Probing the Universe with Neutrinos

ISAPP2008 Valencia July 2008

Results from Neutrino Oscillation Experiments

Lecture 1

Takaaki Kajita (ICRR and IPMU, U.of Tokyo)

Overall Outline

Lecture 1: Atmospheric neutrino oscillations Long baseline neutrino oscillation experiments

Lecture 2: Solving the Solar Neutrino Problem with neutrino oscillations

Status of the 3 flavor effects

Outline - Lecture 1 -

- Production of atmospheric neutrinos
- Atmospheric neutrino anomaly
- Discovery of neutrino oscillations
- Long baseline neutrino oscillation experiments
- Oscillation to ν_τ or ν_{sterile} ?
- Tau neutrino appearance? (brief)
- Summary of Lecture-1

In today's lecture, we mostly discuss 2-flavor vacuum oscillations: $(1.27 \text{ Am}^2 I)$

$$P(v_{\alpha} \rightarrow v_{\alpha}) = 1 - \sin^2 2\theta \cdot \sin^2 \left(\frac{1.27\Delta m^2 L_{\nu}}{E_{\nu}}\right)$$

Introduction - motivation -

Reasons for neutrino experiments in 1 page:

- Small but finite neutrino masses are believed to be related to the physics at the very high energy scale (Seesaw mechanism).
- At present, information from neutrino oscillation experiments gives one of a few experimental evidence for physics "beyond the standard model".
- The observed large neutrino mixing angles might also suggest some hints for understanding physics at the very high energies.
- Furthermore, the physics of neutrino masses might be related to the baryon asymmetry of the Universe (Leptogenesis).

← "Probing the Universe with Neutrinos".

Calculating the atmospheric neutrino beam

- + geomagnetic field
- + (p+(O or N)) int.
- + decay of π or K

+

Some features of the beam (1)

of better than 3% below \sim 5GeV.

10²

Some features of the beam (2)

Zenith angle

Up/down ratio very close to 1.0 and accurately calculated (1% or better) above a few GeV.

Comment: How accurate is the absolute normalization of the flux ?

Neutrino interactions

Atmospheric neutrino anomaly

areand ballionry

Countede 25 1980 m

E Rabberry (1914) Gootar

printing dominant state

"Proton decay" experiments

Grand Unified Theories $\rightarrow \tau_p = 10^{30\pm 2}$ years

Kamiokande (1000ton)

IMB (3300ton)

NUSEX (130ton) Frejus (700ton)

These experiments observed many contained atmospheric neutrino events (background for proton decay).

μ/e ratio measurement in Kamiokande

1983 (Kamiokande construction)

Electrons, muons and particle identification

First result on the μ/e ratio (1988)

Kamiokande (3000ton Water Ch. ~1000ton fid. Vol.) 2.87 kton•year

	Data	MC prediction
e-like (~CC v _e)	93	88.5
μ-like (~CC ν _u)	85	144.0

"We are unable to explain the data as the result of systematic detector effects or uncertainties in the atmospheric neutrino fluxes. Some as-yet-unaccoundted-for physics such as neutrino oscillations might explain the data."

> K. Hirata et al (Kamiokande) Phys.Lett.B 205 (1988) 416.

First supporting evidence for small μ/e

IMB experiment also observed smaller (μ /e) in 1991 and 1992.

μ/e ratio measurement: summary

Let's write the atmospheric v_{μ} deficit by $(\mu/e)_{data}/(\mu/e)_{MC}$

Angular correlation

Next: zenith angle...(Kamiokande, 1994)

Super-Kamiokade detector

39

SUPERKAMICKANDE

50,000 ton water Cherenkov detector (22,500 ton fiducial volume)

-1900 PMT(Outer detector)

1000m underground

Super-Kamiokande detector under construction

Various types of atmospheric v events (1)

Various types of atmospheric v events (2)

Event type and neutrino energy

neutrino oscillations.

Atmospheric neutrino data now (SK-I)

Accurate measurement possible due to small syst. in up/down (2% or less)

Really oscillation?

L/E: Selection criteria

Select events with high L/E resolution $(\Delta(L/E) < 70\%)$

Events are not used, if:

★horizontally going events

 \star low energy events

Similar cuts for: FC multi-ring μ -like,

OD stopping PC, and

OD through-going PC

L/E analysis: Really oscillation!

Special analysis with high L/E resolution events. (σ(L/E)<70%) Initial results hep-ex/0404034, J. Raaf, talk @Nu2008

A dip is seem around L/E = 500 km/GeV (first oscillation minimum). Oscillation gives the best fit to the data. Decay and decoherence models disfavored at 4.1 and 5.0 σ , resp.

