vetoes. Left: number of reconstructed segments in the P0D in the same
event; middle: number of tracks in the upstream FGD in the same event; right: z distance between
the electron candidate and the most upstream ECal object; and bottom: momentum of the candidates
passing this cut.
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6.4. CCQE and CCnonQE classification

Category Purity (%) MC expected events
νe CCQE 22.0 213.0
νe CCnonQE 36.5 354.1
γ background 29.3 284.5
µ background 5.4 52.7
Other 6.9 67.1

Table 6.3: Composition of the νeCC selection up to the final vetoes before the topological classification.

6.4 CCQE and CCnonQE classification

The following sections describe the criteria we apply to classify the events and enhance the νeCCQE

and νeCCnonQE interactions. Notice that some events in the inclusive νeCC selection are not selected

in any of the two categories, but most of them are background events, so the νe purity increases by

applying the following cuts.

6.4.1 CCQE selection

νeCCQE events are characterized by having no other particles ejected from the nucleus except the

electron and the proton. The proton is usually a low momentum particle that is often not reconstructed.

For this reason, requiring a single reconstructed track is the best way to select a clean sample of νeCCQE

interactions. All the conditions we apply to the events are aim to reject other activity than the one

produced by the electron candidate. We require to the event:

◦ no Michel electron in the FGD,

◦ no other tracks in the Tracker,

◦ no other ECal activity.

We remark that in this category the νeCCnonQE is also background by definition.

Michel Electron tagging

When a muon stops in an FGD, it decays 100% of the times to an electron through

µ→ e− + νe + νµ
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6. νe CC event selection

This electron release all its energy in the FGD providing a characteristic signature of a charge cluster

delayed in time with respect to the electron candidate interaction. It is called Michel electron. The

same occurs for the stopped pions in the FGD: they decay at rest to a muon and then to a Michel

electron. So, a delayed cluster in the FGD is a sign that pions are produced and hence the event is a

νeCCnonQE.

We look for Michel electrons only in the first FGD1. The number of Michel electron candidates in the

event is shown in Fig. 6.12 where we see that most of the νeCCQE events have no Michel electrons,

and the great part of the events that have at least one, belong to the background categories.

Track multiplicity in the Tracker

We require no other tracks within the same FGD where the electron candidate starts. For candidates

starting in the upstream FGD we remove the events with more than one track in the FGD, no matter

whether they are matched with a TPC track or not (TPC/FGD or FGD-only). The cut in the FGD-

only multiplicity is only applied to the upstream FGD while the TPC/FGD cut is applied for both2.

The number of tracks in the same event is shown in Fig. 6.12 for the two FGDs.

ECal activity

A νeCCQE interaction in the downstream FGD produces only one cluster in the DsECal related with

the main electron candidate. If the interaction occurred in the upstream FGD, the electron can shower

in the other FGD and produce more than one cluster in the DsECal. Provided this, we reject the events

with more than one DsECal object only when the electron candidate starts in the downstream FGD.

The number of DsECal objects that are not connected to the electron candidate is shown in Fig. 6.12.

6.4.2 CCnonQE selection

The νeCCnonQE events are characterized by having more than one particle exiting the nucleus, being

pions the most common candidates. In order to identify this interaction, we look for extra activity not

produced by the electron candidate. Specifically, we require

1Because the systematic error for the Michel tagging efficiency is only computed for this FGD
2Because the systematic errors for the FGD reconstruction is only calculated for tracks stopping in the upstream

FGD. Moreover, it is only calculated for tracks with an angle cos(θ) > 0.3, so we only apply this criteria to tracks with
this feature.
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Fig. 6.12: νeCCQE cut chain shown sequentially. From left to right and top to bottom: number of
Michel electron candidates in first FGD, number of other tracks in first FGD, number of other tracks
in second FGD and number of DsECal objects not associated with the electron candidate.

◦ either a Michel electron in the event,

◦ or another track starting near the electron candidate

From Fig. 6.13 we observe that the majority of the events with some Michel electron are νeCCnonQE

events, so we require the event to have at least one Michel electron candidate. For those cases in

which we do not have a Michel electron, we search for secondary tracks. We use the inverse selection

of Section 6.4.1, i.e. we require others FGD-only or FGD-TPC tracks. Then, the distance d between

the electron candidate and the nearest secondary track is reconstructed [Fig. 6.13] and we accept only

events that fulfill:

d < 50 mm

This last condition serves to reduce the γ background in the νeCCnonQE selection.
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Fig. 6.13: νeCCnonQE cut chain shown sequentially. Number of Michel electrons in the event (top),
distance between the electron candidate and its nearest track for upstream FGD events (left) and for
downstream FGD events (right).

6.5 Final selection

After passing the criteria, we select 225 events in the νeCCQE and 392 in the νeCCnonQE distributed

in momentum as shown Fig. 6.14. The νe purity is 68.3% for the νeCCQE selection, and 65.8% for

the νeCCnonQE selection, with a purity for the relevant interaction mode in each selection of ∼ 50%.

The fraction of each component is shown in Tab. 6.4. Regarding the purity depending on the νe

parent particle, we observe that the νeCCQE selection has 21.7% of νe coming from µ decay, while the

νeCCnonQE selection has only 8.1%. This is due to the νe(µ) component populates the low energy

region of the neutrino flux and hence, it produce more CCQE interactions than CCnonQE. This is

an interesting feature as our selections allow to study the muon and kaon productions by separate.

Regarding the backgrounds, we have a ∼ 30% contamination in each sample driven mainly by γ

conversions (∼ 20%).

The νeCCQE efficiency in the νeCCQE sample is 19.6%, and the νeCCnonQE efficiency in the νeCCnonQE

sample is 19.6% as well. The combined νeCC efficiency adding both selections is 25.6%. In Fig. 6.15 we

show the efficiency as a function of some Monte-Carlo observables like the neutrino energy, the electron
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6.5. Final selection

momentum and the electron polar angle cos(θ). The low efficiency at low momentum and energy is

due to the requirement that the particle needs to be reconstructed in the TPC, so it as to exit from the

FGD where it was produced. The efficiency and purity of the selections at each stage of the process are

shown in Fig. 6.16 and in Tab. 6.5 we show the reduction in the number of events with each cut in both

data and Monte-Carlo. In general, the number of events surviving each cut as well as the distributions

present a good agreement between data and Monte-Carlo.

Finally, we show in Fig. 6.17 the display of two signal events passing each selection criteria to illustrate

the typical topology of the events we deal with.
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Fig. 6.14: Momentum of the electron candidate for the final νeCCQE (left) and νeCCnonQE (right)
samples.

νeCCQE selection νeCCnonQE selection
Purity (%) MC expected events Purity (%) MC expected events

νeCCQE 48.0 130.4 12.6 56.5
νeCCnonQE 19.5 53.0 53.2 238.6
νe from µ 21.7 59.0 8.1 36.2
νe from K 45.1 122.5 57.1 255.8
νe from other 0.7 2.0 0.7 3.2
γ background 21.8 59.4 22.1 98.9
µ background 4.2 11.5 6.1 27.4
Other background 6.4 17.4 6.0 26.9

Table 6.4: Composition of the final selected νe samples. The νe component is broken down by interaction
type and by neutrino parent.
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Fig. 6.15: νeCC and νeCCQE efficiencies for the νeCCQE selection (top) and νeCC and νeCCnonQE
efficiencies for the νeCCnonQE selection (bottom) as a function of the Monte-Carlo neutrino energy
(left), electron momentum (middle) and electron polar angle cos(θ) (right). The efficiency is relative
to the number of events that have the highest momentum negative track starting in the FV.
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Fig. 6.16: νeCCQE efficiency and purity for the νeCCQE selection (left), and νeCCnonQE efficiency
and purity for νeCCnonQE selection (right), as each cut is applied. The efficiency is relative to the
number of events that have the highest momentum negative track starting in the FV.

6.5.1 Backgrounds

Photon conversion

Pair production from low energy photon conversions is the dominant background for the low energy

part of of the spectrum in the νeCC selection. Those photons come from the unique decay channel of
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6.5. Final selection

Events Relative ratio (%)
Cut Data MC Data MC
Good quality TPC track, p > 200 MeV/c 50469 57452.9 100.0 100.0
PID 2217 2642.3 4.4 4.6
PID in second TPC 2141 2559.4 96.6 96.9
TPC1 veto 1493 1829.4 69.7 71.5
Pair veto 1042 1262.6 69.8 69.0
P0D and FGD1 veto 972 1164.4 93.3 92.2
Upstream ECal veto 811 971.4 83.4 83.4
CCQE: No Michel electrons 769 927.9 94.8 95.5
CCQE: One track 292 360.9 38.0 38.9
CCQE: No ECal activity 225 271.9 75.0 75.3
→ in FGD1 111 134 48.9 49.6
→ in FGD2 114 136 52.6 52.3
CCnonQE 392 448.3 47.8 46.1
→ in FGD1 199 241 50.5 53.9
→ in FGD2 193 206 49.5 46.1

Table 6.5: Reduction in the number of events selected in data and Monte-Carlo. The Monte-Carlo
numbers of events are scaled to the data POT.

the neutral pion π0 produced in a neutrino interaction

ν +X → ν +X ′ + π0 π0 → γγ

where one of the two γ converts inside the FGD and the electron is reconstructed in the TPC. If the

positron is also reconstructed in the TPC, we are able to reject the event with the pair veto. Nonetheless,

many times the positron is not detected being impossible to distinguish it from a νeCCQE interaction.

The π0’s come mainly from the dominant νµ component in the T2K flux through CCDIS or NCπ0.

The νµ can interact inside the FV (InFV) or outside (OOFV). Interactions OOFV are mostly produced

in nuclei other that Carbon that are not as well controlled as the interactions InFV, because the νµ

cross-section measurement [Section 5.1] lacks on this component. The OOFV component has two

origins:

◦ γ conversions: corresponding to an OOFV νµ interaction that creates an electron or a positron

in the FV (OOFVe+ − e−). It is the 33.1% of the total background;

◦ Misidentified particles: misidentified muons, protons or pions produced in a OOFV νµ interaction

(OOFV Other). Being the 16.7% of the total background.

A control sample is needed to measure in situ the important photon background coming from inside
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6. νe CC event selection

or outside the FV. It is developed and presented in the next chapter.

Misidentified muons

There are very few muons that are misidentified as electrons in our final selection (∼ 5% of the selected

events). They are mainly at low energy, were it is produced the overlapping between the TPC deposited

energy curves for muons and electrons [Fig. 4.4], and where the ECal is not good distinguishing between

showers and tracks. A cross check with the data is needed to verify the prediction and it is presented

in Chapter 7.

Other backgrounds

The remainder of the background comes from misidentified particles other than muons. They are

mainly pions at low energy and very few protons at 1 GeV. Again the reason is the overlap of the

dE/dx curves for pions and protons with electrons. This background is very small and we rely on the

Monte-Carlo prediction as any difference has a negligible impact on the analysis.
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νeCCQE event

νeCCnonQE event

γ event

Fig. 6.17: Event displays of typical signal events passing the νeCCQE and νeCCnonQE selections
presented in this chapter and a photon conversion event passing the γ selection described in the next
chapter.
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Chapter 7

Control samples

To further control the backgrounds we developed two analyses: one that selects photon conversions in

the tracker and other that estimates the misidentified muons using a data-driven method. As the pre-

vious chapter, the studies are done using the nominal Monte-Carlo before the νµ ND280 measurement

of the flux and cross section.

7.1 Photon control sample

The photon selection is intended to study and control the dominant background in the νeCC selection.

This control sample is obtained selecting a clean sample of γ conversions inside the FGD. This will

improve our knowledge of the γ background as it helps to constrain the uncertainties related to the

π0 production and interactions OOFV. The γ selection is based on the identification of an electron-

positron pair when both particles enter in the TPC. We base our selection in searching for tracks with

opposite charges and with an invariant mass compatible with zero. On the following we describe the

selection cuts we developed to enhance the γ conversions:

Beam trigger

The event timing must be compatible with one of the 8 bunches (6 bunches for run I).

Primary track

The highest momentum negative track of the event is selected. This is the primary track of our event.
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7. Control samples

Fiducial volume

The primary track has to start within the FV. Up to here the selection criteria is the same than in the

νeCC selection case.

TPC track quality

Require that the main track has more than 18 reconstructed clusters in the TPC. The TPC PID is

not as important in this selection as in the νeCC sample, thus we relax the cut in the number of TPC

reconstructed nodes for 35 to 18.

Secondary track

To reconstruct a photon conversion we require at least one secondary track with opposite charge with

respect to the primary track, reconstructed in the TPC and starting in the FV. The number of secondary

tracks for the events passing the last three cuts are shown in Fig. 7.1. The events with no secondary

tracks are rejected. The track whose starting point is closest to the starting point of the primary is

defined as the secondary track.

Distance

A pair e−-e+ from a photon conversion must come from the same vertex, thus we require that the

distance between the starting points of the primary and secondary tracks is smaller that 10 cm. The

distribution of the distance is showed in Fig. 7.1. We observe that the majority of the e− and e+ are

below this cut.

Invariant mass

At this point, our sample is mainly populated by muons and protons. As the invariant mass for a pair

coming from a photon conversion must be null, we largely enhance our signal by reconstructing and

requiring a low invariant mass for each event. We build the invariant mass minv using the kinematics

of both tracks applying Eq. (6.1) and we require it to be smaller than 50 MeV. The minv distribution is

shown in Fig. 7.1, where we observe that most of the e− and e+ have low minv while the other particles
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7.1. Photon control sample

are in the higher region. The e− purity before this condition is applied is about 12% and becomes 90%

after this condition, with an almost unchanged efficiency.

Electron PID

Finally, to further increase the e− purity we apply the TPC PID to both tracks following the criteria:

|δpe | < 2 |δse | < 3

where δpe is the electron pull for the primary track [Fig. 7.1] and δse the one for the secondary track.

Final photon selection

We are able to select 990 events in the data with an e−/e+ purity of 98% and moreover, the 95%

are coming from γ conversions. Only the 5% is coming from νeCC interactions. The momentum

distribution of the primary track passing the whole criteria is in Fig. 7.2, and in Tab. 7.1 the fraction

and the number of events of each component. This selection enhances the γ component that comes

from neutrino interactions OOFV, with a 60.7% for γOOFV and 32.9% for γInFV. Thanks to this

fact, we control the OOFV component in the νeCC selection that is the background that present more

uncertainties. The e−/e+ efficiency and purity is shown in Fig. 7.3 for the criteria chain.

A large deficit of events is observed in the low momentum part. This comes from the large uncertain-

ties associated with the π0 production and the OOFV component, and we stress that the deficit is

compatible within the final uncertainties presented in next chapter. A similar deficit is observed in the

νeCCQE selection at low momentum [Fig. 6.14] where the γOOFV is dominant. This is an indication

of the need of including this control sample in our analyses to increase the knowledge of the photon

background and rely on the final measurements.

Apart from this main purpose, a clean sample of electrons is extremely useful for calibration, testing or

systematic errors calculations. This sample can also be used to compute the TPC PID systematic error

as the electron contain is very high even without applying the final PID cut. We refer to Appendix A.2

for that work. As final point and only for illustration purpose, we show in Fig. 6.17 a typical photon

conversion event passing the selection criteria.
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Fig. 7.1: Photon sample selection cuts. From top to bottom and left to right: number of secondary
tracks in the event, distance between the main and the closer secondary track, minv in the photon
conversion hypothesis and δe of the primary track.
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Fig. 7.2: Momentum spectrum for the most energetic track in the final photon selection. The left plot
shows the Monte-Carlo broken down by the interaction type, and the right plot shows it broken down
by the particle type.

7.1.1 Comparison of the γ background with the γ selection

To assure that it is allowed to use this selection as control sample of the γ background, the γ selection

has to be checked to contain events of the same type than the γ background of the νeCC selection. As
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7.1. Photon control sample

# expected events Purity
νeCCQE 24.3 1.9%

νeCCnonQE 53.5 4.3%
γ InFV 412.1 32.9%
γ OOFV 760.3 60.7%

Total 1250.3 -
Data 990.0 -

Table 7.1: Purity and number of events for the gamma control sample.

