The New World of

Neutrino Physics

Part One

Boris Kayser Fermilab Feb. 7 – 16, 2006 The Neutrino Revolution (1998 – …)

Neutrinos have nonzero masses!

Leptons mix!

Neutrinos are Special

The constituents of matter: quarks, charged leptons, neutrinos.

Apart from the neutrinos, the lightest of these constituents is the electron.

But —

Neutrino masses ~ $10^{-(6-7)}$ x Electron mass

Neutrino masses, while nonzero, are very tiny.

Quark mixing angles are *small*. But Leptonic mixing angles are **large**.

The quarks and charged leptons, being electrically charged, cannot be their own antiparticles.

Neutrinos might be their own antiparticles: $\overline{\mathbf{v}} = \mathbf{v}$.

Neutrino mass probably has a different origin than the masses of the other constituents of matter.

Neutrino Mass is Physics Beyond the Standard Model

The most popular theory of why neutrinos are so light is the -

See-Saw Mechanism

The see-saw mechanism suggests that the big mass M, and the physics behind neutrino mass, are at $\sim 10^{15}$ GeV.

This puts the physics of neutrino mass *way* beyond the domain of the Standard Model.

Neutrinos and the Universe

- Neutrinos and photons are far and away the most
 - abundant particles in the universe.
 - If we wish to understand the universe, we must understand neutrinos.
- * Neutrinos have played a role in shaping the large-scale structure of the universe.
 - Observations of that structure have yielded information on neutrino mass.
- * The see-saw mechanism predicts <u>heavy</u> neutrino "seesaw partners" to the light neutrinos.
 - Decays of these heavy neutrinos in the early universe may have been the origin of the excess of matter over antimatter in the universe.

The Plan for Part One

What Has Been Seen

The Open Questions

To Demonstrate That $\overline{v} = v$: Neutrinoless Double Beta Decay [$0v\beta\beta$]

Neutrino Oscillation in Vacuum

Neutrinos Come in at Least Three Flavors

The known neutrino flavors:

Each of these is associated with the corresponding charged-lepton flavor:

The Meaning of this Association

Over short distances, neutrinos do not change flavor.

But if neutrinos have masses, and leptons mix, neutrino flavor changes do occur during *long* journeys.

Let Us Assume Neutrino Masses and Leptonic Mixing

Neutrino mass —

There is some spectrum of 3 or more neutrino mass eigenstates v_i :

Another way to look at W decay:

A given ℓ_{α}^{+} can be accompanied by any v_{i} . $Amp(W^{+} \rightarrow \ell_{\alpha}^{+} + v_{i}) = U^{*}_{\alpha i}$

The neutrino state $|v_{\alpha}\rangle$ produced together with ℓ_{α}^{+}

is
$$|v_{\alpha}\rangle = \sum_{i} U^{*}_{\alpha i} |v_{i}\rangle$$

According to the Standard Model, extended to include neutrino mass and leptonic mixing —

> The number of different v_i is the same as the number of different $\ell_{\alpha}(3)$.

The mixing matrix U is 3 x 3 and unitary: $UU^{\dagger} = U^{\dagger}U = 1.$

Some models include "sterile" neutrinos neutrinos that experience none of the known forces of nature except gravity.

In such models, there are N > 3 v_i , and U is N x N, but still unitary.

Just as each neutrino of definite flavor v_{α} is a superposition of mass eigenstates v_i , so each mass eigenstate is a superposition of flavors.

From $|v_{\alpha}\rangle = \sum_{i} U^{*}_{\alpha i} |v_{i}\rangle$ and the unitarity of U,

 $|v_i\rangle = \Sigma_{\alpha} U_{\alpha i} |v_{\alpha}\rangle.$

The flavor- α fraction of v_i is –

 $|\langle \mathbf{v}_{\alpha} | \mathbf{v}_i \rangle|^2 = |\mathbf{U}_{\alpha i}|^2$.

The Standard Model (SM) description of neutrino *interactions* (not masses or leptonic mixing) is well-confirmed.

We will assume it is true, and extend it to include mixing.

