Neutrino Detectors I

Ed Kearns Boston University

The Neutrino Physics Summer School Fermilab, July 2-13, 2007

Lecture I: Broad Survey of Past Detectors

✤ Inverse Beta Decay

Discovery of the ν KamLAND, LSND

Tracking Detectors Two v Experiment

NuTeV, MINOS, CHARM II

Bubble Chambers
Discovery of Neutral Currents

*** Hybrid Detectors:**

MINERVA, NOMAD

Discovery of Tau Neutrino

Lecture II: The Challenges for v_e Appearance

Water Cherenkov

Super-Kamiokande

Segmented Scintillator N0∨A

*** Liquid Argon TPC**

ICARUS & future experiments

Mixed throughout: fundamental physics of particle interactions, principles of operation of detector elements. Lots of diagrams, photos, and event displays.

- *All particle detectors rely on the electromagnetic interaction of the particle with the detector material.
- * Neutrinos do not have electromagnetic interactions.
- * Ergo, there is no such thing as a neutrino detector.
- However, one can detect the products of neutrino interactions.
- The design choices for each detector are very much determined by the properties of the v interactions under study, as well as other constraints such as the beam, backgrounds, etc. But in the end, it is the final state particles that are detected through their EM interactions.

Neutrino Flavor Identification

Energy Regimes example: CC v_{μ}

Interactions with Electrons

Exercise in crossing symmetry:

Move across reaction arrow and change particle

Elastic Scattering [both CC & NC diagrams contribute]

$$V_e + e^- \rightarrow V_e + e^-$$

Inverse Muon Decay

$$\nu_{\mu} + e^- \rightarrow \nu_e + \mu^-$$

Both characterized by very forward scattering angle

Inverse Beta Decay Detectors

Excellent detection opportunities

 $E_{thresh} = 1.8 \text{ MeV}$ $E_{prompt} = E_{v} - 0.8 \text{ MeV}$ $E_{capture} = 2.2 \text{ MeV}$ (on proton, 10-several 100 μ s later)

$$\sigma = 0.0952 \left(\frac{E_e p_e}{1 \text{MeV}^2} \right) \times 10^{-42} \text{ cm}^2 \sim 5 \times 10^{-43} \text{ cm}^2$$

Phys.Rev.D66:033001,2002

Principle of Detection: Scintillation

Emission of a pulse of light in response to ionization. 10,000-50,000 photons/MeV

Organic liquids & plastics

Inorganic crystals - NaI, CsI, BaF2, BGO

Nobel liquids - Ne, Ar, Xe

30% photo-coverage 1869 PMTs

Liquid scintillator: 80% dodecane 20% psuedocumene 1.5g/I PPO ~8000 photons/MeV (500 pe/MeV detected)

U/Th purified to below 10^{-17} g/g

KamLAND

Anti 20° PMTs **Kevlar Suspension Rope** Tyvek Sheet/ 18m Stainless Tank 17"/20" inner PMTs Rock Wall/ PE sheet/ Radon Blocking Resin/ Tyvek reflector **PET Black Sheet** EVOH/3Nylon/EVOH 13m Balloon Acrylic Sphere (3mm t) **Fiducial Volume for** Reactor Neutrinos (600t) **Fiducial Volume for** Solar Neutrinos (450t)

KamLAND Event

I mportant detector characteristic: good fiducial volume determination

$$\sigma_{vtx} = 21 \text{cm} / \sqrt{E(\text{MeV})}$$

Remember the Time Domain

SNO pure D_20 phase 0.5 mb cross section capture time few 100 µs 6.3 MeV gamma capture on ¹H is 0.33b

SNO salt-phase 44 b cross section capture time 5.3 μs 8.6 MeV total gammas We will also later see that the t=2.2 µs lifetime of muon decay is a valuable experimental handle for water Cherenkov detectors

Gadolinium 49,700 b cross section Used for n-capture in Chooz reactor experiment Proposal to put 0.5% Gd in Super-K

Tracking (Plane) Detectors

Layers of target: eg. steel, marble, glass

34 single muon events and only 6 showers $\Rightarrow \pi \rightarrow \mu \nu$ is ν_{μ} not ν_{e}

Energy Determination

Muon Ranger

Simple, no magnetic field; limited by size. Reconstructed energy: build range table, integrating Bethe-Bloch; incorporate each layer of differing material.(ask GEANT for help)