Fig. 7.3: Electron efficiency (left) and purity (right) for gamma selection versus the different cuts.

starting point, whether the samples scan the same phase space of the kinematics of the electron and

neutrino is checked. The electron momentum and the Monte-Carlo neutrino energy distributions for

both samples are shown in Fig. 7.5 where it is clear that the two samples have a similar distributions.

The peak below 1 GeV in neutrino energy is mainly due to NC interactions.

The origin of the selected events in terms of the parent particle, interaction type and target material is

presented in Fig. 7.5 and Tab. 7.2 for each sample. First we observe that, indeed, most of the events

come from γ conversion. Notice that the difference in the fractions is because in the νeCC background

we have not only γ conversions, but also some misidentified muons and pions which come directly from

a ν interaction. The fraction of interaction type in each sample are very similar. They are mainly

dominated by CCDIS and NC events where abundant π0 production is expected. The γ selection lacks

on the OOFV Other component, since it only comes from photon conversion, so it can only control the

OOFVe+− e− component of the νeCC background. The amount of γOOFV is larger in the γ selection

than in the νeCC selection. This is because we do not apply the veto cuts in the γ selection. At the

bottom of Tab. 7.2 we show that if we do not apply the vetoes to the νeCC selection, the fraction on

the position of the neutrino interactions are similar in both sets. The material in which the interaction
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takes place is important since the systematic uncertainties on the cross-section models depend on the

target nuclei. The composition is again similar for the two samples. As conclusion, the γ sample have

very similar features with respect to the γ background and hence, it is a good control sample candidate

for the νe beam analyses.
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Fig. 7.4: Electron momentum and Monte-Carlo neutrino energy distribution for the background events
of the νeCC selection and the γ selection.

7.2 Misidentified muons

The ∼ 5% of the νeCC sample are muons that pass the PID criteria. We have largely reject the muon

background by the 99.8% and the small remainder may be more difficult for the Monte-Carlo to be

reproduced. So, we need to cross-check its prediction and a data-driven study is carried out to measure

the muon misidentification probability directly from the data.

We select a clean sample of through-going muons requiring: a negative track crossing the three TPCs,

compatible with a muon in the upstream TPC (|δµ| < 2.5) and not compatible with an electron

(|δe| > 2). This TPC is not used in the νe analysis. Applying the PID selection described in Section 6.2

we calculate the fraction of muons that passes the conditions. The probability of a muon to enter in

either of our selections in function of the momentum is shown in Fig. 7.6. We compare the cases where

ECal is and is not applied to show how the muon rejection improves if the ECal is used in the PID

criteria. The muon misidentification probability is below 1% in any case. To compute the absolute

number of muons entering in our selections, a sample of muons that passes all the νeCC criteria, but

the PID, is selected. We exclude the electron PID condition, that is replaced by a muon PID condition

of |δµ| < 2.5. Multiplying the muon momentum distribution by the misidentified muon probability
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Fig. 7.5: Electron momentum for the background events of the νeCC sample (left) and the γ selection
(right). The Monte-Carlo is divided in: (from top to bottom) parent particle, interaction, target and
detector where the neutrino interaction is produced.

obtained above, we get the misidentified muons component expected in the νeCC selection.

The momentum distribution is shown in Fig. 7.6 along with the Monte-Carlo prediction. If we separate

both νeCC branches, we measure 13.6 ± 3.5 for the νeCCQE selection while 10.2 are predicted and

17.4 ± 3.4 for the νeCCnonQE selection while 22.9 are predicted. As the agreement is good in both
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7. Control samples

Particle γ backg. in νe selection (%) γ selection (%)
e− 74.8 97.4
µ 10.8 1.3
π 7.2 0.4
p 3.1 0.8

Parent particle
γ 74.6 95.0
ν 20.4 4.4

other 5.0 0.6
FV

νeInFV 0 6.2
γInFV 51.1 32.9

OOFVe+ − e− 33.1 60.3
OOFV Other 16.7 0.5
Interaction

CCQE 4.3 4.1
CC1π 14.2 11.5

CC Multiπ 11.4 10.1
CC DIS 32.1 31.6
CC Coh 0.5 0.4
NC1π0 8.6 10.9

NC other 28.8 31.4
Target
Carbon 46.4 49.3
Oxygen 16.5 11.4

Aluminum 13.5 13.3
Iron 4.3 4.2
Lead 9.4 11.4
Other 9.9 10.4

Detector νe background (no vetoes) (%)
TPC1 7.3 8.0
TPC2 4.9 4.3
TPC3 0.2 0.2
FGD1 26.3 26.3
FGD2 17.5 12.3

DsECAL 0.5 0.0
BrECAL 5.7 6.2

P0DECAL 5.1 7.5
P0D 27.1 27.2

SMRD 1.6 2.2
Other 3.8 5.3

Table 7.2: Fractions of the types of events νeCC background and in the γ selection.

samples and also this component is very small, we conclude that we rely on the Monte-Carlo to control

the misidentified muons.
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Fig. 7.6: Muon misidentification probability for track with and without ECal object (left), and com-
parison for the misidentified muons entering in the inclusive νeCC (right).
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Chapter 8

Systematic uncertainties

There are four different sources of systematic errors that have been considered:

1. Neutrino flux uncertainties

2. Cross-section models uncertainties

3. Neutrino Final State Interactions

4. Detector systematic errors

In the following we introduce and calculate the effect of the systematic errors in the νeCCQE, νeCCnonQE

and γ samples. The systematic errors are correlated each others and these correlations are treated

through a covariance matrix. Each systematic error is parametrized in order to be introduced in the

analysis and the values of these parameters are summarized in Tab. 8.1. The parametrization adopted

for each systematic error is explain in their corresponding sections [Sections 8.1 to 8.4] and a complete

summary is presented in Section 8.5. The final covariance matrix we use in our analysis is calculated

in Section 8.6 and the effect of the systematic errors in our selections is presented in Section 8.7.

8.1 Flux uncertainties

The flux uncertainties have two main sources, namely: hadron production cross-sections and beam

uncertainties. The NA61 experiment [Section 3.4.1] measures the ones corresponding to the hadron

production on a Carbon thin target and on a T2K replica target. On the other hand, the T2K beam

group calculates the ones coming from the beam uncertainties. In Fig. 3.9 we find the size for each one.

The flux uncertainties depend on the Monte-Carlo neutrino energy and on the neutrino flavour. The

total neutrino flux uncertainty is parametrized by a set of 25 parameters ~fFlux that drives a specific

neutrino flavour and energy range as shown in Tab. 8.2.
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8. Systematic uncertainties

Systematic Before νµ fit After νµ fit # of pars.
νµ-flux 1 ± [0.10, 0.20] [0.93, 1.05] ± [0.07, 0.08] 11
νe-flux 1 ± [0.11, 0.16] [0.95, 1.02] ± [0.07, 0.09] 7
ν̄µ-flux 1 ± [0.11, 0.17] [0.99, 1.03] ± [0.09, 0.14] 5
ν̄e-flux 1 ± [0.14, 0.18] [0.95, 1.01] ± [0.08, 0.17] 2

MQE
A [ GeV] 1.21 ± 0.45 1.24 ± 0.07 1

MRES
A [ GeV] 1.41 ± 0.11 0.96 ± 0.07 1

CC Other Shape [ GeV] 0.0 ± 0.4 0.225 ± 0.285 1
Spectral Function (12C&16O) 0 ± 1 0.240 ± 0.129 1

W shape [ MeV ] 87.7 ± 45.3 – 1†

pF (12C&16O)[MeVc−1] 217 ± 30 266 ± 11 1
Eb (12C&16O)[MeVc−1] 25 ± 9 30.9 ± 5.2 1

π-less ∆ decay [%] 0.2 ± 0.2 0.206 ± 0.085 1

CCQE Norm
1 ± 0.11 0.966 ± 0.076

31 ± 0.30 0.931 ± 0.103
1 ± 0.30 0.852 ± 0.113

CC1π Norm
1.15 ± 0.43 1.265 ± 0.163

2
1.0 ± 0.40 1.122 ± 0.172

NC1π0 0.96 ± 0.43 1.135 ± 0.248 1
NC Other 1.0 ± 0.3 1.410 ± 0.218 1

CCCoh 1.0 ± 1.0 0.449 ± 0.164 1
σνe/σνµ 1 ± 0.03 – 1†

σν̄/σν 1 ± 0.4 – 1
OutFV e+ − e− 1 ± 0.3 – 1
OutFV Others 1 ± 0.3 – 1
Detector+FSI 1 ± [0.07, 0.19] – 17 (10)‡

Total 60 (55)‡

Table 8.1: Summary of all the systematic uncertainties on the analyses. The values before and after the
ND280 νµ fit are shown being the latter the prior values in our νe analyses. The values within brackets
are the upper and lower limits for that set of parameters. †Not included in νe flux analysis. ‡Number
in brackets correspond to the νe disappearance analysis. As in that analysis we merge νeCCQE and
νeCCnonQE selections, we have less parameters.
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8.1. Flux uncertainties

As we learned in Section 5.1, the flux is measured along with the neutrino cross-sections using a

sample of νµ interactions in ND280. Thanks to this analysis, the uncertainties in the flux are further

constrained as it is observed in Fig. 8.1 where we show the error and the central value of the parameters

before and after the νµ fit. It reduces the flux errors from ∼ 13% to ∼ 8% and also changes the central

value of the parameters as is illustrated in Fig. 8.1 and Tab. 8.1. We remit to Section 3.4 for further

explanations about the flux features and errors.

Flavor Binning( GeV)
νµ [0, 0.4, 0.5, 0.6, 0.7, 1.0, 1.5, 2.5, 3.5, 5.0, 7.0, 30.0]
νe [0, 0.5, 0.7, 0.8, 1.5, 2.5, 4.0, 30.0]
ν̄µ [0, 0.7, 1.0, 1.5, 2.5, 30.0]
ν̄e [0, 2.5, 30.0]

Table 8.2: Neutrino energy binning for flux parameters for the flux systematic errors νµ, νe, ν̄µ and ν̄e.

Fig. 8.1: Flux uncertainties before and after the ND280 νµ fit.
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8. Systematic uncertainties

8.2 Cross-section uncertainties

The cross-section systematic errors come from the uncertainties in the neutrino interaction models. A

complete set of cross-section systematic uncertainties are provided by the Neutrino Interaction Working

Group of T2K [80]. The MiniBooNE data for the CCQE [66] and CC1π [67] measurements, are fit using

the T2K neutrino event generator (NEUT [103]) with a minimal set of parameters that characterize

each interaction. In general, the uncertainties in the parameters are taken as the difference of the

nominal NEUT parameter and the best fit value for the external data. These uncertainties are set as

prior uncertainties and provide a reasonable starting point to the ND280 νµ fit.

After the ND280 νµ measurement, the cross-section errors get reduced and the improvement is shown

in Fig. 8.2, where the final uncertainties are within the range 10 − 20%. The Tab. 8.1 presents the

value of each systematic uncertainty before and after the νµ fit. Each cross-section systematic error

are detailed on the following:

Fig. 8.2: Cross-section uncertainties before and after the ND280 νµ fit.

Uncertainties in CCQE

The CCQE cross-section is parametrized by the axial mass MQE
A and three normalization factors. The

MQE
A parameter changes the expected momentum shape of the CCQE events while the other three

parameters only normalize a given neutrino energy range binned as follows:

[0, 1.5, 3.5, 30] GeV
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8.2. Cross-section uncertainties

For high energy, both the MiniBooNE data and NOMAD [13] data are used to set the uncertainties.

Uncertainties in single charged pion production

Pion production comes from CCRes interactions that are parametrized by the axial mass MRes
A and

two more normalization parameters (CC1π) binned as follows:

[0, 2.5, 30] GeV

For CCCoh interactions we include a simple normalization parameter with a 100% uncertainty as the

current data on pion production is compatible with no CCCoh.

Uncertainties in neutral currents

The π0 production is parametrized with a normalization factor (NC1π0) with a 30% uncertainty and

another parameter called W-shape. The latter is an empirical parameter that allows to modify the shape

of the momentum of the π0 produced in NC1π0 interactions. The error associated to this parameter

also come from MiniBooNE studies and it is of 52%. We remark that this systematic error is not

included in the νe flux validation analysis and we only included in the sterile neutrino analysis in order

to be more conservative. The rest of the NC interactions not producing a π0 (NC Other) are modeled

with a normalization parameter with an associated error of 30%.

The NC interactions are poorly measured by the ND280 νµ analysis, so after the fit, still a 20 − 25%

uncertainties remain in both parameters. These parameters largely affect to the low energy part of our

νeCC selection. We rather use the γ control sample, that is rich in NC events (∼ 30%), to constrain

this background than rely on external measurements.

Uncertainties in nuclei models

In CCQE cross-sections the target nucleus is described as a Relativistic Fermi Gas (RFG). The nuclear

potential is parametrized by the Fermi momentum of the nucleus pF and the binding energy Eb. A more

realistic model of the nuclear potential is called spectral function (SF). It is described by a parameter

that is 0 when the Relativistic Fermi Gas model is consider and 1 when we use the SF model. We allow

127



8. Systematic uncertainties

intermediate values even if they have not physical meaning, while values out of the range [0,1] are not

allowed.

Uncertainties in νe interactions

νe cross-section are not precisely measured and according to the models there is a 3% uncertainty in

the difference between the CCQE cross-section for electrons σνe and for muons σνµ [79]. A parameter

to take this into account is included, but only in the νe disappearance analysis. For the beam νe

measurement, we drop this parameter since we want to allow the study of the sensitivity of the νe

selections to possible differences between νe and νµ cross-sections, giving an upper limit.

Uncertainties in other interactions

For the case of multi-pion production, the CC Other Shape parameter modifies the shapes of the

different channels: CCDis and CCRes interactions. The prior error that we consider before the νµ fit

is assumed to be 0.4/Eν because it is known to be of the order of 0.4 GeV for 1 GeV.

When a neutrino interaction produces a ∆ resonance, it might interact before it decays to pions. In

this case the topology is identical to a CCQE event. This case is known as π-less ∆ decay that is

assumed to occur a 20% of the cases. We include an associate systematic error to the uncertainty on

this fraction. NEUT simulates by default the 20% of events with π-less ∆ decay. We considered as the

systematic error the effect that has in the simulation a 0% of π-less ∆ decays. This affects to all the

interactions with resonances involved. Values of this parameter leading to smaller fraction than 0% are

not physical and then they are not considered.

An extra parameter is added to account on the uncertainty in the anti-neutrino cross-section. It is

parametrized by a normalization factor applied to the antineutrino component (σν/σν̄) with a 40%

error.

Uncertainties in the out of fiducial volume

As we have shown in the Chapter 6, a sizable fraction of the events that we select comes from OOFV

neutrino interactions. The OOFV interactions occur in materials other than Carbon where the neutrino

cross-sections are different and are not properly measured by ND280 because the νµ selection contains
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8.3. Final State Interaction systematic uncertainties

only a 3% of OOFV. Moreover, it does not contain OOFV events coming from γ conversion, but of other

types. We apply an extra systematic error of 30% to account on the ignorance of this component. To

parametrize the OOFV component we define two parameters, each of one accounting on one different

OOFV component (see Section 6.5.1):

◦ OOFV e+ − e−: drives the γOOFV background;

◦ OOFV Other: affects to the misidentified particles produced in OOFV.

8.3 Final State Interaction systematic uncertainties

Re-interactions of the hadrons produced by neutrino interactions within the nucleus, known as FSI,

lead to large uncertainties in neutrino analyses. Since we classify our selection attending to the exiting

particles from the nucleus, an event selected as νeCCQE can be an actual νeCCRes with a pion

absorption. So, mismodelling of these effects lead to important systematic errors. We assume FSI

for leptons is negligible since they do not interact strongly, and also, FSI are not considered for hadrons

produced off unbound protons (like Hydrogen in water) since the neutrino interaction is far from the

nuclear medium. The final state of pions is the largest contribution to the errors.