For the lepton couplings to the W boson, we then have — Left-handed

$$L_{SM} = -\frac{g}{\sqrt{2}} \sum_{\alpha=e,\mu,\tau} \left(\overline{\ell}_{L\alpha} \gamma^{\lambda} v_{L\alpha} W_{\lambda}^{-} + \overline{v}_{L\alpha} \gamma^{\lambda} \ell_{L\alpha} W_{\lambda}^{+} \right)$$

$$= -\frac{g}{\sqrt{2}} \sum_{\substack{\alpha=e,\mu,\tau\\i=1,2,3}} \left(\overline{\ell}_{L\alpha} \gamma^{\lambda} U_{\alpha i} v_{L i} W_{\lambda}^{-} + \overline{v}_{L i} \gamma^{\lambda} U_{\alpha i}^{*} \ell_{L\alpha} W_{\lambda}^{+} \right)$$

Taking mixing into account

Amp $[v_{\alpha} \rightarrow v_{\beta}] = \Sigma U_{\alpha i}^* \operatorname{Prop}(v_i) U_{\beta i}$ What is Propagator $(v_i) \equiv \operatorname{Prop}(v_i)$?

In the v_i rest frame, where the proper time is τ_i , $i \frac{\partial}{\partial \tau_i} |\nu_i(\tau_i) \rangle = m_i |\nu_i(\tau_i) \rangle$. Thus,

$$|\nu_i(\tau_i)\rangle = e^{-im_i\tau_i}|\nu_i(0)\rangle$$
.

Then, the amplitude for propagation for time τ_i is — $\operatorname{Prop}(\nu_i) \equiv \langle \nu_i(0) | \nu_i(\tau_i) \rangle = e^{-im_i\tau_i}$.

The experimenter chooses L and t.

They are common to all components of the beam.

For each v_i , by Lorentz invariance,

$$m_i \tau_i = E_i t - p_i L$$
.

Neutrino sources are \sim constant in time.

Averaged over time, the

is -

$$e^{-iE_1t} - e^{-iE_2t}$$
 interference

$$< e^{-i(E_1 - E_2)t} >_t = 0$$

unless $E_2 = E_1$.

Only neutrino mass eigenstates with a common energy E are coherent. (Stodolsky) For each mass eigenstate,

$$p_i = \sqrt{E^2 - m_i^2} \cong E - \frac{m_i^2}{2E}$$

Then the phase in the v_i propagator $exp[-im_i \tau_i]$ is —

$$m_{i}\tau_{i} = E_{i}t - p_{i}L \cong Et - (E - m_{i}^{2}/2E)L$$

$$= E(t - L) + m_i^2 L/2E$$

Irrelevant overall phase —

Probability for Neutrino Oscillation in Vacuum

$$P(\nu_{\alpha} \to \nu_{\beta}) = |\operatorname{Amp}(\nu_{\alpha} \to \nu_{\beta})|^2 =$$

$$= \delta_{\alpha\beta} - 4 \sum_{i>j} \Re(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*) \sin^2(\Delta m_{ij}^2 \frac{L}{4E})$$
$$+ 2 \sum_{i>j} \Im(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*) \sin(\Delta m_{ij}^2 \frac{L}{2E})$$

where
$$\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$$

7

For Antineutrinos –

We assume the world is CPT invariant. Our formalism assumes this.

$$P(\overline{\nu_{\alpha}} \to \overline{\nu_{\beta}}) \stackrel{CPT}{=} P(\nu_{\beta} \to \nu_{\alpha}) = P(\nu_{\alpha} \to \nu_{\beta}; U \to U^*)$$

Thus,

$$P(\stackrel{(-)}{\nu_{\alpha}} \to \stackrel{(-)}{\nu_{\beta}}) =$$

$$= \delta_{\alpha\beta} - 4 \sum_{i>j} \Re(U^*_{\alpha i} U_{\beta i} U_{\alpha j} U^*_{\beta j}) \sin^2(\Delta m^2_{ij} \frac{L}{4E})$$

$$\stackrel{(-)}{\leftarrow} 2 \sum_{i>j} \Im(U^*_{\alpha i} U_{\beta i} U_{\alpha j} U^*_{\beta j}) \sin(\Delta m^2_{ij} \frac{L}{2E})$$

A complex U would lead to the CP violation $P(\overline{\nu_{\alpha}} \to \overline{\nu_{\beta}}) \neq P(\nu_{\alpha} \to \nu_{\beta})$.

3. One can detect ($v_{\alpha} \rightarrow v_{\beta}$) in two ways: See $v_{\beta \neq \alpha}$ in a v_{α} beam (Appearance) See some of known v_{α} flux disappear (Disappearance) 4. Including \hbar and c $\Delta m^2 \frac{L}{4E} = 1.27 \Delta m^2 (\text{eV}^2) \frac{L(\text{km})}{E(\text{GeV})}$ $\sin^2 [1.27\Delta m^2 (eV)^2 \frac{L(km)}{E(GeV)}]$ becomes appreciable when

its argument reaches $\mathcal{O}(1)$.