 $(dE/dx)_{Fe} = 1.45 \text{ MeV } g^{-1} \text{cm}^2 \times 7.9 \text{ gm cm}^{-3} = 90 \text{ MeV/cm} \dots 1 \text{ GeV muon travels} \sim 1 \text{m}$ (careful use of range chart, eg. in PDG, gives 80 cm)

Magnetic Tracking

 $p_t[\text{GeV}] = 0.3 B[\text{T}] r[\text{m}]$ $\frac{\delta p_t}{p_t} = \frac{\delta s}{s}$ $p_t \approx 0.3B \frac{l^2}{8s}$

$\sigma_{\scriptscriptstyle p_t}$ _	$\sigma_x p_t$	720	for $N > 10$ equidists
p_t	$0.3Bl^2$ V	N+4	Gluckstern NIM24(1963) 381

Increase *l* (more leverage) Increase *B* (more curvature) Decrease σ_x (hit resolution) or increase N hits

10 equidistant

Electromagnetic Showers

- Compton scattering
- Pair Production
- Bremsstrahlung

- * Characterized by radiation length: $X_0 \sim 180 \text{ A/Z}^2$
- * Longitudinal profile ~ $x^{\alpha}e^{-\beta x}$

* Photon conversion probability: $\Phi(x) = \Phi_0 e^{-\overline{9}\overline{X_0}}$

Photon has significant chance of traveling one to several radiation lengths before converting to *e*⁺*e*⁻

Will be important in next lecture

~ 1X₀ per plane

Material Properties

PDG: Review of Particle Properties

6. Atomic and nuclear properties of materials

6. ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS

Table 6.1. Revised May 2002 by D.E. Groom (LBNL). Gases are evaluated at 20°C and 1 atm (in parentheses) or at STP [square brackets]. Densities and refractive indices without parentheses or brackets are for solids or liquids, or are for cryogenic liquids at the indicated boiling point (BP) at 1 atm. Refractive indices are evaluated at the sodium D line. Data for compounds and mixtures are from Refs. 1 and 2. Futher materials and properties are given in Ref. 3 and at http://pdg.lbl.gov/AtomicNuclearFroperties.