NEUT includes the hadron re-interaction as a semi-classical microscopic cascade model where a set of

6 low-level parameters change the different aspects of the cascade ([124, 103]). Our calculation of their

uncertainties is driven by a fit on the MiniBooNE data, as it covers the same phase space of T2K. The

dependencies of the 6 low-level parameters are complicated and their correlations are strong. So, we

re-parametrize them by effective parameters ~fFSI , each of them being applied to a specific neutrino

flavour, electron momentum range and selection (νeCCQE, νeCCnonQE or γ samples). We include 7

parameters for the νeCCQE, 7 for the νeCCnonQE and 3 for the γ selection according to the momentum

ranges in Tab. 8.3.

The νe disappearance analysis (Chapter 10) is performed in reconstructed neutrino energy instead

of electron momentum, so the parameters refer to a reconstructed neutrino energy range. Another

important difference is that we treat together the νeCC selections, so in total we only have 7 parameters

for the νeCC and 3 for the γ selection as it is established in Tab. 8.3.

To calculate the uncertainties in ~fFSI in both of the cases, we built N different distributions (electron

momentum for beam νe measurement and neutrino energy for νe disappearance analysis) for each
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8. Systematic uncertainties

selection varying the low-level parameters within their uncertainties. In this way, we calculate the 1σ

effect of the FSI uncertainties on each distribution bin. The ~fFSI uncertainties and their correlations

are provided by the covariance, defined as:

Vi,j =
1

N

N∑
i

[
nivar − ninom

]
·
[
njvar − njnom

]
ninom · n

j
nom

(8.1)

where N is the number of generated distributions, ninom is the content of the bin i for the nominal

Monte-Carlo and nivar is the bin content of the varied distribution. This provides a covariance matrix

shown in Fig. 8.3 for ~fFSI . The squared root of the diagonal terms corresponds to the 1σ uncertainties

of ~fFSI and it is shown in Fig. 8.3. The FSI uncertainties are ∼ 4%.

Analysis
νe beam meas. νe disappearance

Detector+FSI Parameter ν flavour Selection Momentum ( GeV) ν energy ( GeV)
f1
FSI+Det νe νeCCQE (νeCC) 0.2 - 0.6 0.2 - 0.6
f2
FSI+Det νe νeCCQE (νeCC) 0.6 - 1.2 0.6 - 2.0
f3
FSI+Det νe νeCCQE (νeCC) 1.2 - 2.5 2.0 - 2.5
f4
FSI+Det νe νeCCQE (νeCC) 2.5 - 10.0 2.5 - 10.0
f5
FSI+Det νµ νeCCQE (νeCC) 0.2 - 0.5 0.2 - 0.5
f6
FSI+Det νµ νeCCQE (νeCC) 0.5 - 1.0 0.5 - 1.0
f7
FSI+Det νµ νeCCQE (νeCC) 1.0 - 10.0 1.0 - 10.0
f8
FSI+Det νe νeCCnonQE 0.2 - 0.6 -
f9
FSI+Det νe νeCCnonQE 0.6 - 1.2 -
f10
FSI+Det νe νeCCnonQE 1.2 - 2.5 -
f11
FSI+Det νe νeCCnonQE 2.5 - 10.0 -
f12
FSI+Det νµ νeCCnonQE 0.2 - 0.5 -
f13
FSI+Det νµ νeCCnonQE 0.5 - 1.0 -
f14
FSI+Det νµ νeCCnonQE 1.0 - 10.0 -
f15
FSI+Det all γ 0.2 - 0.5 0.2 - 0.5
f16
FSI+Det all γ 0.5 - 1.0 0.5 - 1.0
f17
FSI+Det all γ 1.0 - 10.0 1.0 - 10.0

Table 8.3: Parameters for the FSI and Detector systematic errors. The ν flavour, selection and range
where is applied are shown per parameter. Each analysis has its proper set of parameters: the νe beam
measurement is parametrized in electron momentum, while the νe disappearance in ν reconstructed
energy. Also, the latter uses the νeCC selection as a whole and not separated.

8.4 Detector systematic uncertainties

The systematic uncertainties associated to the detector performances are calculated by different tech-

niques using control samples. In Appendices A.1 and A.2 we include two examples of calculation of

130



8.4. Detector systematic uncertainties

Systematic Type Applied to
B-field distortion Migration All

FGD mass uncertainty Weight All
FGD track efficiency Weight Not used for γ
Michel electron eff. Weight Not used for γ

Pile-up (TPC1) Weight Not used for γ
Pion secondary interactions Weight All

TPC-FGD matching eff. Weight All
TPC charge confusion Weight All
TPC momentum scale Migration All

TPC momentum resolution Migration All
TPC track eff. Weight All

TPC track quality Weight All
TPC PID scale (e±) Migration All
TPC PID bias (e±) Migration All

TPC PID scale (µ± and π±) Migration All
TPC PID bias (µ± and π±) Migration All

TPC PID scale (p) Migration All
TPC PID bias (p) Migration All

ECal energy resolution Migration All
ECal energy scale Migration All

ECal PID Migration All
Pile-up (P0D) Weight Not used for γ
Pile-up (ECal) Weight Only for νeCCQE

Pile-up (Upstream ECal) Weight Only for νeCCnonQE
TPC-ECal matching eff. Migration All

Table 8.4: List of detector systematic errors implemented in the analysis. The meaning of the type of
systematic error is explained in the text.

detector systematic errors: the TPC charge misidentification and the electron TPC PID. In Tab. 8.4

we summarize the full list of detector systematic errors calculated for ND280 and propagated in this

analysis. The one having the biggest effect is the TPC momentum resolution.

The Monte-Carlo nominal prediction is corrected to include the estimation of the detector systematic

errors. In the following chapter we evaluate these differences when we calculate the expected number

of events depending on each Monte-Carlo tunning [Section 9.1.2].

The parametrization of the detector systematic error is the same than the FSI [Tab. 8.3]. Each system-

atic error is driven by a low-level parameter that tune an observable of the event. As including these

parameters in our analysis is very difficult and implies too much computation time, they are treated

in an effective way. The same ~fFSI defined for the FSI are used for the detector systematic errors and

then become ~fFSI+Det. The uncertainties on this parameters given by the detector systematic errors

are calculated generating throws of the low-level parameters and calculating the covariances Eq. (8.1).

There are two types of low-level parameters associated to the detector systematic errors:
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8. Systematic uncertainties

◦ Migration: it causes a selected event to migrate from one momentum bin to another, from one

sample to another or being removed from the selection. For instance, the momentum resolution

applies a smearing in the reconstructed electron momentum that can migrate within the selection

or even put it below 200 MeV, so that it is not selected.

◦ Reweight: it changes the contribution of the event, so that it does not count as 1 anymore. For

instance, this is the case of the TPC charge misidentification.

The detector systematic errors covariance matrix is showed in Fig. 8.3, whose squared root of the

diagonal, that provides the uncertainties, are of the order of ∼ 6%.
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Fig. 8.3: FSI (left) and detector (right) systematic error covariance matrices. The errors on the bottom
are calculated as the squared root of the diagonal elements. Each bin corresponds to a different
parameter ~fFSI+Det of the list in Tab. 8.3.

8.4.1 Uncertainties due to limited Monte-Carlo statistics

Statistical fluctuations in the Monte-Carlo is treated as another source of detector systematic error.

We have an exposure of ∼ 10 times the data POT, so we expect the fluctuations to be small. The
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8.5. Systematic error parametrization

statistical fluctuations affect each analysis bin independently and follow a Poisson distribution, so the

squared uncertainty σi is:

σi
2 = (

√
ni/ni)

2 = 1/ni (8.2)

where ni is the number of events in the bin i-th in one of the selections. In general, the analysis

binning bi (defined in the corresponding analysis chapter) and the binning b′j of the detector systematic

parameters ~fFSI+Det are different. As we want to calculate the uncertainties on ~fFSI+Det, we need to

perform a re-binning of the uncertainties σi. We define the uncertainty in the parameter f jFSI+Det as

the weighted mean of the uncertainties on the bins bi that are contained in the bin b′j :

σj
2 =

(∑
i

σi × ni
Nj

)2

=

(
1

Nj

∑
i

√
ni

)2

where Nj is the number of events of the Monte-Carlo in b′j . The uncertainties we obtain are about

the 6%, but the effect is smaller than the detector or FSI systematic errors because there are no bins

correlations. This uncertainties are added the diagonal of the detector covariance matrix, so that they

are considered together. The effect is observed in Fig. 8.3.

8.5 Systematic error parametrization

Each systematic error source is parametrized with one or several parameters as we have seen through

this chapter. We have introduced a total of 60 parameters ~f for the beam νe measurement while 55 for

the νe disappearance analysis. In the latter we merge both the νeCCQE and νeCCnonQE selections, so

the number of ~fFSI+Det parameters is reduced from 17 to 10. In addition, to be more conservative in

this analysis, we introduce two extra systematic errors that do not appear in the νe beam measurement:

the difference between the νe and νµ cross-sections and the W-shape. The complete list of the systematic

errors and their parameters is given in the Tab. 8.1.

These parameters are simply reweight parameters that change the contribution of the events in the

Monte-Carlo. Tunning these parameters changes the total number of predicted events and their spectra.

There are three different types of parameters depending on the reweighting strategy adopted:

1. Linear weights that affect ETrue ranges: the parameters of this class reweight the events in a
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8. Systematic uncertainties

given interval of the ETrue. The value of the parameter and its error is directly proportional to

the event weight. In this category we find the complete set of 25 neutrino flux parameters ~fflux

and 11 cross-section parameters ~fXsec(l) (CCQE, CC1π, CCCoh, NC1π0, NC Other, σν̄/σν and

OOFV’s).

2. Response functions weights: the weights have a complicated dependency with the parameters

that are modeled by pre-calculated response functions w(fXsec(rf)), where fXsec(rf) is the corre-

sponding parameter. A total of 7 parameters are included in this category: MQE
A , MRES

A , CC

Other Shape, Spectral Function (SF), Fermi momentum (pF ), Binding Energy (Eb), W shape

and π-less ∆ decay.

3. Linear weights that affect a range of the analyzed distribution: this type of parameter is aim to

reweight a specific range on the electron momentum range in the νe measurement, or a neutrino

reconstructed energy interval in the νe disappearance analysis. This is an effective way of treat

them as they are so correlated each other that cannot be introduced using the techniques above.

We define a set of parameters f jFSI+Det that account on: FSI, detector and Monte-Carlo limited

statistics uncertainties.

Generation of the response functions

The response functions are calculated for each of the Monte-Carlo event and each of the fXsec(rf)

parameters. Provided one specific event and parameter, they are calculated in the following way:

1. The given parameter f is varied by ±3σ,±2σ,±1σ and 0σ giving fxσ, where σ is the uncertainty

on that parameter.

2. The weights w(fxσ) are computed for each of the 7 cases.

3. The response function is provided by the graph built out of the points
(
fxσ : w(fxσ)

)
. An example

for a given event and the MQE
A parameter is in Fig. 8.4.

134



8.6. Total covariance matrix

4. The weight w(f) for a point in between the xσ variations is calculated by linear interpolation

Each response function is particular for a specific event attending to the type and the kinematic of

interaction.
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Fig. 8.4: Response function of a single event of the parameter MQE
A . The points correspond to variation

of +3σ, +2σ, +1σ, +0σ, −1σ, −2σ, −3σ of the fMQE
A

.

8.6 Total covariance matrix

The parameters ~f are in general correlated each other. Correlations between the flux and cross-section

parameters exist because the ND280 νµ analysis measure both at the same time. The FSI and detector

systematic errors are correlated each other [Sections 8.3 and 8.4] but uncorrelated with the flux and

cross-section parameters, as they are two independent sets.

We treat the uncertainties on the parameters and their correlations through a covariance matrix. As

we have in total 60 systematic error parameters, we have a square and symmetric 60 × 60 covariance

matrix (55× 55 in the sterile analysis). The covariance matrix for the neutrino flux and cross-sections

is provided by the ND280 νµ analysis while the covariance matrix for the FSI and detector systematic

errors are calculated in Sections 8.3 and 8.4. As they are driven by the same set of effective parameters

~fFSI+Det, the matrices are added each other. Both matrices are treated together in an uncorrelated

way.

The total covariance matrix is shown in Fig. 8.5. The non-zero terms out of the diagonal of the flux

and cross-section parameters represent the correlations introduced by the νµ fit. On the other hand

the zero non-diagonal terms between the flux-cross-section matrix and the detector-FSI matrix indicate
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8. Systematic uncertainties

that these pieces are not correlated. There are some others systematic errors that are also not correlated

with the others as it is the case of the OOFV parameters.
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Fig. 8.5: Total covariance matrix for systematic uncertainties parameters. Left, beam νe measurement: νµ-flux (0-10), νµ-flux (11-15), νe-flux

(16-22), νe-flux (23-24),MQE
A (25), MRES

A (26), CC Other Shape (27), Spectral Function (28), Fermi Momentum (29), CCQE (30-32), CC1π
(33-34), NC1π0 (35), NC Other (36), CCCoh (37), σν̄/ν (38), π-less ∆ decay (39), Binding Energy (40), FSI+Det (41-57), Out-FV e+e− (58),

Out-FV Other (59). Right, νe disappearance analysis: νµ-flux (0-10), νµ-flux (11-15), νe-flux (16-22), νe-flux (23-24),MQE
A (25), MRES

A (26),
CC Other Shape (27), Spectral Function (28), Fermi Momentum (29), CCQE (30-32), CC1π (33-34), NC1π0 (35), NC Other (36), CCCoh (37),
σνe/νµ (38), σν̄/ν (39), W shape (40), π-less ∆ decay (41), Binding Energy (42), Out-FV e+e− (43), Out-FV Other (44), FSI+Det (45-54).
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8. Systematic uncertainties

8.7 Effect of the systematic uncertainties in the selections

The effect of the systematic errors in the momentum distribution is shown in Fig. 8.6 for the uncer-

tainties before and after the ND280 νµ measurement. The contributions of the flux and cross-section

uncertainties are reduced sensibly and the total systematic uncertainty on the νe selection is decreased

from ∼ 25% to ∼ 15%. At low momentum, the errors are larger and reach the 20% level. The biggest

contribution comes from the cross-section uncertainties due to we have most of the γ background that

is affected by the large π0 production and the OOFV systematic errors. At higher momentum, the

flux and cross section uncertainties contributions are similar and about 10%. The detector and FSI

systematic errors are the smallest contribution, concentrated mainly at low momentum with an effect

of 5%.