Other atmospheric v experiments

Soudan-2

MINOS (atmospheric v)

MINOS (atmospheric)

$v_{\mu} \rightarrow v_{\tau}$ oscillation parameters from atmospheric v experiments

Long baseline neutrino oscillation experiments

Why long baseline experiments?

Atmospheric neutrinos

- → Very wide neutrino flight length
- ➔ Wide neutrino energy
- → Mixture of v_{μ} , anti- v_{μ} , v_{e} and anti- v_{e}

Long baseline Experiments

735km

IA

- →Single flight length
- ➔ Controlled neutrino energy
- → almost pure v_{μ} (or anti- v_{μ})

Initial discovery

Producing the neutrino beam

Example: MINOS

Neutrino spectrum and neutrino interactions

Neutrino spectrum and the far/near ratio

K2K experiment and its results

hep-ex/0606032

Near detector measurements

- 1KT Water Cherenkov Detector (1KT)
- Scintillating-fiber/Water sandwich Detector (SciFi)
- Lead Glass calorimeter (LG) before 2002
- Scintillator Bar Detector (SciBar) after 2003
- Muon Range Detector (MRD)

They predict the event rate and spectrum @ Super-K

K2K events in Super-Kamiokande

The MINOS experiment and its results

MINOS near and far detectors

1	mass (kt)	5.4
3.8x4.8	plane size (m²)	8x8
282/153	# steel/scint pl.	486/484
front: all pl. instrumented		veto shield for cosmics
back: 1/5 pl. instrumented	specifics	8x optical multiplexing
fast QIE electronics		

MINOS event topologies

activity at vertex

- profile

These events must be selected for the $v_{\mu} \rightarrow v_{\mu}$ studies

Checking neutrino events with the near detector data

MINOS v_{μ} event selection

 ν_{μ} CC is selected by;

- >=1 track
- Fiducial volume

Total mass: 5.4kton Fiducial mass: 3.9kton

MINOS updated results

H. Gallagher(MINOS collab.) talk at Nu2008

3.2×10²⁰ pot (~Aug. 2007)

848 CC v_{μ} candidates $\leftarrow \rightarrow$ 1065±60(syst) no-osc. prediction

Clear energy dependent v_{μ} deficit, which is completely consistent with $v_{\mu} \rightarrow v_{\tau}$.

Testing alternative hypotheses @MINOS

Decay and decoherence models are disfavored at 3.7 and 5.7σ , resp.

(These results are consistent with those from Super-K atmospheric neutrino experiment.)

Allowed parameter space from present experiments

Oscillation to v_{τ} **or** v_{sterile} ?

Testing $v_{\mu} \rightarrow v_{\tau}$ **vs.** $v_{\mu} \rightarrow v_{\text{sterile}}$

Limit on oscillations to v_{sterile}

MINOS NC analysis

Tau neutrino appearance ?

Detecting CC v_{τ} events (SK-I)

(BG (other v events)

 \sim 130 ev./kton•yr)

Zenith angle

Selecting v_{τ} candidates

Zenith angle dist. and fit results

SK-collab. hep-ex/0607059

Future of v_{τ} **detection**

G.Wilquet, EPS2007

Channels	Signal ∆m²=0.0025 ∆m²=0.0030		Background	•T
$\tau \rightarrow \mu$	2.9	4.2	0.17	้อเล
$\tau \rightarrow e$	3.5	5.0	0.17	
$\tau \rightarrow h^{-}$	3.1	4.4	0.24	
$\tau \rightarrow 3h$	0.9	1.3	0.17	5 ١
All	10.4	15.0	0.76	4.5

The 2008 run started.

5 yrs with 4.5•10¹⁹ p.o.t./yr

Summary of Leture-1

- Study of the background for proton decay found unexpected atmospheric v_{μ} deficit.
- In 1998, the ν_{μ} deficit was concluded as evidence for neutrino oscillations.
- Recent atmospheric neutrino data are consistently explained by $v_{\mu} \rightarrow v_{\tau}$ oscillations.
- Long baseline accelerator experiments clearly observed $v_{\mu} \rightarrow v_{\tau}$ oscillations.
- Next step in the $v_{\mu} \rightarrow v_{\tau}$ oscillation: unambiguous measurement of tau appearance.

End

Comment: upward-going muons

Zenith angle distributions

Consistent with no zenith angle dependence...

Around Super-K

Entrance to the mine