Material	Z	Α	$\langle Z/A \rangle$	Nuclear ^a collision length λ_T {g/cm ² }	Nuclear ^a interaction length λ_I $\{g/cm^2\}$	$\frac{dE/dx _{min}}{\left\{\frac{MeV}{g/cm^2}\right\}}$	Radiat {g/cm ²	ion length ⁶ X_0 ² } {cm}	Density $\{g/cm^3\}$ $(\{g/\ell\}$ for gas)	Liquid boiling point at 1 atm(K)	Refractiv index n $((n - 1) \times 1)$ for gas
Ho mas	1	1.00794	0.00212	43.3	50.8	(4.103)	61.28 d	(731000)	(0.0838)[0.0800]	()	[130.9]
H _o liquid	ĩ	1.00794	0.99212	43.3	50.8	4.034	61.28 d	866	0.0708	20.39	1.112
Do	1	2.0140	0.49652	45.7	54.7	(2.052)	122.4	724	0.169[0.179]	23.65	1 1 28 [13]
He	2	4.002602	0.49968	49.9	65.1	(1.937)	94.32	756	0.1249[0.1786]	4.224	1.024 [34
Li	3	6 941	0.43221	54.6	73.4	1.639	82.76	155	0.534		
Be	4	9.012182	0.44384	55.8	75.2	1.594	65.19	35.28	1.848		_
С	6	12.011	0.49954	60.2	86.3	1.745	42.70	18.8	2.265 ^e		_
N_2	7	14.00674	0.49976	61.4	87.8	(1.825)	37.99	47.1	0.8073[1.250]	77.36	1.205[29]
O_2	8	15.9994	0.50002	63.2	91.0	(1.801)	34.24	30.0	1.141[1.428]	90.18	1.22 [29
F_2	9	18.9984032	0.47372	65.5	95.3	(1.675)	32.93	21.85	1.507[1.696]	85.24	[195
Ne	10	20.1797	0.49555	66.1	96.6	(1.724)	28.94	24.0	1.204[0.9005]	27.09	1.092 [67
Al	13	26.981539	0.48181	70.6	106.4	1.615	24.01	8.9	2.70		_
Si	14	28.0855	0.49848	70.6	106.0	1.664	21.82	9.36	2.33		3.95
Ar	18	39.948	0.45059	76.4	117.2	(1.519)	19.55	14.0	1.396[1.782]	87.28	1.233 [28
Ti	22	47.867	0.45948	79.9	124.9	1.476	16.17	3.56	4.54		_
Fe	26	55.845	0.46556	82.8	131.9	1.451	13.84	1.76	7.87		-
Cu	29	63.546	0.45636	85.6	134.9	1.403	12.86	1.43	8.96		-
Ge	32	72.61	0.44071	88.3	140.5	1.371	12.25	2.30	5.323		_
Sn	50	118.710	0.42120	100.2	163	1.264	8.82	1.21	7.31		_
Xe	54	131.29	0.41130	102.8	169	(1.255)	8.48	2.87	2.953[5.858]	165.1	[70
W	74	183.84	0.40250	110.3	185	1.145	6.76	0.35	19.3		
Pt	78	195.08	0.39984	113.3	189.7	1.129	6.54	0.305	21.45		_
Pb	82	207.2	0.39575	116.2	194	1.123	6.37	0.56	11.35		_
0	92	238.0289	0.38651	117.0	199	1.082	6.00	≈0.32	≈18.95		
Air, (20°C, 1	atm.), [S	TP]	0.49919	62.0	90.0	(1.815)	36.66	[30420]	(1.205)[1.2931]	78.8	(273) [29
H ₂ O			0.55509	60.1	83.6	1.991	36.08	36.1	1.00	373.15	1.33
CO ₂ gas			0.49989	62.4	89.7	(1.819)	36.2	[18310]	[1.977]		[410
CO2 sond (d	ry ice)		0.49989	02.4	89.7	1.787	30.2	23.2	1.563	subiimes	_
Shielding cor	icrete /		0.50274	67.4	99.9	1.711	26.7	10.7	2.5		
51O ₂ (fused of Dimethyl eth	quartz) er. (CH ₂)	0	0.49926	50.5 50.4	97.4 82.9	1.699	27.05 38.89	12.3	2.20 5	248.7	1.458
Mathana CH	L.	120	0.62333	54.8	73.4	(2.417)	46.99	[64850]	0.4224[0.717]	111.7	E44
Ethane CoH	+4 [a		0.50861	55.8	75.7	(2.304)	45.47	[34035]	0.509(1.356)	184.5	(1.038)
Propage Cal	чо На		0.58962	56.2	76.5	(2.362)	45.20	[04000]	(1.879)	231.1	(1.000)
Isobutane (C	CHa)aCH	CH-	0.58496	56.4	77.0	(2.230)	45.07	[16930]	[2.67]	261.42	[100
Octane, liqui	d. CH ₂ (C	HaleCHa	0.57778	56.7	77.7	2.123	44.86	63.8	0.703	398.8	1.307
Paraffin wax	, CH ₃ (CH	(2)n \$23CH3	0.57275	56.9	78.2	2.087	44.71	48.1	0.93		
Nylon, type (6 i		0.54790	58.5	81.5	1.974	41.84	36.7	1.14		_
Polycarbona	te (Lexan) j	0.52697	59.5	83.9	1.886	41.46	34.6	1.20		_
Polvethvlene	terephthl	, ate (Mylar) ^k	0.52037	60.2	85.7	1.848	39.95	28.7	1.39		_
Polvethylene	ı	(,)	0.57034	57.0	78.4	2.076	44.64	≈47.9	0.92-0.95		_
Polvimide fil	m (Kapto	n) m	0.51264	60.3	85.8	1.820	40.56	28.6	1.42		_
Lucite Plexi	rlas n		0.53937	59.3	83.0	1.929	40.49	~34.4	1.16-1.20		≈1.40
Polystyrene.	scintillate	or ⁰	0.53768	58.5	81.9	1.936	43.72	42.4	1.032		1.581
Polytetrafluo	roethylen	e (Teflon) ^p	0.47992	64.2	93.0	1.671	34.84	15.8	2.20		_
Polyvinyltolu	ilene, scin	tillator q	0.54155	58.3	81.5	1.956	43.83	42.5	1.032		_
Aluminum o	xide (Al ₂	D ₃)	0.49038	67.0	98.9	1.647	27.94	7.04	3.97		1.761
Barium fluor	ide (BaF)	0.42207	92.0	145	1.303	9.91	2.05	4.89		1.56
Bismuth geri	manate (È	3GO) r	0.42065	98.2	157	1.251	7.97	1.12	7.1		2.15
Cesium iodid	le (CsI)	-	0.41569	102	167	1.243	8.39	1.85	4.53		1.80
Lithium fluor	ride (LiF)		0.46262	62.2	88.2	1.614	39.25	14.91	2.632		1.392
Sodium fluor	ide (NaF)		0.47632	66.9	98.3	1.69	29.87	11.68	2.558		1.336
Sodium iodio	le (NaI)		0.42697	94.6	151	1.305	9.49	2.59	3.67		1.775
Silica Aeroge	l ^s		0.50093	66.3	96.9	1.740	27.25	$136@\rho=0.$	2 0.04-0.6		1.0+0.2
	-1-+- t			60.6	00.9	1.97	00.0	10.4	1 7		