The overall effect on the distributions for the νeCC (νeCCQE + νeCCnonQE) and the gamma selections

is shown in Tab. 8.5 for 1σ variations for each of the systematic error parameters individually. In this

way we estimate the impact that each parameter has in our analysis. As far as the νe selection is

concerned, the OOFV e+ − e− systematic error has an effect of 3.2% and it corresponds to the largest

one. It is interesting to check which are the dominant systematic errors in the gamma selection as it

is a background enriched sample and it gives information about the impact of the background in the

νe selection. There are two parameters whose effects are specially large: the NCOther with 5.7% and

the OOFV e+ − e− with 18%. It means that a small variation of this parameters (1σ) can change the

total number of expected events for the background dramatically (20%).
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8.7. Effect of the systematic uncertainties in the selections
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Fig. 8.6: Systematic uncertainties before (top) and after (bottom) the ND280 νµ measurement. Electron
momentum distributions for (from left to right) νeCCQE, νeCCnonQE and γ selections. The dots
correspond to the data that shows only the statistical error. Above the distributions the ratio respect
to the Monte-Carlo are shown.
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Parameter νe sel. (%) γ sel. (%)

νµ Flux 1 0.0085 0
νµ Flux 2 0.012 0.0013
νµ Flux 3 0.043 0.012
νµ Flux 4 0.066 0.034
νµ Flux 5 0.2 0.13
νµ Flux 6 0.2 0.24
νµ Flux 7 0.25 0.53
νµ Flux 8 0.28 0.79
νµ Flux 9 0.48 1.4
νµ Flux 10 0.49 1.6
νµ Flux 11 0.65 1.9
νµ Flux 1 0.0062 0.0037
νµ Flux 2 0 0.0083
νµ Flux 3 0.01 0.01
νµ Flux 4 0.023 0.044
νµ Flux 5 0.12 0.33
νe Flux 1 0.06 0
νe Flux 2 0.23 0.011
νe Flux 3 0.2 0.012
νe Flux 4 0.83 0.055
νe Flux 5 1.1 0.093
νe Flux 6 1.2 0.11
νe Flux 7 1.1 0.13
νe Flux 1 0.0064 0.022
νe Flux 2 0.013 0.026

Parameter νe sel. (%) γ sel. (%)

MQE
A 1.2 0.24

MRes
A 2.5 1.9

CC Other Shape 2.2 2.7
Spectral Function 0.017 0.0044
Fermi Momentum 0.049 0.012

CCQE1 0.95 0.07
CCQE2 1.2 0.21
CCQE3 0.51 0.12
CC1π 1 1.7 0.47
CC1π 2 1.7 0.65
NC1π0 0.54 1.1

NC Other 2.1 5.7
CCCoh 0.49 0.06
σνe/νµ 1.9 0.16
σν̄/ν 0.37 0.91

W shape 0.4 1.4
π-less ∆ decay 0.077 0.98
Binding Energy 0.2 0.03
OOFV Electron 3.2 18

OOFV Other 0.96 0.027

Parameter νe sel (%) γ sel. (%)

Det-like 1 1 0
Det-like 2 2.4 0
Det-like 3 0.49 0
Det-like 4 1.1 0
Det-like 5 1.8 0
Det-like 6 0.73 0
Det-like 7 1.0 0
Det-like 8 0 3.4
Det-like 9 0 1.9
Det-like 10 0 1.2

Table 8.5: Effect in the selections of 1σ variation of each independent systematic for both νe (CCQE + CCnonQE) and γ selections. Correlations
between the systematic errors are not taken into account.
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Chapter 9

Measurement of the beam νe component

In this chapter we present the measurement of the νe intrinsic component in the T2K neutrino beam

published in [74]. This component is predicted by the simulation of the beam-line, that is controlled

by the INGRID monitoring, and by the NA61 measurements of hadron production cross section. It

is expected to represent the 1.2% of the total neutrino flux [Section 3.4]. The neutrino flux is further

controlled by the νµ measurement at ND280 [Section 5.1] that provides the final prediction of the

neutrino interaction rates at ND280 and at SK. This is the prediction used to calculate the expected

number of signal and background events in the T2K oscillation analyses [Section 5.2]. The aim of the

νe measurement at ND280 is to compare the νe flux prediction after the νµ fit with the data at ND280

[Chapter 6], providing a key confirmation to the entire T2K analysis chain. In order to do this, we

use the maximum likelihood method applied to the momentum distributions for the νe selections and

the photon control sample at ND280. The νe component is parametrized in different manners and

the best fit values for the parameters are calculated. The result on those parameters along with the

goodness-of-fit test give the level of compatibility of the prediction with the data.

In Section 9.1 we detail how we calculate the expected number of events in each momentum bin used

in the binned likelihood [Section 9.2] for the fit and the systematic errors propagation. Before we apply

the fit to the data, the algorithm is validated using toys Monte-Carlo in Section 9.3. Finally, we present

and discuss the results on the measurements of the beam νe component [Section 9.6].

9.1 Electron momentum distributions

The number of expected events in each momentum bin niexp is calculated re-weighting event by event

the Monte-Carlo prediction taking into account the systematic error parameters.
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9. Measurement of the beam νe component

9.1.1 Binning choice

We perform our analysis in the reconstructed electron momentum p range from 0.2 GeV to 10 GeV. The

binned likelihood method used to extract the νe signal requires a minimum number of entries per bin

to avoid biases induced by Poisson fluctuations. The criteria that we have followed to find the most

appropriate binning is:

◦ fine binning where most of the signal events are selected;

◦ & 10 events per bin.

Taking into account this criteria we end up with the following 18 bins for each of the three selections:

[0.2|0.3|0.4|0.5|0.6|0.7|0.8|0.9|1.0|1.2|1.4|1.6|1.8|2.0|2.2|2.5|3.0|3.5|10.0]GeV

9.1.2 Expected number of events

The expected number of events is parameterized by several normalization factors ~Rνe that are applied

to the νe component to describe how well the Monte-Carlo reproduces the νe event rates at ND280.

We explore four different parameterizations for the νe signal:

1. Overall scale factor Rνe : only one free parameter to rescale the νe component on the entire

momentum range;

2. Energy dependent scale factors: 4 different parameters as a function of the neutrino energy are

defined. In this way we study whether the Monte-Carlo reproduces the νe properly at different

energy ranges;

3. Neutrino parent: νe events separated by neutrino parent in νe coming from kaons and from muons;

4. Interaction type: fit separately νe producing CCQE or CCnonQE interactions.

In addition, the number of events depends on the values of the systematic error parameters ~f [Sec-

tion 8.5]. The selections presented in Section 6.5 for the νe and Section 7.1 for the photon conversion

sample correspond to the prediction before the ND280 νµ analysis. This prediction needs to be adapted

to the ND280 νµ measurement. In order to do this, we apply event by event the reweights given by
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9.1. Electron momentum distributions

the parameters ~f defined in Chapter 8 to our momentum distributions. It means that the contribution

of each event becomes a number that depends on ~f and in general is different from 1. As described in

Chapter 8, we include four sets of parameters: flux weights ~fflux, cross-section linear weights ~fXsec(l),

cross-section weights through response functions ~w(~fXsec(rf)) and detector and FSI weights, ~fFSI+Det.

The total weight W given for the systematic errors parameters of a specific event j selected in either

of the samples becomes:

W j(~f) = ~fflux(EjTrue)× ~fXsec(l)(E
j
True)× ~wj(~fXsec(rf))× ~f jFSI+Det(p

i) (9.1)

The predicted number of events in the momentum bin pi of one of the three selections α (= νeCCQE,

νeCCnonQE, γ) is given by the expression:

ni,αexp(~R
νe , ~f) =

Ndata
POT

NMC
POT

Ni∑
j

W j(~f)× ~Rνe (9.2)

where Ni is the number of events in pi, and Ndata
POT and NMC

POT are the number of POT for data and

Monte-Carlo. It is important to notice that the ~Rνe parameters only apply to the νe events. The

weights W are defined for the νeCCQE, νeCCnonQE and the γ selections separately, but they are

modulated by the same parameters. The electron momentum distributions after applying the final

flux and cross-section tunning for the different selections are shown in Fig. 9.1, where we divide the

Monte-Carlo by ν flavour and interaction.

The Monte-Carlo prediction is tuned by several analyses:

◦ Flux prediction: using the data from the hadron-production experiment NA61 at CERN and in

situ T2K beam monitoring at INGRID [Section 3.4];

◦ Detector systematic errors correction: applied to the Monte-Carlo after the detector system-

atic errors estimation. It can reweight events as well as migrate them from one bin to another

[Section 8.4];

◦ νµ fit at ND280: it correspond to the best knowledge we have for the neutrino fluxes and cross-

sections [Section 5.1].

The number of selected events and their momentum distributions change after each step as it is repre-

sented in Tab. 9.1. In Fig. 9.2 we show the effect of the different tunings on our selections. The one
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9. Measurement of the beam νe component
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Fig. 9.1: Electron momentum distribution for the different selections: νeCCQE on the left, νeCCnonQE
in the middle and γ at the right. The Monte-Carlo is divided according to the ν flavor (top) and inter-
action (bottom). The Monte-Carlo distributions are tuned with the prediction of the NA61 experiment
and the beam monitoring, and also corrected by the detector systematic errors.

that we use in our final analysis is the green one, resulting from applying all the tunings to the nominal

Monte-Carlo.
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Fig. 9.2: Momentum distributions for the different tunings and selections. νeCCQE on the left,
νeCCnonQE in the middle and gamma on the right.
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9.2. Method of the maximum likelihood

Selection Tunning νe CCQE νe CCnonQE νe νµ νµ OOFVe−e+ OOFV Other Total

νeCCQE

NEUT 116.1 53.5 0.4 26.8 1.2 37.6 15.5 251.1
NA61 132.1 62.9 0.4 30.9 1.2 45.6 18.6 291.8

νµ ND280 121.6 49.6 0.4 31.0 1.5 44.3 17.2 265.3
Detector 113.9 47.1 0.3 29.9 1.5 42.6 24.4 259.7
DATA - - - - - - - 225

νeCCnonQE

NEUT 49.0 219.8 1.4 96.2 4.7 16.9 6.4 394.4
NA61 56.2 267.4 1.4 123.0 5.4 21.1 7.9 482.5

νµ ND280 54.5 218.4 1.2 125.4 5.1 21.1 7.2 432.9
Detector 52.0 203.9 1.1 126.3 4.9 20.6 6.3 415.1
DATA - - - - - - - 392

γ

NEUT 21.1 44.0 6.4 312.4 15.1 591.3 4.6 994.9
NA61 24.3 53.5 6.8 388.7 16.6 754.5 5.8 1250.3

νµ ND280 23.2 46.8 5.9 405.3 17.3 764.7 5.5 1268.7
Detector 22.8 46.7 5.7 401.0 17.7 751.7 5.4 1251
DATA - - - - - - - 990

Table 9.1: Number of events selected in each sample per each Monte-Carlo tunning. NEUT: nominal
NEUT Monte-Carlo prediction; NA61: prediction after NA61; νµ ND280: prediction after the νµ fit at
ND280; Detector: after the correction using the central values of the detector systematic uncertainties;
DATA: number of real events.

9.2 Method of the maximum likelihood

A frequentist method is used to measure the beam νe component. The free parameters ~Rνe are extracted

maximizing the likelihood function L [101] that depends on that parameters and the 60 systematic errors

parameters ~f . Our analysis is binned in momentum and each bin i correspond to an independent

experiment whose probability distribution function (pdf ) λi corresponds to a Poisson distribution:

λi(~R
νe , ~f) =

(niexp)
nidte−n

i
exp

nidt!

where niexp ≡ niexp(~R
νe , ~f) [Eq. (9.2)] is the expected number of events in the i-th bin of momentum

for one of the selections and nidt the observed number of events in the same bin.

~f are not free parameters, but they are constrained by the ND280 νµ analysis and our studies in Chap-

ter 8. So, their pdfs are multivariate Gaussian distributions ρ(~f) with mean values ~f0 and covariances

given by the covariance matrix V [Fig. 8.5]:

ρ(~f) =
1

(2π)k/2|V |1/2
e−

1
2 ∆~fTV −1∆~f

where k is the number of systematic errors parameters and ~∆f is the difference between ~f and their

prior values

∆~f ≡ ~f − ~f0
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9. Measurement of the beam νe component

The likelihood function L is defined as the product of all the λi (18 bins per selection, so 54 in total)

and the constraints that we include for the ~f parameters:

L(~Rνe , ~f) =
∏
i

λi(~R
νe , ~f)ρ(~f) (9.3)

where i runs over all the bins of the experiment for the three selections. This is the quantity we want

to maximize in order to obtain the estimation of ~Rνe . In practice, it is easier to minimize the −2 logL

that behaves like a χ2 distribution with dof degrees of freedom [16] equal to:

dof = #bins−#parameters + #parameter constrains

= #bins−#free parameters = 53 (9.4)

Taking the logarithm of Eq. (9.3), the expression that we minimize in our analysis has the form:

χ2 ≡ −2 logL = 2

α∑ 18∑
i=0

{
ni,αexp − n

i,α
dt + ni,αdt × log

(
ni,αdt
ni,αexp

)}
+ ∆~fTV −1∆~f

where α runs over the three selections (νeCCQE, νeCCQE and γ). The first term provides the contri-

bution of our samples to the χ2 value. The second term is the so-called penalty term that constrain

the parameters ~f to their prior values through their covariances calculated in Chapter 8.

We minimize this expression in the electron momentum range [0.2 GeV, 10 GeV] using the TMinuit

package included in the ROOT libraries. To improve the uncertainties calculated by the fit, the HESSE

method was implemented after MIGRAD convergence. If the minimization fails, MIGRAD is called

again up to 8 times starting from the last values. As far as the systematic error parameters are

concerned, we bind them within ±5σ and we require them to be always in the allowed physical region.

9.3 Validations of the fitter

In order to validate the fit mechanism, we performed several tests using toys Monte-Carlo. A toy Monte-

Carlo (or fake data) is a simulation of the momentum distributions obtained for the three selections

we introduced in the fit. They are built using the expression for the number of expected events given

in Eq. (9.2) for a given set of parameters ~Rνe and ~f . Then the toys are fit by the method described in

Section 9.2.
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9.3. Validations of the fitter

9.3.1 Generation of the toys Monte-Carlo

The toys are generated assuming ~Rνe = 1 and the current statistics of 5.9 × 1020 POT. Statistical

fluctuations and variations of the systematic error parameters within the uncertainties presented in

Chapter 8 are taken into account. To build a toy with a specific extraction of the systematic errors

parameters, we need to generate a properly correlated set of ~ftoy to be applied to Eq. (9.2). This is

done in the following way:

1. We throw a set of 60 random parameters ~g normal-distributed.

2. We use the Cholesky decomposition [112] to extract a vector ~ftoy of correlated parameters ac-

cording to the covariance matrix V :

◦ We find the matrix M that fulfills V = MT ×M

◦ Then: ~ftoy = ~f0 +M~g

3. The events in the three selections are reweighted according to ~ftoy using Eq. (9.2) and the mo-

mentum distributions are filled.

4. Each momentum bin is fluctuated as a Poisson distribution in order to take into account the

statistical fluctuations.

If any of the weights given by a parameter is negative, we throw another toy. This is done in order to

avoid parameters that lead to negative reweights, as removing events from the distributions would not

be physical.

9.3.2 Pull studies

The fit is applied to 5000 toys with different systematic error parameter extractions and statistical

fluctuations. We validate the parameterizations with only one Rνe parameter. The distribution for

the the best fit values for Rνe is shown in Fig. 9.3 and, as expected, the averaged value is compatible

with 1, as the toys where built using Rνe = 1. The width of the Gaussian predicts an uncertainty

in the beam νe measurement to be ∼ 10%. To study a possible bias in our analysis we compare the

parameters extracted from the fit with the expected ones defining the pulls of the Rνe parameter δνe
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9. Measurement of the beam νe component

as:

δνe =
Rνetoy −R

νe
bf

σRνe
(9.5)

where Rνetoy = 1 is the value that we use to construct the toys, and Rνebf and σRνe are respectively the

best fit parameters and the corresponding uncertainty given by the fit. The pull distribution is expected

to behave like a Gaussian distribution centered at 0 and with width 1 if there is no bias. Indeed, this

is our case as can be observed in Fig. 9.3. The deviation from zero is ∼ 3.3± 1.4%, what is negligible,

and the width is 0.98± 0.01, very compatible with one.

The pull study is extended to the systematic error parameters. We compare the best fit values with

the value of the parameter we extract to build the toy:

δf =
ftoy − fbf
σfbf

(9.6)

where ftoy is the extracted systematic error parameter for each specific toy using the procedure ex-

plained in Section 9.3.1. The pull distribution for each parameter is obtained and the mean and the

RMS are calculated and represented in Fig. 9.3. The mean is well compatible with zero and the de-

viations are found to be ∼ 10% at most. The only one that is slightly larger is the parameter that

correspond to the Spectral Function. This is because the pdf of this parameter is constrained to only

the positive region so it turns to be highly non-Gaussian. The widths are rather compatible with 1.

9.4 Goodness-of-fit test

The goodness-of-fit test provides a measurement of the significance on the discrepancy between the data

and a given hypothesis. According to the Wilks theorem [140], under some assumptions (like having

enough statistic in each bin), the distribution of the best fit values for a large number of toys Monte-

Carlo, follows a χ2 distribution with the number of degrees of freedom (dof) equal to 53 [Eq. (9.4)].

Firstly, it is interesting to check whether this is fulfilled in our conditions to detect any anomaly in the

framework. In order to do this, we minimize 5000 toys experiments and built the distribution of χ2
bf .