An experiment with given L/E is sensitive to $\Delta m^2 ({\rm eV}^2) \stackrel{>}{\sim} \frac{E({\rm GeV})}{L({\rm km})} ~~.$

- 5. Flavor change in vacuum oscillates with L/E. Hence the name "neutrino oscillation". {The L/E is from the proper time τ.}
- 6. P $(\stackrel{\frown}{v_{\alpha}} \rightarrow \stackrel{\frown}{v_{\beta}})$ depends only on squared-mass splittings. Oscillation experiments cannot tell us

7. Neutrino flavor change does not change the total flux in a beam.

It just redistributes it among the flavors.

$$\sum_{\text{All }\beta} P(\overset{(-)}{\nu_{\alpha}} \to \overset{(-)}{\nu_{\beta}}) = 1$$

But some of the flavors $\beta \neq \alpha$ could be sterile.

Then some of the *active* flux disappears:

$$\phi_{\nu_e} + \phi_{\nu_{\mu}} + \phi_{\nu_{\tau}} < \phi_{\text{Original}}$$

8. Assuming all coherent v_i in a beam have a common momentum p, rather than a common energy E, is a harmless error.

This assumption leads to the same $P(v_{\alpha} \rightarrow v_{\beta})$.

Important Special Cases Three Flavors

For $\beta \neq \alpha$,

$$e^{-im_{1}^{2}\frac{L}{2E}}\operatorname{Amp}^{*}(\nu_{\alpha} \to \nu_{\beta}) = \sum_{i} U_{\alpha i} U_{\beta i}^{*} e^{im_{i}^{2}\frac{L}{2E}} e^{-im_{1}^{2}\frac{L}{2E}}$$
$$= U_{\alpha 3} U_{\beta 3}^{*} e^{2i\Delta_{31}} + U_{\alpha 2} U_{\beta 2}^{*} e^{2i\Delta_{21}} \underbrace{+ (U_{\alpha 4} \& U_{\beta \beta 3}^{**} + U_{\alpha 2} U_{\beta 2}^{*})}_{\text{Unitarity}}$$
$$= 2i [U_{\alpha 3} U_{\beta 3}^{*} e^{i\Delta_{31}} \sin \Delta_{31} + U_{\alpha 2} U_{\beta 2}^{*} e^{i\Delta_{21}} \sin \Delta_{21}]$$
$$\text{where } \Delta_{ij} \equiv \Delta m_{ij}^{2} \frac{L}{4E} \equiv (m_{i}^{2} - m_{j}^{2}) \frac{L}{4E} \quad .$$

15

$$P(\overrightarrow{\nu_{\alpha}} \to \overleftarrow{\nu_{\beta}}) = \left| e^{-im_{1}^{2}\frac{L}{2E}} \operatorname{Amp}^{*}(\overrightarrow{\nu_{\alpha}} \to \overleftarrow{\nu_{\beta}}) \right|^{2}$$
$$= 4[|U_{\alpha 3}U_{\beta 3}|^{2} \sin^{2} \Delta_{31} + |U_{\alpha 2}U_{\beta 2}|^{2} \sin^{2} \Delta_{21}$$
$$+ 2|U_{\alpha 3}U_{\beta 3}U_{\alpha 2}U_{\beta 2}| \sin \Delta_{31} \sin \Delta_{21} \cos(\Delta_{32} \pm \delta_{32})] .$$

Here $\delta_{32} \equiv \arg(U_{\alpha 3}U^*_{\beta 3}U^*_{\alpha 2}U_{\beta 2})$, a CP – violating phase.

Two waves of different frequencies, and their *CP* interference.

When One Big Δm^2 Dominates These splittings are invisible if $\Delta m^2 \frac{L}{E} = \mathcal{O}(1).$ For $\beta \neq \alpha$, $P(\stackrel{(-)}{\nu_{\alpha}} \rightarrow \stackrel{(-)}{\nu_{\beta}}) \cong S_{\alpha\beta} \sin^{2}(\Delta m^{2} \frac{L}{4E}) ; S_{\alpha\beta} \equiv 4 \left| \sum_{i \text{ Clump}} U_{\alpha i}^{*} U_{\beta i} \right|^{-}.$ For no flavor change, $P(\stackrel{(\rightarrow)}{\nu_{\alpha}} \rightarrow \stackrel{(\rightarrow)}{\nu_{\alpha}}) \cong 1 - 4T_{\alpha}(1 - T_{\alpha})\sin^2(\Delta m^2 \frac{L}{AE}) ; T_{\alpha} \equiv \sum |U_{\alpha i}^*|^2.$ *i* Clump "i Clump" is a sum over only the mass eigenstates on one end of the big gap Δm^2 .

17

When There are Only Two Flavors
and Two Mass Eigenstates
$$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ &$$