	ρ	X0	λint	dE/dx				
	[g cm-3]	[cm]	[cm]	[MeV/cm]				
H2O	1.00	36	83.6	1.99				
LAr	1.40	14	83.7	2.12				
Al	2.70	8.9	39.4	4.36				
Fe	7.87	1.8	16.8	11.4				
Pb	11.35	0.56	17.1	12.7				
		Relevant for hadronic showers						

NuTeV

Neutrino

MINOS

- 5.4 kton far detector, 1 kton near
- 484 steel/scintillator planes
- 2.54 cm thick steel plates (1.4X₀)
- 1.2 T solenoidal magnetic field
- peak neutrino energy ~ 3 GeV
- 92% ν_{μ} , 1.5% ν_{e}/ν_{e} -bar

Neutrino Detectors - Ed Kearlis - Feiliniao, KEK Neutrino Summer Schoor - 2007

MINOS - neutrino appearance

If early atmospheric results had held up, $\Delta m^2 > 10^{-2} \text{ eV}^2$. MI NOS originally envisioned for statistical study of τ -appearance.

 $\begin{array}{l} \mbox{MINOS has some sensitivity} \\ \mbox{for } \nu_e \mbox{ appearance but} \\ \mbox{detector is not optimum.} \end{array}$

But for now-- it is the only running experiment that can extend beyond Chooz limit.

Target material: 692 tons of glass $Z\sim 11 \quad \rho=2.2 \text{ g/cm}^3 \quad X_0=12 \text{ cm} \quad \lambda=44 \text{ cm}$ inexpensive One plane: 4.8 cm thick plate + 1 cm streamer tube

Detector for Neutrino-Electron Scattering (and Inverse Muon Decay)

- Isolated electromagnetic shower: low Z
- Strongly peaked in neutrino direction want good angular resolution (low density)
- Backgrounds: ν-nucleon scattering neutral current π production

I deas bouncing around to revisit this at Fermilab

Neutino Delectors - Eu Rearns - Ferninad/RER Neutino Summer School - 2007

Bybble Chambers

ne plus ultra of particle imaging

Single event discoveries

Limitations led to extinction

But principles being revived for dark matter

New detectors vie for claim of "electronic bubble chamber"

Discovery of Neutral Currents

Gargamelle bubble chamber - CERN, 1973 - $E_v \sim 1-2 \text{ GeV}$ - 15 tons freon

 $v_{\mu} + N \rightarrow v_{\mu} + hadrons \text{ (NC)}$ $v_{\mu} + N \rightarrow \mu^{-} + hadrons \text{ (CC)}$ $v_{e} + N \rightarrow e^{-} + hadrons \text{ (CC)}$ $v_{\mu} + e^{-} \rightarrow v_{\mu} + e^{-} \text{ (NC)}$ $n + N \rightarrow hadrons \text{ (contamination)}$ also antineutrino beam (\overline{v}_{μ})