It is shown in Fig. 9.4 and it adapts to a χ2 distribution with dof = 53.14± 0.14, in perfect agreement

with the expectation of dof = 53.
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9.4. Goodness-of-fit test
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Fig. 9.3: Distribution of the best fit values (left) and of the pulls (right) of the νe free parameter for
5000 toys. On the bottom, average and RMS of the pull distributions [Eq. (9.6)] for the systematic
error parameters.
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9. Measurement of the beam νe component

Applying the fit to the data and comparing its minimum value χ2
bf,data with this distribution, an

estimator of the compatibility can be constructed. The fraction of toys experiments whose values

χ2
bf > χ2

bf,data defines the goodness-of-fit. Mathematically:

gof =
1

Ntoys

∫ ∞
χ2
bf,data

dχ2
bff(χ2

bf )

where f is the pdf of the χ2
bf values. Inversely, critical values of the χ2 can be calculated to provide

confidence levels. The critical value χ2
C that gives the x%CL is defined as:

∫ χ2
C

0

dχ2
bff(χ2

bf ) = x/100

For instance, a confidence interval that it is commonly defined is the 90%CL. So then, for this case

χ2
C(90%CL) = 67

because the 90% of the χ2
bf values for the toys are below χ2

C . It means that if χ2
bf,data < χ2

C , the

hypothesis we are testing is compatible with the data within the 90%CL.

bf
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Fig. 9.4: Distribution of χ2
bf for 5000 toys experiments. The distribution is fit with a χ2 function.
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9.5. Expected uncertainty in the beam νe measurement

9.5 Expected uncertainty in the beam νe measurement

For the current statistics, and provided the systematic errors described in Chapter 8, the expected

uncertainty in the νe beam measurement is of 10% parameterizing the selected νe component with only

one parameter (estimated from the width of the Rνebf values distribution, Fig. 9.3).

We made a study of the expected evolution of the precision of the νe beam measurement with the

POT and with smaller systematic errors. In Fig. 9.5 we show the total relative error versus the

POT for the current systematic errors scenario. The uncertainty saturates at ∼ 7% where it becomes

independent on the statistics and dominated by the systematics errors. We also assumed a scenario

with the current systematics errors reduced a factor of two. This is realistic as we have only reached

the 8% of the expected POT goal of T2K and the ND280 νµ analysis will measure the neutrino flux

and cross-sections more precisely in the future.

In the best case scenario we expect to reach a precision of ∼ 4%, so the analysis becomes sensitive to

measure cross-section differences between νe and νµ interactions that is calculated in the theory to be

at the 3% level [79].
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Fig. 9.5: Expected relative errors in the Rνe measurement versus the POT and for two different cases:
current systematic errors (black) and half of the systematic errors (red).
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9. Measurement of the beam νe component

9.6 Results

The ND280 data is fit using the method described above. The different parametrization of the νe

component are used in different versions of the fit.

9.6.1 Inclusive νe: 1 parameter

The parameter Rνe is measured by applying the fit to our samples getting:

Rνe = 1.01± 0.06(stat)± 0.07(Flux-XSec)± 0.04(Det-FSI) = 1.01± 0.10

for the free parameter. It indicates that the data is in good agreement with the Monte-Carlo prediction

for the beam νe. The momentum distributions before and after the fit is shown in Fig. 9.6. The χ2
bf

obtained is

χ2
bf/dof = 56.43/53

that correspond to a gof = 33.9%. This result indicates that the fit parameters, including ~f , are well

compatible with the νe flux prediction. The statistical and systematics errors have similar impact in

the final uncertainty of 10%.

The uncertainties on the systematic errors parameters are practically unchanged as indicates Fig. 9.7.

This is because, with the current level of statistics, the νeCC’s and γ selections are not able to constrain

more the systematic errors than the ND280 νµ selections. The only exception is the OOFV for electrons

coming from photon conversion (OOFVe+ − e−) whose uncertainty is reduced from 30% to 15%. This

component is not controlled by the ND280 νµ fit but it is constrained by the photon sample that is

rich in this background.

The pulls obtained for the systematic error parameters are shown in Fig. 9.6. Most of them are within

1σ uncertainties. There are some cases (like flux-ν̄µ) where the deviation is larger. However, those

are parameters with a small impact in the analysis. The two parameters that rule the OOFV events
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9.6. Results

(OOFV from γ and from other particle) are fit to have smaller values than predicted:

f(OOFV e+ − e−) = 0.64± 0.10

f(OOFV Other) = 0.83± 0.29

Those results are still compatible with the prior uncertainty of 30%, but they clearly indicate that the

OOFV component is not well reproduced in our Monte-Carlo and we have to reduce it by ∼ 35% to fit

the data. In particular, thanks to this reduction the gamma sample has a very good agreement after

the fit while before the fit the prediction overestimated the number of events. It gives confidence that

the background is better reproduced after the fit.

9.6.2 νe for different true energy bins: 4 parameters

A second test is to fit the νe component in different energy bins to check whether the Monte-Carlo

correctly reproduces the data as a function of the neutrino energy. We have divided the signal νe

component in 4 different ranges of Monte-Carlo neutrino energy, according to the following bins:

[0|1.2|2.5|3.5|30GeV ]

This binning has been chosen to have about the same number of events for each sample, in order to

get similar errors for the parameters. The contribution to the νe signal component for each electron

momentum bin is shown in Fig. 9.8, where each color corresponds to a different true energy bin. Using

the same fitting scheme but with this new νe parametrization we get the momentum distributions in

Fig. 9.9 that correspond to the following best fit values:

R(νe1) = 0.83± 0.21(stat)± 0.12(Flux-XSec)± 0.15(Det-FSI) = 0.83± 0.29

R(νe2) = 0.92± 0.35(stat)± 0.16(Flux-XSec)± 0.06(Det-FSI) = 0.92± 0.39

R(νe3) = 0.90± 0.36(stat)± 0.21(Flux-XSec)± 0.06(Det-FSI) = 0.90± 0.42

R(νe4) = 1.31± 0.29(stat)± 0.12(Flux-XSec)± 0.08(Det-FSI) = 1.31± 0.33

We notice that the errors are higher, as expected, and dominated by the statistical uncertainties. At

low energy the νe component is slightly overestimated but still the results are compatible with the unity
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within ∼ 1σ. The pulls in Fig. 9.9 have the expected behavior and the χ2
bf/dof = 54.16/50 means that

the agreement is good. With the current data, the results are dominated by the statistical errors but

it is an interesting analysis for the future.

9.6.3 νe coming from muons or kaons: 2 parameters

In the neutrino beam the νe component comes from the decay of muons and kaons. νe from muons

mainly populates the low energy region while the ones from kaons dominates the high energy part of the

spectrum [Section 3.3.1]. The processes that produce each component are different so it is interesting

to measure them separately.

In Fig. 9.10 we show the signal broken down by neutrino parent for both selections. The νeCCQE selec-

tion turns to be an enhanced selection of neutrinos coming from muons and the same with CCnonQE

respect to the kaons. The shapes of each component are quite different and we can fit both component

separately without large correlations. The fit results for this approach are [Fig. 9.10]:

R(νµe ) = 0.68± 0.24(stat)± 0.12(Flux-XSec)± 0.14(Det-FSI) = 0.68± 0.30

R(νKe ) = 1.10± 0.08(stat)± 0.09(Flux-XSec)± 0.06(Det-FSI) = 1.10± 0.14

In the case of the νe(µ) component, the prediction slightly overestimates the data. Nevertheless, data

and Monte-Carlo are compatible around 1σ. The error in the muon component is largely dominated

by the low statistics. Its estimation is also difficult since at the low momentum region the detector

systematics are larger and the background is more abundant.
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Fig. 9.9: Momentum distributions before (top) and after (middle) the fit with 4 parameters for the νe
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Fig. 9.10: Momentum distributions before (top) and after (middle) the fit with 2 parameters for the
different νe particle sources. From left to right: νeCCQE, νeCCnonQE and gamma selections. At the
bottom the pulls for the systematic error parameters are shown.

157



9. Measurement of the beam νe component

9.6.4 νeCCQE or νeCCnonQE interactions: 2 parameters

The last approach that we investigated is fitting the νeCCQE and νeCCnonQE interactions inde-

pendently. This channel is very useful for cross-section analyses, as we can study the Monte-Carlo

performances for the two interaction types. The results:

R(νCCQEe ) = 1.08± 0.15(stat)± 0.03(Flux-XSec)± 0.09(Det-FSI) = 1.08± 0.18

R(νCCnonQEe ) = 0.94± 0.11(stat)± 0.12(Flux-XSec)± 0.05(Det-FSI) = 0.94± 0.17

are again compatible with the unity, in good agreement with the prediction, as can be seen in the

momentum distributions after the fit shown in Fig. 9.11.

9.7 Conclusion and discussion

The predicted νe beam component has been confirmed using a selection of νe interactions at ND280. We

used several parameterizations to model the νe component and each and every of them are compatible

with the expectations. We recall that the prediction in the number νe interactions at ND280 that we

have validated is the one provided by the ND280 νµ flux and cross-section measurement and hence, it is

the same flux used in the νe appearance analysis at SK [55]. Our analysis confirms that the intrinsic νe

background prediction at SK is correct at the 10% level. This is a necessary and very important check

that provides confidence in our understanding of the main source of background in the measurement

of θ13.

On the other hand, this analysis also provides a constraint in the differences between the νµ and νe

cross-sections. The νe cross-section has never been measured with a good precision and we find current

constraints at the 3% level from the theory [79]. Assuming that the flux is precisely predicted, the

possible deviations of the data from the prediction can be considered as differences in the νe and νµ

cross-sections represented by Rνe . As this parameter shows good agreement with the expectation and

it is measured at the 10% level, we conclude that the differences between νe and νµ cross-section cannot

be larger than 10%. It will be interesting to repeat this analysis when more data will be available, to

test the theoretical predictions for the νe and νµ cross-section differences.
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Fig. 9.11: Momentum distributions before (top) and after (middle) the fit with 2 parameters for the
different νe interaction modes. From left to right: νeCCQE, νeCCnonQE and gamma selections. At
the bottom the pulls for the systematic error parameters are shown.
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Chapter 10

νe disappearance at short baseline

In this chapter we investigate the νe disappearance at short baseline due to mixing with light sterile

neutrinos in the 3+1 model. Given the short distance of ND280 from the neutrino source and its

energy measurement capabilities, a study on the νe event rates allows to test the existence of light

sterile neutrinos at the ∆m2
41 > 1 eV2 scale for some values of the mixing angle.

The survival probability of a νe due to mixing with sterile neutrinos was deduced in Section 2.1.1 and

we rewrite it here:

Pee = P (νe → νe) = 1− sin2(2θee) sin2

(
1.27 ∆m2

41[ eV2]
L[m]

E[ MeV]

)
(10.1)

where sin2(2θee) and ∆m2
41 characterize the neutrino oscillation and are free parameters in the model.

This expression also depends on the energy of the neutrino E and its flight path L. Both quantities

cannot be exactly calculated on the data because we just know the kinematic of the electron and the

position of the neutrino interaction. However, the neutrino energy can be estimated making some

assumptions and the oscillatory behavior of Pee is manifested in function of the reconstructed neutrino

energy. We exploit this option and perform an analysis of the νe interaction rates as well as their

reconstructed neutrino energy shape (what is called in jargon: rate+shape analysis).

Motivations on the model choice

Within the ND280 precision, an analysis only in the νeCC distributions cannot disentangle between

3+1, 3+2 or 1+3+1 models, so we consider the simplest model with only one sterile neutrino (3+1).

This decision is also justified by the fact that the global fit described in Section 2.2.4 do not shown any

model preference.

The 3+1 model includes two more potential research channels as stressed in Section 2.1.1: νµ disap-

pearance and νe appearance. In our analysis we do not consider any of them. For the first channel, it is
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10. νe disappearance at short baseline

justified by the fact that it has never been observed and there are strong constraints (see Section 2.2.3).

This allows the study of the ND280 νµ event rates to reduce the flux and cross-section systematic errors

[Section 5.1]. Secondly and to be consistent with the assumption of no νµ → νs mixing, we do not

consider the νe appearance possibility. Essentially, we test the 3+1 model neglecting the mixing matrix

element Uµ4.

Overview of the analysis

In this analysis we use the νe selections together (see Chapter 6), defining an inclusive νeCC selection.

In Section 10.1 we start discussing about the νe flight path of the selected sample. In Section 10.2 we

show the reconstructed neutrino energy of the events selected in Chapter 6. The number of expected

events in the presence of oscillations is calculated by introducing Pee [Eq. (10.1)]. The statistical

framework is presented in Section 10.3 where the likelihood ratio method is introduced and different

methods to calculate the confidence intervals are also discussed, namely the constant ∆χ2 and the

Feldman-Cousins methods. After validating the minimization technique in Section 10.4 we calculate

the sensitivity of ND280 for the study of the νe disappearance in Section 10.5. Finally, the results with

the ND280 data are presented in Section 10.6 and compared with the literature in Section 10.7.

10.1 Neutrino flight path

Pee depends on the distance L traveled by the neutrino. As the hadrons produced in the Carbon target

do not decay immediately, L is in general smaller than the distance between the target and ND280

(280 m). Each particle decay at different points along the 96 m long decay tunnel depending on the

mean life τ of the particles. The kaons (K0 and K+), with a mean life of τK ∼ 10−8s, tend to decay

promptly while the muons, with τµ ∼ 10−6, decay along the whole tunnel. This can be observed in the

L patterns for the different νe sources in Fig. 10.1. L represents the distance between the production

point of the neutrino and the point of its interaction. The kaons have exponential distributions with

peaks at the production points while the µ have an almost flat pattern. There are almost no νe from

pion decay. The average flight path is 244 m and due to this effect, ND280 is sensitive to slightly larger

∆m2
41 than expected. In addition, the fact that L is not perfectly defined makes the oscillation pattern

along the neutrino energy more diffuse.
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10.2. Reconstructed neutrino energy

We remark that it is not possible to measure the flight path with enough precision for the data, so

an analysis on the L distribution is not available and we only show the Monte-Carlo distributions for

illustration.

 Flight Path (m)eνInteracting 
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0
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Fig. 10.1: Flight path of the neutrino selected in the νeCC sample broken down by neutrino parents.

10.2 Reconstructed neutrino energy

Assuming a νeCCQE interaction, we can reconstruct the neutrino energy ERec using the electron

kinematics according to the formula:

ERec =
m2
p − (mn − Eb)2 −m2

e + 2(mn − Eb)Ee
2(mn − Eb − Ee + pe cos θe)

(10.2)

where me, pe and Ee are the mass, momentum and energy of the reconstructed electron, mp is the mass

of the proton, mn is the mass of the neutron, θ is the angle between the trajectory of the neutrino and

the produced electron, that is the polar angle of the electron considering the neutrino going straight

along the z axis and Eb = 27 MeV is the binding energy. ERec contains the momentum and the angle of

the outgoing electron so it includes more valuable information than a solely momentum distribution. In

addition, ERec is correlated with the real energy of the neutrino ETrue so the oscillation pattern of Pee

will be more sensitive in the ERec than in the momentum distributions. This correlation is shown in

Fig. 10.2 for different type of neutrino interaction. The correlation between Etrue and Erec is strong in

the CCQE interactions, while in the other cases the majority of the events are below the diagonal due

to the fact that part of the energy is carried by the other particles produced in the neutrino interaction

that are not taken into account in the approximation of Eq. (10.2). In the case of the γ background

there is no correlation between ERec and ETrue as the electron is produced by a γ conversion and not
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Fig. 10.2: ERec vs Etrue for the different components of the νeCC selection. From left to right: νeCCQE,
νeCCnonQE and γ background.

by a neutrino interaction. We want to stress that the distributions in Fig. 10.2 are not used in this

particular form in the analysis and are only shown to illustrate the performances of ERec.

The distributions of ERec are shown in Fig. 10.3 for the νeCC selection and the γ control sample for

Monte-Carlo and data. The Monte-Carlo is broken down by neutrino flavour and the background shows

explicitly the OOFV component.
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Fig. 10.3: Neutrino reconstructed energy spectrum for selected events for the νeCC selection (left) and
γ selection (right). The Monte-Carlo is divided in ν flavour and OOFV background.

