Neutrino physics:

present experimental status

1 – Solar neutrinos and KamLAND

In the Sun a large flux of ν_e 's is produced in nuclear reactions.

Reaction	Termination (%)	Neutrino Energy (MeV)	Nomenclature
$p + p \rightarrow^{2}H + e^{+} + \nu_{e}$	99.96	< 0.423	pp-neutrinos
$p+e^-+p\rightarrow^2\!\mathrm{H}\!+\!\nu_e$	0.044	1.445	pep-neutrinos
$^{2}\mathrm{H+}p \rightarrow ^{3}\mathrm{He+}\gamma$	100	-	_
$^{3}\mathrm{He}{+}^{3}\mathrm{He}{\rightarrow}^{4}\mathrm{He}{+}p+p$	85	_	_
$^{3}\mathrm{He}{+}^{4}\mathrm{He}{\rightarrow}^{7}\mathrm{Be}{+}\gamma$	15	_	-
$^{7}\mathrm{Be}{+}e^{-}\rightarrow ^{7}\mathrm{Li}{+}\nu_{e}$	15	0.863(90%) 0.386(10%)	⁷ Be-neutrinos
$^{7}\mathrm{Li}{+}p \rightarrow ^{4}\mathrm{He}{+}^{4}\mathrm{He}$		_	_
$^{7}\mathrm{Be}{+}p \rightarrow ^{8}\mathrm{B}{+}\gamma$	0.02	-	-
$^8\mathrm{B}{\rightarrow}^8\mathrm{Be}^* + e^+ + \nu_e$		< 15	⁸ B-neutrinos
$^8\mathrm{Be}{\rightarrow}^4\mathrm{He}{+}^4\mathrm{He}$		_	_
$^{3}\mathrm{He}{+}p \rightarrow ^{4}\mathrm{He}{+}e^{+} + \nu_{e}$	0.00003	< 18.8	hep-neutrinos

In the Sun a large flux of ν_e 's is produced in nuclear reactions. Homestake, Kamiokande, SAGE, GALLEX/GNO, SuperK, SNO provide evidence of a depletion of the expected ν_e -flux.

For pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos, Raymond Davis Jr. with the Homestake Chlorine exp, (together with M. Koshiba) co-won the 2002 Nobel Prize in Physics.

Super-Kamiokande

SNO

Super-Kamiokande provided strong confirmation of the $\bar{\nu}_e$ depletion with respect to the standard solar model.

SNO is a heavy water detector:

- $\nu_e + H \rightarrow p + p + e^-$, CC current
- $\nu_{e(\mu,\tau)} + e^- \rightarrow \nu_{e(\mu,\tau)} + e^-$, elastic scattering
- $\nu + H \rightarrow \nu + p + n$, NC current

In 2002, it provided the first indirect measurement of the total neutrino flux and confirmed the oscillation of $\nu_e \rightarrow \nu_{\mu,\tau}$.

The KamLAND experiment, using reactor $\bar{\nu}_e$, confirmed the disappearance of anti-neutrinos.

[KamLAND Coll, PRL 90 (2003) 021802]

The latest results

show a spectrum dependence,

a hint of neutrino oscillations. [KamLAND Coll., PRL 94 (2005) 081801] The solar ν_e and reactor $\bar{\nu}_e$ flux depletion can be explained in terms of

 $u_e \leftrightarrow \nu_{\mu,\tau}$ oscillations.

Solar + KamLAND data

• Atmospheric neutrinos

Neutrinos are produced in the atmosphere by cosmic rays interactions (π and μ decays).

[Thanks to Y. Suzuki @ Taup2005]

The SuperKamiokande (IMB, Kamiokande, MACRO, Soudan2) experiment observes an up-down asymmetry and zenith-angle dependence in the rate of μ -like events.

[Preliminary, Y. Suzuki @ Taup2005]

The first evidence of neutrino oscillations has been reported.

 $u_{\mu} \leftrightarrow \nu_{\tau} \text{ oscillations}$

The K2K long-baseline neutrino experiment confirmed $\overline{\nu_{\mu}}$ disappearance.

[Preliminary, Y. Suzuki @ Taup2005]

[K2K Coll., PRL 94 (2005) 081802]

MINOS, (first data publication March 2006) confirmed the oscillation hypothesis via ν_{μ} disappearance.

OPERA (started data collection 1 year ago) will search for $\nu_{\mu} \rightarrow \nu_{\tau}$ appearance.

[http://www-numi.fnal.gov; NUMI Note NUMI-L-930]

[T. Schwetz, hep-ph/0606060]

<u>Reactor neutrinos</u>

Reactor $\overline{\nu}_e$ disappearance was searched for in CHOOZ and Palo Verde experiments but no positive signal was found.

Bound on the third mixing angle, θ_{13} :

[Fogli et al., hep-ph/0506083]

New experiments with 2 detectors (D-CHOOZ, Kaska, Braidwood, Daya Bay) will improve this limit to $\sin^2 2\theta_{13} \sim 0.01 - 0.02$.

• LSND

The LSND exp took data from 1993 to 1998.

Accelerator neutrinos, ν_{μ} , ν_{e} and $\overline{\nu}_{\mu}$, were produced in π^{+} and μ^{+} decays. The LSND detector was located at a distance of 30 m. $\overline{\nu}_{e}$ were reveled.

[LSND Coll., PRL 81 (1998) 1774]

The KARMEN experiment tested the LSND result but without founding any positive result.

At first, the LSND data was explained in terms of $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillations, in a 4-neutrino mixing scheme.

SBL disappearance experiments constrain the LSND mixing angle. A global analysis of all oscillation data is required.

[Palomares-Ruiz, S.P., Schwetz, JHEP 0509 (2005) 048]

The parameter space required by LSND data is disfavored by SBL experiments. The LSND signal requires the existence of sterile neutrinos and maybe new interactions.

The **MiniBOONE** exp. tested the result without confirming the LSND signal.

[http://www-boone.fnal.gov]

1 – Solar neutrinos and KamLAND

2 – Summary of present status of oscillation data

parameter	$bf\pm 1\sigma$	1σ acc.	2σ range	3σ range
$\Delta m_{21}^2 [10^{-5} \text{eV}^2]$	7.9 ± 0.3	4%	7.3-8.5	7.1-8.9
$ \Delta m^2_{31} [10^{-3} \mathrm{eV}^2]$	$2.5^{+0.20}_{-0.25}$	10%	2.1 - 3.0	1.9-3.2
$\sin^2 \theta_{12}$	$0.30^{+0.02}_{-0.03}$	9%	0.26 - 0.36	0.24 - 0.40
$\sin^2 \theta_{23}$	$0.50^{+0.08}_{-0.07}$	16%	0.38-0.64	0.34-0.68
$\sin^2 \theta_{13}$	-	-	≤ 0.025	≤ 0.041

[T. Schwetz, hep-ph/0606060]