Single event discovery BG estimate 0.03±0.02

 $E_{\rm e}{=}385\pm100~MeV$ angle w. beam 1.4°±1.5°

Gargamelle

 $\nu N \rightarrow \nu N \pi^0$

Figure 7. NC 1π cross section $\sigma(\nu_{\mu} p \rightarrow \nu_{\mu} p \pi^{0})$ Shown are the free nucleon cross section predictions from NUANCE and NEUGEN with $m_{A} =$ $1.032 \text{ GeV}, m_{V} = 0.84 \text{ GeV}, \text{ and } \sin^{2} \theta_{W} = 0.233.$ G.P. Zeller, hep-ex/0312061

<u>Abb. 13</u>: Ein Kandidat für die Reaktion ($vp \rightarrow vp\pi^{0}$). Das π^{0} wird durch Konversion eines seiner Zerfalls-Photonen nachgewiesen.

M. Pohl, Ph.D. thesis

Not much data! Actually, there are many more measurements of NC/CC ratios. These reactions are the dominant background to T2K, NOvA and other v_e appearance experiments.

Principle of Operation: Bubble Chamber

FIG. 2. Side view of the 15-ft bubble chamber.

Liquified gas, H₂, D₂, Ne, Ar, Freon, Xe kept close to boiling.

- After trigger, piston expands volume, gas bubbles form along track.
- Bubble growth stops when piston pushed back.
- Last experiments used holographic illumination, achieved ~100μm bubbles.

But...

- Fixed target only.
- \oplus High energy particles not contained; $\int B \bullet dI$ only 10 T m.
- Photograph scanning difficult (some automation developed).

Hybrid Detectors

More like a collider detector than a detector of nearly monolithic design:

♦ Vertex detector

- Tracking region
- Particle identification
- ♦ EM calorimeter
- ♦ Hadron calorimeter
- Muon spectrometer

MINERVA

• vN scattering • nuclear effects • single- π production

• coherent- π production • parton distributions

strange particle production

MINOS near detector

Simulated MINERvA Events

J. Nelson, NuINT07

NOMAD

Muon

Chambers

• v_{τ} appearance at small sin²2 θ - comparable to quarks

- + Δm^2 range 1-1000 eV² motivated by Hot Dark Matter
- $e E_v \sim 20-40 \text{ GeV}, L = 600 \text{ m at CERN SPS}$
- + Also CHORUS detector, similar goals, emulsion-based

INEULTINO DELECTORS - EU NEALTIS - FETHINAD/NEN INEULTINO SUMMER SCHOOL - 2007

NOMAD Event Display

Transition Radiation

EM radiation (X-rays) emitted when a relativistic charged particle crosses boundaries of differing indices of refraction.

- N_{γ} ~1/137 per boundary \Rightarrow stacks of foils
- X-rays counted by gaseous detector e.g. Xe

- Radiated energy $\infty \quad \gamma =$
- \Rightarrow Identify high energy (GeV) electrons (γ > few 1000) rejecting charged pions (which can shower early in EM calorimeter

m

Also can be used to estimate energy of high energy muons, eg. 0.1-1 TeV cosmic ray muons in MACRO experiment.

Of one million million tau neutrinos crossing the DONUT detector, scientists expect about one to interact with an iron nucleus.

*Super-K has 2-3σ indications of a statistical appearance of τ-like events

Nuclear Emulsions

Neutrino Detectors - Ed Kearns - Fermilab/KEK Neutrino Summer School - 2007

Photograph of emulsion tracks (from CHORUS)

Neutrino Detectors - Ed Kearns - Fermilab/KEK Neutrino Summer School - 2007

Multiple Coulomb Scattering

Important experimental constraint:

- He in v decay volume
- Low Z (Be) collider beam pipe
- Kalman filter for improved track reconstruction
- Momentum estimate (DONUT, MACRO)

Tested with π tracks in test beam -

Resolution ~ 30%

What have I skipped?

- Highest energy detected neutrino telescope AMANDA, IceCube (see F. Halzen lecture)
- Lowest energy detected pp solar (GALLEX/GNO, SAGE) also ⁷Be: Ray Davis Homestake Mine experiment

1995 Nobel Prize: R. Davis & M. Koshiba (Kamiokande)

615 tons of C_2Cl_4 (dry cleaning fluid) 1500 meters depth Individual Ar atoms extracted and counted by radioactive decay ($\tau \sim 35$ days)

 $\nu_e + {}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar} + e^{-}$

Back to inverse beta decay again!