10.2.1 Binning choice

The range of ERec for the analysis is from 200 MeV to 10 GeV with a variable binning different from

Section 9.1.1 as we need a finer binning to have good resolution for the ERec shape to have the best
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10.2. Reconstructed neutrino energy

possible precision on ∆m2
41. As the γ sample is barely affected by the oscillations (νe correspond to

less than 10%), we can keep a coarser binning for that selection. The binning is optimized to have 31

ERec bins for the νeCC selection and 20 bins for the γ selection distributed as follows:

νe = [200,300,400,500,600,700,800,900,1000,1100,1200,1300,1400,1500,

1600,1700,1800,1900,2000,2100,2200,2350,2500,2700,3000,3300,3500,4000,

4400,5000,6000,10000]

γ = [200,300,400,500,600,700,800,900,1000,1100,1200,1300,1400,1500,

1700,1900,2200,2500,2800,4000,10000]

10.2.2 Expected number of events with oscillations

The short baseline νe disappearance is introduced by multiplying the number of νe and νe events by the

survival probability Pee defined in Eq. (10.1). This introduces the dependency of sin2(2θee) and ∆m2
41

on the number of expected events. To get the total number of expected events in the i-th ERec bin

entering in one of the two selections including the νe oscillation, we use an event by event framework

where the weight of each event is given by the systematic errors parameters ~f and Pee. It is defined as:

ni,αexp(sin
2(2θee), ∆m2

41; ~f) =
Ndata
POT

NMC
POT

Ni∑
j

W j(~f)× Pee(sin2(2θee), ∆m2
41) (10.3)

where Ni is the number of events in the i-th ERec bin, W j is the weight of the event given by ~f as

defined in Eq. (9.1), α runs over the two selections and Pee only applies to νe and νe. The same formula

is used for νeCC and γ samples, although the latter have a very small νe and νe components and the

effect of the oscillations is negligible.

In Fig. 10.4 we provide the ERec distributions for the νeCC selection under different oscillation hy-

potheses . The corresponding number of events are shown in Tab. 10.1. Regarding the ratios, we

observe how the maximum of the disappearance moves with ∆m2
41, indicating the a shape analysis of

ERec is sensitive to ∆m2
41. Despite of the fact that we used sin2(2θee) = 0.2, a 20% disappearance

effect is never observed due to the following reasons:

◦ For low ∆m2
41 the maximum of Pee sits at low energies where we have most of the γ background

coming from νµ that do not oscillate;
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10. νe disappearance at short baseline

◦ for higher ∆m2
41 the maximum of Pee stands at higher energies where we are dominated by

νeCCnonQE, for which the neutrino energy is poorly correlated with ERec (see Fig. 10.2) and the

oscillation pattern is more diffuse;

◦ for very high ∆m2
41 we enter in the fast oscillation regime [Eq. (1.9)] and the oscillation is averaged

to ∼ sin2(2θee)/2 giving a disappearance of the ∼ 10% for ∆m2
41 = 20 eV2.
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Fig. 10.4: Expected number of events in the case of oscillation for several hypothesis. Top: Expected
events in function of the reconstructed neutrino energy; bottom: ratio with respect to the non oscillation
prediction.

Hypothesis νe sample γ sample
νe Signal Total νe Signal Total

No oscillation 414.8 669.7 69.3 1248.7
sin2(2θee) = 0.2, ∆m2

41 = 1 eV2 410.2 665.2 68.9 1248.2
sin2(2θee) = 0.2, ∆m2

41 = 2 eV2 400.2 655.1 67.7 1246.9
sin2(2θee) = 0.2, ∆m2

41 = 5 eV2 378.5 633.4 64.0 1243.0
sin2(2θee) = 0.2, ∆m2

41 = 10 eV2 361.7 616.5 60.6 1239.3
sin2(2θee) = 0.2, ∆m2

41 = 20 eV2 368.6 623.3 61.1 1239.8

Table 10.1: Predicted number of events for different oscillation hypothesis. The final prediction given
by the νµ ND280 analysis for the Monte-Carlo is used.
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10.3. Calculation of the confidence intervals

10.3 Calculation of the confidence intervals

The purpose of an oscillation analysis is finding which values of sin2(2θee) and ∆m2
41 are compatible or

excluded by our data. In order to do this, we use a frequentist approach. A bi-dimensional parameter

space is defined in the physical region:

0 < sin2(2θee) < 1

0 < ∆m2
41 < 100

where a large upper bound for ∆m2
41 has been set. A test statistic value is calculated per oscillation

hypothesis, i.e. a value that provides whether an hypothesis for sin2(2θee) and ∆m2
41 is accepted or

rejected. The test statistic that we use is the likelihood ratio. In practice, we define a bi-dimensional

40× 50 discrete grid G in the parameter space

Gij ≡ (sin2(2θee)i, ∆m2
41j)

and the value of the best fit likelihood ratio is calculated at each point. This provides a map of the

likelihood ratio value and hence, the confidence intervals. The grid is defined coarser at large values of

∆m2
41 where we do not have much resolution in ∆m2

41 because of the fast oscillations. The binning in

each parameter for the grid is:

sin2 2θ = [0., 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225,

0.25, 0.275, 0.3, 0.325, 0.35, 0.375, 0.4, 0.425, 0.45, 0.475,

0.5, 0.525, 0.55, 0.575, 0.6, 0.625, 0.65, 0.675, 0.7, 0.725,

0.75, 0.775, 0.8, 0.825, 0.85, 0.875, 0.9, 0.925,0.95, 0.975, 1]

∆m2[ eV2] = [0., 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9, 10, 12.5,

15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, 35, 37.5, 40, 42.5, 45,

47.5, 50, 52.5, 55, 57.5, 60, 62.5, 65, 67.5, 70, 72.5,

75, 77.5, 80, 82.5, 85, 87.5, 90, 92.5, 95, 97.5, 100 ]
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10. νe disappearance at short baseline

10.3.1 Likelihood ratio definition

The likelihood ratio Lr at the point of the grid Gij compares the value of the likelihood at that point

(Lij) with the value of the likelihood at the point Gbf ≡ (sin2(2θee)bf , ∆m2
41bf ) where the agreement

between data and Monte-Carlo is better (best fit point) and the likelihood is maximal (Lrbf ). It is

defined as the ratio of the two likelihood values:

Lrij =
Lbf
Lij

The quantity that provides the test statistic to compute the confidence intervals is

∆χ2
ij ≡ −2 logLrij = χ2

ij − χ2
bf (10.4)

that should follow a χ2 distribution with dof = 2. The likelihood function was deduced in Section 9.2

and we define it for this analysis as:

χ2 ≡ −2 logL =2

31∑
l=0

{
nl,νeexp − n

l,νe
dt + nl,νedt × log

(
nl,νedt

nl,νeexp

)}

+2

20∑
i=0

{
nl,γexp − n

l,γ
dt + nl,γdt × log

(
nl,γdt
nl,γexp

)}

+(~f − ~f0)TV −1(~f − ~f0) (10.5)

where nl,αdt and nl,αexp are the expected number of events in the l-th ERec bin of the α selection (νeCC or

γ) and ~f are the 55 systematic errors parameters that are constrained by the penalty term using the

covariance matrix V (see Chapter 8). In order to build the confidence intervals for the parameter space

we calculate the minimal value of the log-likelihood [Eq. (10.5)] at the best fit point χ2
bf and the value

at each point of the grid χ2
ij . The calculation of the global minimum χ2

bf suffers from computational

issues and it is discussed in Section 10.3.3.

Treatment of the nuisance parameters

The likelihood Eq. (10.5) depends on the oscillation parameters and also on the 55 parameters ~f that

include the systematic uncertainties in the analysis. The results of these parameters are not interesting

for the analysis so they are called nuisance parameters. To build the contours in the bi-dimensional
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10.3. Calculation of the confidence intervals

grid they must be removed. A common way to do that, is by building the profile likelihood defined as

the minimum value of the log-likelihood fixing the oscillation parameters to the point Gij :

χ2
ij = χ2

ij(
~fbf )

where ~fbf is the nuisance parameters vector that minimize the log-likelihood at Gij .

10.3.2 Simple study of the likelihood map on the parameter space

We present a simple analysis of the shape of the likelihood in the parameter space. We calculate the

χ2
ij map [Eq. (10.5)] for a toy Monte-Carlo built under some oscillation hypothesis. This toy is not

fluctuated according to statistical nor systematic uncertainties, since we want to study solely the effect

of the oscillations. We have done two different toy experiments:

◦ Set 1 : No oscillations, sin2(2θee) = 0 and ∆m2
41 = 0

◦ Set 2 : Oscillations with parameters sin2(2θee) = 0.7 and ∆m2
41 = 8 eV2.

The map of the likelihood in the bi-dimensional oscillation parameter space is shown for each case in

Fig. 10.5. A large value indicates that the corresponding region can be excluded with a large confidence

level.

In the Set 1 we observe large values of the likelihood at around ∆m2
41 = 15 eV2. This is the region

where the effect of the oscillation are stronger since it corresponds to the value of ∆m2
41 that locates the

maximum of the disappearance at the peak of the EErec distribution. Hence, this is the region where

our analysis is more sensitive to sin2(2θee). For lower values of any of the parameters, the likelihood

becomes rather flat since the effect of the oscillations diminish. It implies that a random fluctuation

of the data might easily change the position of the global minimum in that region and hence, we are

not able to discriminate among the points in that region. A similar feature occurs at high ∆m2
41: this

region corresponds to the fast oscillations regime where the values of ∆m2
41 are degenerate because of

the flatness of the likelihood with respect to ∆m2
41.

For the Set 2 we observe an important effect to be stressed: the global minimum of the likelihood sits

in (sin2(2θee) = 0.7, ∆m2
41 = 8 eV2), but for higher ∆m2

41 and same sin2(2θee) we find local minima.
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10. νe disappearance at short baseline

This effect is introduced by the oscillatory behaviour of Pee. Hence, a fluctuation in the data can move

the global minimum of the likelihood to a wrong solution with higher ∆m2
41. This is called a ghost

point and they are very common in neutrino oscillation analysis.
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10.3.3 Minimization technique

The log-likelihood or χ2 defined in Eq. (10.5) is minimized using the TMinuit library provided by ROOT

in order to calculate the minimal value at the best fit point χ2
bf . The free oscillation parameters are

constrained within the same parameter intervals than the bi-dimensional grid

0 < sin2(2θee) < 1

0 < ∆m2
41 < 100

where we included an upper constrain in ∆m2
41 that is large enough not to give boundary problems at

high ∆m2
41. The minimization presents some purely computational problems that have been extensively

studied. Depending on the choice of the starting values for the oscillation parameters sin2(2θee)s and

∆m2
41s, the fit might not find the correct global minimum. This is a problem because the fitted

parameters are not properly estimated and moreover, the value of the χ2
bf is not the minimum one,

giving a false confidence interval. We tried several options:

◦ Fixed at some point far from the boundaries sin2(2θee)s = 0.4 and ∆m2
41s = 5 eV2: in some cases

the fit did not find the correct global minimum because it falls in a local minimum

◦ Random starting values: similarly to the previous case, sometimes the fit falls in a local minimum

◦ Multi-fit : based on performing several fits at different starting points and extract the minimum

value of them. This is the most accurate approach and the one we utilize in our analysis.

The two first cases are the fastest approaches, but they turn to be insecure and imprecise. The fit

finds in some cases a local minimum instead of the global minimum due to the multi-modal nature of

the likelihood, since in some regions, it changes rapidly giving many local minima. Further discussion

about these methods appear in Appendix B. The third procedure is the one used in present analysis

and it is described as follows:

1. A set of 10 starting values for ∆m2
41 is chosen.

2. For each starting value, the log-likelihood expression [Eq. (10.5)] is minimized.

3. The lowest χ2
bf value is taken as the global minimum.
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This receipt is not applied to sin2(2θee) since the problem is only related to the oscillatory behavior

driven by ∆m2
41, so then the starting value of sin2(2θee) is always set to 0.5. The set of initial ∆m2

41

values is defined as:

∆m2
41s = {5, 10, 20, 30, 40, 50, 60, 70, 80, 90} [ eV2]

10.3.4 p-value

The p-value is an estimator of the compatibility of the data with a hypothesis, commonly, the null

hypothesis. It is equivalent to the goodness-of-fit test using ∆χ2 instead of χ2.

We build Ntoys toys experiments in the non-oscillation hypothesis sin2(2θee) = 0, ∆m2
41 = 0 and are

minimized using the method described previously. The value ∆χ2
00 of best fit is calculated for each of

them and also computed for the data ∆χ2
00,data.

The p-value is defined as the fraction of toys experiment for which ∆χ2
00 > ∆χ2

00,data. Mathematically:

p − value =
1

Ntoys

∫ +∞

∆χ2
00,data

d∆χ2f(∆χ2) (10.6)

This value provides the probability that the differences between the null hypothesis and the observed

data are due to fluctuations. Thus, a low p-value indicates that the data does not favor the null

hypothesis.

10.3.5 The constant ∆χ2 method

The constant ∆χ2 method is a simple method that provides confidence intervals in the oscillation pa-

rameter space. To determine whether a given point of the parameter space Gij is rejected or permitted,

we calculate the ∆χ2
ij value [Eq. (10.4)] and we check whether this value is larger or smaller than a

critical value ∆χ2
Cij provided in Tab. 10.2 for each confidence level:

◦ If ∆χ2
ij > ∆χ2

C : Gij is rejected at some confidence level

◦ If ∆χ2
ij < ∆χ2

C : Gij is allowed at some confidence level

◦ If ∆χ2
ij = ∆χ2

C : the Gij ’s that fulfill this condition define the confidence contour
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10. νe disappearance at short baseline

The ∆χ2
C values are calculated with the goodness-of-fit provided by a χ2 with dof = 2.

This method provides a reliable contour in the limit of large statistic (i.e. Gaussian pdfs) and when the

contour is far from the physical boundaries. If any of the conditions are not fulfilled, other methods

(like the Feldman-Cousins) must be used. In general, this method is conservative since it provides

over-coverage to most of the relevant regions in the parameter space [92].

1σ 90%CL 95%CL 2σ 3σ
1dof 1.00 2.71 3.84 4.00 9.00
2dof 2.30 4.61 5.99 6.18 11.83

Table 10.2: Critical values of the ∆(χ2) representing each confidence level according to the constant
∆χ2 method [101].

10.3.6 The Feldman-Cousins method

An alternative frequentist method to build confidence interval, commonly used in neutrino analyses is

the Feldman-Cousins method [92]. This is a more accurate method that the previous constant ∆χ2

method, but it is also much more time consuming.

According to the Feldman-Cousins technique, the critical value that provides whether a point in the

parameter space Gij is permitted or not, is not constant but depends on Gij itself:

∆χ2
Cij ≡ ∆χ2

Cij(sin
2(2θee), ∆m2

41)

Those values need to be pre-calculated for the whole parameter space in the following way:

1. Choose a point Gij on the oscillation parameter space;

2. Throw Ntoys toys Monte-Carlo in the oscillation hypothesis sin2(2θee)
i
, ∆m2

41
j

following the pro-

cedure explained in Section 9.3.1;

3. For each toy we calculate ∆χ2
ij and build its distribution. We show these distributions for some

example Gij in Fig. 10.6;
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10.3. Calculation of the confidence intervals

4. The critical value ∆χ2
Cij at the x%CL corresponds to the value that fulfills:

1

Ntoys

∫ ∞
∆χ2

Cij

d∆χ2f(∆χ2) = x/100 (10.7)

This procedure is repeated for the whole parameter space and, the sensitivity contour is provided in

the same way that the constant ∆χ2 but using these new critical values ∆χ2
Cij .

If the distribution of ∆χ2
ij values follows a χ2 distribution with two degrees of freedom, the critical

values calculated with Feldman-Cousins coincide with the ones of the constant ∆χ2 and both methods

converge. In general this is not true, as shown in Fig. 10.6. The critical values generated with Feldman-

Cousins using 5000 toys per grid point Gij is shown in Fig. 10.7 for 1σ, 90%CL and 95%CL, respectively.

We show the difference between the critical value calculated with Feldman-Cousins and the constant

∆χ2 [Tab. 10.2]: a zero value indicates that both methods provide same confidence levels. The dark

region indicates over-coverage by the constant ∆χ2 and the bright regions means that it is under-

covered. Differences between constant ∆χ2 and Feldman-Cousins exist due to three reasons:

1. Proximity to the unphysical region: points close to the unphysical region occasionally have best

fits in the unphysical region. Since our algorithm restricts fits to the physical region, these fits

give a lower ∆χ2
Cij value;

2. sinusoidal nature of the oscillation function: for high values of ∆m2
41, fluctuations can cause a

global minimum in a wrong dip of the function, increasing the value of ∆χ2
Cij ;

3. one-dimensional regions: in some regions of the plane, the ∆χ2
Cij distribution acts like a dof = 1

rather than dof = 2 χ2 distribution. For instance, at very low values of ∆m2
41, where the only

relevant quantity is the number of events in the lowest ERec bin. In these regions, ∆χ2
Cij tends

to lower values than normal.
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10.4 Validation of the fitter with toys Monte-Carlo

The minimization technique is validated using 5000 toys Monte-Carlo generated according to Sec-

tion 9.3.1. The toys are built under the sin2(2θee)toy = 0.7 and ∆m2
41toy = 8 eV2 oscillation hypothesis

applying the survival probability Pee. The minimization technique defined in Section 10.3.3 is used

to find the best fit values for each of the toys. The distribution of the best fit points Gbf in the

parameter space is shown in Fig. 10.8. The largest population is around the point where the toys

Monte-Carlo were built. Nevertheless, some of the Gbf are spread at higher ∆m2
41. This is directly

related with the degeneracy of the ∆m2
41 values due to the oscillatory behaviour of the νe disappearance

(see Section 10.3.2).

As a result, the distributions of sin2(2θee)bf and ∆m2
41bf showed at the sides of Fig. 10.8 present some

features. The oscillation parameter ∆m2
41 is highly non Gaussian due to its degeneracy with higher

∆m2
41 values. The parameter sin2(2θee) is Gaussian distributed, but it is highly correlated with ∆m2

41

and a large ∆m2
41 moves sin2(2θee) to higher values, since there must be a compensation: there are

less νe events at high ERec, so a larger νe disappearance amplitude is required to mimic the same effect

at low ∆m2
41. Hence, the average of sin2(2θee)bf is slightly larger than sin2(2θee)toy and we find a pile

up in sin2(2θee)bf = 1 more prominent than expected due to the asymmetry on the distribution.

The pull distributions for the oscillation parameters defined as:

δ(sin2(2θee)) =
sin2(2θee)toy − sin2(2θee)bf

σsin2(2θee)

δ( ∆m2
41) =

∆m2
41toy − ∆m2

41bf

σ∆m2
41

are shown at Fig. 10.9. They are not centered at zero as expected from the discussion above. The peak
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at zero of δ(sin2(2θee)) correspond to the pile up at sin2(2θee)bf = 1. As they are in the boundary, the

error calculated by the minimization is very large making the denominator in δ(sin2(2θee)) large and its

value small. If we fix ∆m2
41 = ∆m2

41toy during the minimization and only allow to change sin2(2θee),

the correlations are avoided and a good behavior of δ(sin2(2θee)) is expected. The pull distribution is

shown in Fig. 10.10 where we observe that the mean decreases to 〈δ(sin2(2θee))〉 = 0.04± 0.01.
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Regarding the bias in ∆m2
41, it should be reduced by enlarging the amount of simulated data, as

the statistical fluctuations are smaller and the degeneracy of ∆m2
41 reduced. Thus, toys Monte-Carlo

simulated 10 times more statistics (5.9×1021POT) are built. We perform the minimization on 5000 toys

and the distribution of the fitted oscillation parameters in Fig. 10.11 shows that the spread on ∆m2
41

is smaller because the degeneracy of ∆m2
41 is soften. The distribution of δ( ∆m2

41) is more centered at

zero as can be observed in Fig. 10.12. Concerning δ(sin2(2θee)), it is shifted since the determination of

sin2(2θee) does not depend on the statistics but just on the correlations with ∆m2
41.

With this discussion we demonstrate that the biases are driven by the multi-modal behavior of the

likelihood and it is not related with the minimization technique. For the sake of completeness, in

Fig. 10.13 we show the nuisance parameters pulls using the definition Eq. (9.6). It demonstrates that

the minimization technique gives the correct solution as the mean values are well below 10%. On the

other hand, the χ2
bf values for the toys experiments should follow a χ2 distribution with 49 dof , since

we have 51 bins and 2 free parameters [Eq. (9.4)]. In Fig. 10.14 we show the χ2
bf distribution and

we conclude that it is very compatible with what we expected, meaning that the framework estimates

properly the global minimum.

10.5 Sensitivity analysis

The sensitivity of ND280 to the νe disappearance is defined as the intervals in the oscillation parameter

space that can be excluded with a certain probability in the case that there is no sterile oscillations.
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Fig. 10.12: Pull mean and width of the oscillation parameters for 5000 toys at 5.9 × 1021POT in the
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41 = 8 eV2).

This studies are purely based on Monte-Carlo. We calculate the ∆χ2
ij map for a toy Monte-Carlo

without oscillations and compare at each point Gij with the critical values given by the constant ∆χ2

method or the Feldman-Cousins. As the confidence intervals depend strongly on the statistical and the

systematic errors fluctuations, the ∆χ2
ij map used to get the sensitivity is obtained as the average of
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1000 toys experiments built in the null hypothesis but with different statistical and systematic error

fluctuations.

10.5.1 Sensitivity with constant ∆χ2

The contours at 1σ, 90%CL and 95%CL cases are shown in Fig. 10.15 for linear and logarithmic scales.

The area to the left of the lines are the regions that we expect to reject if the ND280 data is compatible

with the Monte-Carlo prediction in the null hypothesis. If, on the contrary, the data presents any signal

of νe disappearance within that region, our analysis will be able to measure it and discriminate the null

hypothesis within the corresponding confidence level.

The bump at low ∆m2
41 corresponds to the position of the first oscillation maximum over the ERec

peak of the νe component selected at the νeCC sample. In this region we have the best sensitivity to
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10.5. Sensitivity analysis

sin2(2θee). When we go to higher ∆m2
41 region we enter in the fast oscillation regime where we lose

the dependency on ∆m2
41, so we get a vertical straight line. At this point the νe disappearance effect

is halved and this is why the sensitivity in sin2(2θee) becomes worse (see Section 10.3.2).
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Fig. 10.15: Sensitivities at 68%CL, 90%CL and 95%CL calculated using the constant ∆χ2 method
applied to an average grid for 1000 toys. Left plot: linear scale, right plot: logarithmic scale.

It is also interesting to study the effect of each systematic uncertainty on the final contour. This can be

done by enabling or disabling groups of systematic errors parameters. On the top of Fig. 10.16 we show

the sensitivity for only one group of systematic errors at a time1. The rest of systematic parameters that

are not used are neither thrown in the toys nor fitted during profiling the likelihood. We have separated

the systematic errors in three groups: flux, cross-section and detector and FSI systematic errors. The

different sources have similar impact on the sensitivity although the cross-section uncertainties are

slightly more important.

The evolution of the sensitivity with the amount of data is studied by simulating toys Monte-Carlo with

approximately 10 times the current POT (7.8×1021POT, T2K final goal). The result for this sensitivity

is shown in the middle of Fig. 10.16. We tested both the exposures with and without systematic

errors. Increasing the statistics moves the sensitivity from sin2(2θee) = 0.5 to sin2(2θee) = 0.35 (taking

as reference the high ∆m2
41 part) while if we remove the systematic uncertainties it moves up to

sin2(2θee) = 0.25, meaning that we are dominated by the systematic errors with the current POT. For

ten times the current statistics and without considering systematic errors, we reach the lower limit for

1A coarser binning is used to built the sensitivity grid and save time. In this way the contour slightly moves. This is
used just for checks and not for the final results where the fine binning is used.
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10. νe disappearance at short baseline

the ND280 sensitivity of sin2(2θee) = 0.1.

Finally, we studied the impact of the gamma control sample in the sensitivity by removing the contri-

bution of this selection to the likelihood. The contours are shown at the bottom of Fig. 10.16 where

we observe that the sensitivity improves if we include the gamma selection. This is mainly due to the

better knowledge of the OOFV background that allows to further constrain the systematic errors on

this component.

10.5.2 Sensitivity with Feldman-Cousins

The final results for this analysis will be provided by the Feldman-Cousins technique as it gives more

reliable contours than the constant ∆χ2. The critical values calculated in Section 10.3.6 for different

confidence levels are compared with the averaged ∆χ2 map for the toys Monte-Carlo. In Fig. 10.17 we

show the sensitivity using this technique. As the contours provided by the constant ∆χ2 stand in the

region of good coverage [Fig. 10.7], the Feldman-Cousins contours do not differ to much from them.

10.6 Confidence intervals given by the data

We apply the fitting technique to the data and calculate the confidence regions with the methods

described in Section 10.3. The minimal value for the χ2 expression [Eq. (10.5)] that we find for the

real data is:

χ2
bf/dof = 43.2/49

and corresponds to the point Gbf in the parameter space:

sin2(2θee)bf = 1.00 ∆m2
41bf = 2.14 eV2

This values indicate that a non-zero value for the νe disappearance is preferred by the data set. Never-

theless, Gbf is in a region outside the sensitivity region [Fig. 10.17] and hence, the position of the best

fit point is not relevant. What really matters are the confidence intervals that are presented below. In

Fig. 10.18 the reconstructed neutrino energy distributions for the νe and gamma selections are shown

for the data and the Monte-Carlo before and after the fit. The deficit of the data observed in Fig. 10.18
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Fig. 10.16: 90%CL exclusion regions averaged over 1000 toys in the non oscillation hypothesis. Top:
shows the contributions of each uncertainty for the case with 6.0 · 1020 POT; middle: dependency of
the sensitivity with the POT; bottom: impact of the photon sample in the sensitivity.

for the nominal Monte-Carlo disappear after the fit and the goodness-of-fit is gof = 70%, indicating a

good agreement. The fact that the deficit at low ERec is observed in both, the νeCC and the γ samples

indicates that it comes partially from an overestimation of our backgrounds. This fact emphasizes the

importance of including the gamma control sample in the νe disappearance analysis.

It is interesting to check which systematic parameter have been tunned by the fit, comparing them
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Fig. 10.17: Sensitivities at 68%CL, 90%CL and 95%CL calculated using the Feldman-Cousins method
applied to an average ∆χ2 grid for 1000 toys. Left plot: linear scale, right plot: logarithmic scale.

before ~f0 and after ~fbf using the pull definition:

δf =
f0 − fbf
σf0

They are shown for each parameter in Fig. 10.18. Essentially, the pulls are around 1σ, being the

largest variation of about −2σ for the NC interactions without a π0 (NC Other). It means that all

the parameters are compatible with their prior errors and there are no tensions in our results with the

ND280 νµ analysis. Also in this case, as well as in the νe beam measurement [Section 9.6], the OOFV

coming from photon conversion is reduced by ∼ 30% (1σ) what largely affects to the low ERec region.

This is what mainly drives the reduction at low ERec for both the γ and the νeCC selections.
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Fig. 10.18: Reconstructed energy distributions and ratios for the νeCC (top) and gamma (middle)
selections. The left plots show the nominal distributions before the fit and the right plots the Monte-
Carlo distribution tuned with the post-fit results together with the real data. The boxes on the top
of each distribution show the ratio of the data respect to the Monte-Carlo before the fit with the
systematic uncertainties in red. At the bottom we show the pulls of the systematic error parameters.
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10. νe disappearance at short baseline

10.6.1 Results fixing the oscillation parameters

To further clarify and justify the discrepancies at low energies between the expectation and the real

data, we study the compatibility between the Monte-Carlo in the null hypothesis and the data. The

nuisance parameters are profiled as usual. In this way we study if only systematic errors variations are

able to fully reproduce the behaviour of the data. Essentially, this analysis provides the χ2
00 value in

the point of the parameter space G00 (sin2(2θee) = 0, ∆m2
41 = 0). The best fit value χ2

00,data if no νe

disappearance is introduced corresponds to:

χ2
00,data = 47.6

meaning a goodness-of-fit of 62%, smaller than in the case in which we allow νe disappearance.

The ratio between data and Monte-Carlo are presented in Fig. 10.19 for the νeCC and gamma samples.

There are the ratio between the data and the nominal Monte-Carlo compared with the ratio of the

best fit Monte-Carlo without fitting νe disappearance and fitting νe disappearance. In those figures,

we appreciate how the fit without oscillations is able to accommodate the discrepancy between data

and Monte-Carlo in the γ sample. As this sample is not affected by the oscillations the ratios with

and without oscillation parameters are basically identical. Regarding the νeCC selection, there is still

a small deficit on the data between 600 MeV and 800 MeV that is better reproduced including the νe

disappearance.

10.6.2 p-value

The estimator of the p-value, according to Section 10.3.4, is:

∆χ2
00,data = χ2

00,data − χ2
bf,data = 4.4

This value is compared with the ∆χ2
00 distribution for 5000 toys Monte-Carlo in the non oscillation

hypothesis and the p-value is given by:

p − value =

∫ +∞

4.4

dx∆χ(x) = 0.061

meaning that our data are compatible with the non oscillation hypothesis at the 6.1% level. This
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is shown in Fig. 10.20 where the critical value for the 90%CL is shown in red for reference and it

corresponds to ∆χ2
C(90%CL) = 3.4.
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Fig. 10.20: p-value of the null hypothesis given by the data. The distribution correspond to the
∆χ2

00 from 5000 toys Monte-Carlo without oscillations. The critical value for the 90%CL is shown for
reference.
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10. νe disappearance at short baseline

10.6.3 Exclusion regions with the constant ∆χ2 method

Confidence intervals are built for the data using the constant ∆χ2 method described in Section 10.5.1.

The ∆χ2
ij map [Eq. (10.4)] is calculated for the data and shown in Fig. 10.21. The contours are located

by comparing this map with the critical values in Tab. 10.2 for different confidence levels (1σ, 90%CL

and 95%CL). They are shown in Fig. 10.22. According to this method, the null hypothesis is excluded at

the 1σ level. On the other hand, for high ∆m2
41 > 5 eV2 our analysis set constrains for sin2(2θee) > 0.1

at the 90%CL and sin2(2θee) > 0.3 at the 95%CL, reaching a maximum of sin2(2θee) > 0.05 for

∆m2
41 ∼ 11 eV2 at the 90%CL.
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Fig. 10.21: ∆χ2 map on the parameter space for the data. On the sides we show the profile of the ∆χ2

on the coordinates of the best fit point. Several contours are marked to show to gradients.

10.6.4 Exclusion region with the Feldman-Cousins method

Confidence intervals using the Feldman-Cousins method are built by comparing the ∆χ2 map for

the data [Fig. 10.21] with the critical values calculated and shown in Fig. 10.7. At the bottom of
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10.6. Confidence intervals given by the data

Fig. 10.22 the contours for the 1σ, 90%CL and 95%CL are shown. The 95%CL contour is similar to

the one obtained with the constant ∆χ2 method because it sits on the region of good coverage. On

the contrary, the exclusion regions at 1σ and 90%CL are noticeably different since they are out of

this region. The Feldman-Cousins intervals are more restrictive since the constant ∆χ2 over-covers the

zones near the boundaries [Section 10.3.6]. The non oscillation hypothesis is excluded at the 90%CL

as the p-value indicated. All the high ∆m2
41 > 7 eV2 is excluded at the 90%CL and sin2(2θee) > 0.2 is

also excluded at the 95%CL.
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Fig. 10.22: 68%CL, 90%CL and 95%CL exclusion regions calculated using the constant ∆χ2 method
(top), and the Feldman-Cousins method (bottom).

10.6.5 Discrepancies between the expected sensitivity and the exclusion

regions

The confidence contours obtained from the data and the expected sensitivity [Fig. 10.17] have different

features. In Fig. 10.23 we compare the confidence interval of the data at the 95%CL with the predicted

sensitivity including the 1σ envelope where we expect to have the confidence contours.
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10. νe disappearance at short baseline

For low ∆m2
41, the contour set by the data is contained within the 1σ envelope, while for ∆m2

41 >

10 eV2, the data excludes more than expected. This has its origin in a positive fluctuation of the

background (lucky exclusion). We find slightly more events than predicted at high ERec as can be seen

in the ratio of the νeCC [Fig. 10.19] and hence we are more sensitive than expected. On the other

hand, at low ERec we see a deficit in the νe sample partially covered by the systematic uncertainties

(specially the OOFV backgrounds as previously discussed) that justifies the low p-value obtained.

To better clarify this, we simply count the events at low energy (0 ≤ ERec ≤ 1.5 GeV) and high energy

(1.5 ≤ ERec ≤ 10 GeV) for several toys Monte-Carlo and compare the distributions on the number

of events with the data. For the toys experiments we have include a 30% reduction in the OOFV

parameter. In Fig. 10.24 we see that, indeed, for low ERec the data is below the averaged predicted

value and only ∼ 10% of the toys have less events than the data, while at high ERec the data is above

the mean and the ∼ 80% of the toys have less events than the data.
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Fig. 10.23: Comparison for the predicted sensitivity (red) and the confidence contours calculated with
the data (green) using Feldman-Cousins at the 95%CL. The blue curves provides the ±1σ variations
of the contours.

10.7 Conclusion and discussion

The contours at 68%CL and 90%CL exclude the non-oscillation hypothesis and it is interesting discuss

the compatibility of our result with the literature. We chose the νe disappearance experiments presented

in Section 2.2, namely:

◦ Reactor neutrino experiments (Reactor anomaly).
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Fig. 10.24: Number of events in the range 0 ≤ Ereco ≤ 1.5 GeV (left) and 1.5 ≤ Ereco ≤ 10 GeV
(right) obtained from 10000 toys experiments varying the systematic errors parameters. The red lines
correspond to the number of events in the corresponding range in the data sample.

◦ Experiments in gallium with radioactive sources (Gallium anomaly).

◦ Solar neutrino experiment and KamLAND experiment using the measurements of Daya Bay and

RENO on sin2(2θ13).

◦ Measurements on νe-Carbon scattering at LSND and KARMEN.

◦ Combined analysis of the experiments above [96].

In Fig. 10.25 we show the confidence contours found by those experiments in comparison with ours for

the 90%CL and the 95%CL.

At the 90%CL the allowed region by the ND280 data encompasses the best fit point of the gallium

anomaly and agrees with the reactor anomaly and the combined analysis. The high ∆m2
41 part of the

allowed regions of the νe-Carbon experiments are largely excluded by our data. As well as the rest of

the experiments, our results are slightly in tension with the Solar neutrino constrains.

At 95%CL a small part of parameter space is rejected including the high ∆m2
41 > 10 eV2 part of the

gallium anomaly and the region delimited by sin2(2θee) > 0.1 and ∆m2
41 = 10− 30 eV2 of the reactor

anomaly. The νe-Carbon best fit point is still excluded and there is no tension with the solar neutrino

experiments.
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experiments except ND280 (red) [96]. The star and the dots correspond to the position of the global
minimum for the different experiments.
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Chapter 11

Summary and outlook

The neutrino flux and cross sections for the T2K analyses at both, ND280 and SK, are measured

from the selection of νµCC interactions at ND280. Specifically the intrinsic beam νe component, that

constitute the main background to the T2K νe appearance analysis, is predicted by this procedure. The

only direct confirmation of this prediction is given by the measurement of the νe event rates at ND280.

With the analysis described in this thesis we performed this measurement, confirming the prediction

with a 10% uncertainty, being the ratio between the measured and expected νe component:

Rνe = 1.01± 0.06(stat)± 0.07(Flux-XSec)± 0.04(Det-FSI) = 1.01± 0.10

It reinforces our understanding of the intrinsic νe background component in the νe appearance analysis

at SK. It is the most important background and our validation establishes that the measurement of

the last mixing angle sin2(2θ13) has not to be corrected. This analysis was possible thanks to a clean

selection of νeCC events at ND280, combining the TPC and the ECal PID to select electrons, and an

exhaustive study of our backgrounds, estimating the misidentified muons in the selected sample and

including a photon conversion control sample in the fit. In the future with 10 times more data (up to

now we have only collected the 8% of the final POT goal), we will be sensitive to differences between

the νe and νµ cross sections up to the 4% level, being a very promising analysis.

The νe interaction rates along with the reconstructed neutrino energy information have been used to

search for νe → νs oscillations (νe disappearance) at short base-line in the 3+1 model. The reactor and

gallium anomalies measure some deficit in their νe event rates compatible with νe SBL disappearance

at the ∆m2
41 ∼ 1 eV2 scale. Indeed, we are able to investigate at ND280 mass differences of that order.

This is the first time that this channel is studied by a standalone neutrino beam experiment at the GeV

scale. Our results are compatible with the null hypothesis at the 6.1% level according to the p-value

test, and we are able to reject the parameter region above ∆m2
41 = 10 eV2 and sin2(2θee) = 0.1 at the

95%CL. A repetition of this analysis in the future with more statistic is foreseen as it will set stringent
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11. Summary and outlook

constraints in the parameter space. In addition, this analysis is intended to be the first step in a more

complex fit including the remaining channels: νe appearance and νµ disappearance. Furthermore, with

the anti-neutrino data that is been collected at this moment (2014), we might be sensitive to differences

between neutrino and anti-neutrino samples and hence, CPV at SBL. It will be interesting to separately

test neutrinos and anti-neutrinos mixing with steriles allowing to disentangle between the 3+1 model

and models with more that one light sterile neutrino where CPV is allowed.
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Appendix A

Systematic errors calculation

A.1 Charge misidentification systematic error

This corresponds to a summary on the work developed and reported in the T2K internal paper [29].

The charge of the particles is measured by the TPCs reconstructing the curvature of the tracks due to

the magnetic field. The charge misidentification associated to the TPC is calculated using a statistical

approach by comparing the reconstructed charges in the different TPCs.

A clean sample of through-going muons are selected by requiring a track crossing the three TPCs with

more than 18 clusters per TPC segment. This sample lacks of backward-going tracks and also tracks

whose TPC segments belong to different particles due to reconstruction mismatches. This allows to

study the charge misidentified purely by the TPC detectors. The charge confusion is calculated as a

function of the momentum in a variable binning that we have optimized. The probability of a wrong

charge reconstruction pcm is related with the probability of obtaining different charges psame in the

TPCs by

psame = (1− p1
cm)(1− p2

cm)(1− p3
cm) + p1

cmp
2
cmp

3
cm (A.1)

where the first piece is the probability that the three TPC charges are properly reconstructed and the

second is the probability that the reconstruction fails in calculating each of them. The indexes refer to

the different TPCs. This is exact only under the assumption that each of the TPC segment belongs

to the same particle, i.e. there is no mismatch. As we explained above, this is very accurate for the

through-going muons sample. Making the approximation of considering the systematic error equal in

the three TPCs

p1
cm = p2

cm = p3
cm (A.2)
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we get, developing the former expression, the following formula for the charge misidentification as a

function of psame, that is a quantity we can measure in both data and Monte-Carlo

pcm =
1

2
(1−

√
1/3(4psame − 1)) (A.3)

To check the performances of the statistical approach, a parallel pure Monte-Carlo study has been

done by comparing directly the reconstructed charge with the real charge that has that particle in the

simulation (true charge). In summary we present two results:

◦ Statistical calculation: calculated both for data and Monte-Carlo and taken as the multi-fit

results.

◦ Monte-Carlo truth validation: direct comparison of the reconstructed and true charges to cross-

check the above results.

Fig. A.1 shows the results for the charge confusion given by the two methods for data and Monte-Carlo.

An increase of the charge confusion probability with the momentum is observed, since the reconstruction

of the curvature is more difficult for the very straight tracks. The low energy region is populated

mainly by low quality reconstructed tracks, short tracks, mismatches of the global reconstruction and

also backward-going tracks. This explains the worsening of the charge confusion at lower energies.

In addition, the first bins has low statistics due to the requirement of 3 TPC segments. Then, the

error in the charge confusion is also quite large. Because of this, the Monte-Carlo truth method

shows discrepancies with the statistical calculation. Essentially, the former predicts a larger charge

misidentification.

The final systematic error is given by the absolute difference between data and Monte-Carlo (Fig. A.1).

The final numbers propagated to the νe analysis depend on the momentum and number of reconstructed

hits in the TPC and are given in Tab. A.1.

A.2 Electron TPC PID systematic error

This corresponds to a summary on the work developed and reported in the T2K internal paper [27].

The sample of γ conversions can be used to estimate the TPC PID systematics for electrons as it pro-

vides a clean sample of electrons and positrons without using the TPC PID. Here we will use the same
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Fig. A.1: Top: Fraction of charge mis-identification (pcm, see text for definition) as function of global
momentum. The Monte-Carlo truth method is shown in green. Black and red lines show the statis-
tical method results for Monte-Carlo and data respectively (zoomed on the right) Bottom: Absolute
difference between data and MC of the fraction of charge mis-identification (zoomed on the right).

Momentum ( GeV) data MC data-MC MC Truth
0-0.1 2.63± 1.84 1.5± 1.5 1.17± 2.62 5.80

0.1-0.3 2.47± 0.74 2.5± 1.0 0.03± 1.11 5.15
0.3-0.6 0.98± 0.09 0.67± 0.07 0.31± 3.27 0.84
0.6-1.0 0.88± 0.05 0.70± 0.05 0.18± 0.20 0.71
1.0-1.5 1.02± 0.04 1.20± 0.06 0.18± 0.19 1.20
1.5-3.0 1.85± 0.03 1.89± 0.06 0.04± 0.08 1.92
3.0-5.0 4.29± 0.07 3.52± 0.10 0.78± 0.78 3.55
5.0-20.0 11.0± 1.6 7.95± 0.20 3.10± 3.11 8.11

Table A.1: Summary table with the charge misidentification (%) results for data and Monte-Carlo
propagated in the νe analysis.

sample described in Chapter 7 but without using the cut on the electron pull, as that is the systematic

that we want to evaluate.

In Fig. A.2 we show the pull in the electron hypothesis for the most energetic track and the secondary

track in the γ conversion sample, divided in 5 momenta bins

[0, 300 MeV]; [300 MeV, 600 MeV]; [600 MeV, 1 GeV], [1 GeV, 1.5 GeV], [1.5 GeV, 3 GeV] (A.4)

Combining together primary and secondary tracks we obtain the distributions shown in Fig. A.2: as
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we can see data and MC are compatible for the whole momentum range.
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Fig. A.2: TPC pull in the electron hypothesis for different momenta bins for all the electron like tracks
in the γ conversion sample for data (top) and MC (middle). The bottom plot shows the mean (circles)
and the σ (triangles) of the above Gaussian fits.

By combining all the momenta together we obtain the pull distribution shown in Fig. A.3 for data

and MC. The mean values are compatible while the width in the MC is slightly narrower than the one

in the data. For the systematics, the shift on the mean come from the statistical error on the mean

position in the data, while to account for different widths we compute a smearing factor on the width

given by:

s =
√
σ2
DT − σ2

MC =
√

1.112 − 1.022 = 0.44 (A.5)
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Fig. A.3: Electron pull distribution in data (left) and MC (right) for the γ conversion sample integrated
from 0 to 3 GeV.
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Appendix B

Further fit validations for the νe
disappearance analysis

Apart from the official minimization of the analysis (multi-fit) presented in Chapter 10, three more tech-

niques were tested. These are similar and they are all based on a standard fit using the MIGRAD minimiza-

tion of the TMinuit library of ROOT. The only difference is the starting values Gs ≡ (sin2(2θee)s, ∆m2
41s)

of the oscillation parameters from where the fit is released:

◦ Standard values: defined in a point of the grid far from the boundaries sin2(2θee)s = 0.4 and

∆m2
41s = 5 eV2

◦ Toy values: set the same values of the toy Monte-Carlo. We did not present this in the main body

of the analysis because it cannot be applied to the real data. However, it helps to understand the

problem.

◦ Random values: minimize the toys from a different random value each time. It present the same

features that the first case, so we do not show this method here.

B.1 Pull studies

Two sets of 5000 toys experiment built under two different oscillation hypotheses are minimized:

sin2(2θee) = 0.7 and ∆m2
41 = 8 eV2

For the standard values, the distribution of the best fit value in the parameter space is shown in Fig. B.1.

The peak of the distribution is around the expected values of the parameters while there are some toys

that are away from this point.
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As can be seen in Fig. B.2, the distributions of the fitted oscillation parameters have Gaussian distri-

butions centered around the expected values.
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Fig. B.1: Best fit point in the parameter space for 5000 toys and 5.9×1020POT in the sin2(2θee) = 0.7,
∆m2

41 = 8eV2 hypothesis.

sin2(2θee) = 0.7 and ∆m2
41 = 50 eV2

In this case the ∆m2
41 is large to study the degeneracy of ∆m2

41 in the fast oscillation regime. For the

standard values, shown in the left plot of Fig. B.3, a large fraction of the toys fall in and incorrect point

with average in sin2(2θee) = 0.64, ∆m2
41 = 11.9 eV2. If instead we use the toy values as starting points,

the distribution changes and get closer to the oscillation parameter of the toys. This illustrates clearly

the risk of using only one global fit, since we demonstrate that the results are strongly dependent on

the starting values.

B.2 ∆χ2 distributions

For the 5000 with sin2(2θee) = 0.7, ∆m2
41 = 8 eV2 we calculate the best fit value χ2

bf using each of

the methods including the official one. The distributions are shown in Fig. B.4 where we have fit a χ2

function.

The first two cases correspond to χ2 distributions with dof ∼ 50 while we expect dof = 49. This

slight disagreement indicates that the minimum the fit is calculating is not the global one, but a local

minimum where the fit got stuck. The multi-fit minimization does not show this feature and the χ2
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Fig. B.2: Fitted values (top) and pulls (bottom) of oscillation parameters for 5000 toys at 5.9 × 1020

POT corresponding to the true values sin2(2θee) = 0.7, ∆m2
41 = 8 eV2. The starting values for the fit

are set to the default (see text) ones.

distribution is compatible with dof = 49.

Now we calculate:

∆χ2
00 = χ2

00 − χ2
bf (B.1)

The first term is computed using the likelihood profile and removing the nuisance parameters. As the

oscillation parameters are fixed, this number does not depend on the minimization approach we take.

The second term was extracted above for each of the cases. The distributions are shown in Fig. B.5.
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Fig. B.3: Fitted values of oscillation parameters for 5000 toys at 5.9× 1020POT corresponding to the
true values sin2(2θee) = 0.7, ∆m2

41 = 50 eV2. Left: starting values of the oscillation parameters are set
to the default values. Right: Starting values of the oscillation parameters are set to the true values.
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Fig. B.4: χ2
bf distributions for 5000 toys generated for sin2(2θee) = 0.7, ∆m2

41 = 8 eV2. The distribu-

tions are fitted with a χ2 function. Left: default fit; middle: default fit with starting values set to the
true values; and right: multi-fit method.

We observe that using the standard values there are some cases with ∆χ2
00 < 0⇒ χ2

bf > χ2
00, meaning

that χ2
bf is not the minimal value on the parameter space. This pathological behaviour needs to be

overcome as this distribution is not a good distribution for goodness-of-fit tests and for calculation of

the confidence intervals.

Setting the starting values to the toy values the problem is solved. This indicates again that the

problem arises due to a local minimum created by a fluctuation on the toy experiment. Finally, we

show that for the multi-fit technique the distribution of ∆χ2 has not a negative tail and furthermore

is broader than the previous case, indicating that the global minimum is better estimated.
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Fig. B.5: Distribution of ∆χ2
00 obtained from 5000 toys generated for sin2(2θee) = 0.7 and ∆m2

41 =
8 eV2. Left: default fit; middle: default fit with starting values set to the true values; and right: multi-fit
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