# ISAPP Valencia, 2008

## **Neutrino Oscillation Phenomenology - II**

Thomas Schwetz CERN

T. Schwetz, Neutrino Oscillation Phenomenology - p.1

## Outline

Lecture 1:

- Neutrino oscillations oscillations in vacuum and matter
- Present neutrino oscillation experiments solar, atmospheric, reactor, accelerator

Lecture 2:

- $\theta_{13}$  and global three flavour analysis discussion of three flavour effects summary of present status and open questions
- the LSND puzzle and MiniBooNE results

## **3-flavour oscillation parameters**

$$\Delta m_{31}^2 \qquad \qquad \Delta m_{21}^2$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & e^{-i\delta}s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

3-flavour effects are suppressed because  $\theta_{13} \ll 1 \text{ und } \Delta m^2_{21} \ll \Delta m^2_{31}$ 

 $\Rightarrow$  dominant oscillations are well described by effective two-flavour oscillations

## **Dominat oscillations**



## $heta_{13}$ and 3-flavour effects

# Three flavour effects

- $\theta_{13}$  effects in oscillations with  $\Delta m^2_{31}$
- $heta_{13}$  effects in oscillations with  $\Delta m^2_{21}$
- $\Delta m^2_{21}$  effects in oscillations with  $\Delta m^2_{31}$
- effects of  $\delta_{\mathrm{CP}}$

## The 3-flavour $\bar{\nu}_e \rightarrow \bar{\nu}_e$ survival probability:



## The Chooz reactor experiment

reactor experiment with a baseline of 1 km:

$$\frac{E_{\nu}}{L} \sim \frac{4 \,\mathrm{MeV}}{1 \,\mathrm{km}} \sim 4 \times 10^{-3} \,\mathrm{eV}^2$$

 $\bar{\nu}_e$  disappearance at the "atmospheric"  $\Delta m^2$  scale

$$P_{ee} = 1 - \sin^2 2\theta_{13} \underbrace{\sin^2 \frac{\Delta m_{31}^2 L}{2E_{\nu}}}_{\mathcal{O}(1)@CHOOZ} + \mathcal{O}(\Delta m_{21}^2 / \Delta m_{31}^2)$$

## The Chooz reactor experiment

reactor experiment with a baseline of 1 km:

$$\frac{E_{\nu}}{L} \sim \frac{4 \,\mathrm{MeV}}{1 \,\mathrm{km}} \sim 4 \times 10^{-3} \,\mathrm{eV}^2$$

 $\bar{\nu}_e$  disappearance at the "atmospheric"  $\Delta m^2$  scale

$$P_{ee} = 1 - \sin^2 2\theta_{13} \underbrace{\sin^2 \frac{\Delta m_{31}^2 L}{2E_{\nu}}}_{\mathcal{O}(1)@CHOOZ} + \mathcal{O}(\Delta m_{21}^2 / \Delta m_{31}^2)$$

CHOOZ Result: observed over expected number of events:

$$R = 1.01 \pm 2.8\% \pm 2.7\%$$



#### ... from interplay of global data:



## ... from interplay of global data:



## ... from interplay of global data:



## $\theta_{13}$ in Solar and KamLAND

$$\begin{aligned} H_{\text{mat}}^{\nu} &= U_{23}U_{13}U_{12}\text{diag}\left(0, \Delta_{21}, \Delta_{31}\right)U_{12}^{\dagger}U_{13}^{\dagger}U_{23}^{\dagger} + \text{diag}(V, 0, 0) \\ &= U_{23}U_{13}\left[U_{12}\left(0, \Delta_{21}, \Delta_{31}\right)U_{12}^{\dagger} + U_{13}^{\dagger}(V, 0, 0)U_{13}\right]U_{13}^{\dagger}U_{13}^{\dagger}U_{23}^{\dagger} \end{aligned}$$

$$H_{\text{mat}}^{\nu} = U_{23}U_{13}U_{12}\text{diag}(0, \Delta_{21}, \Delta_{31}) U_{12}^{\dagger}U_{13}^{\dagger}U_{23}^{\dagger} + \text{diag}(V, 0, 0)$$

$$= U_{23}U_{13} \left[ U_{12} \left( 0, \Delta_{21}, \Delta_{31} \right) U_{12}^{\dagger} + U_{13}^{\dagger} (V, 0, 0) U_{13} \right] U_{13}^{\dagger} U_{23}^{\dagger}$$

#### for solar and KamLAND:

$$\frac{|\Delta m_{31}^2|L}{2E} \gg \frac{\Delta m_{21}^2 L}{2E} \sim 1 \,, \quad |\Delta m_{31}^2| \gg EV_{\rm sun} \sim \Delta m_{21}^2$$

 $\Rightarrow$  can set  $\Delta m^2_{31} \rightarrow \infty$ 

$$P_{ee}^{\text{sun,KL}} = c_{13}^4 P_{ee}^{2\nu}(\theta_{12}, \Delta_{12}) + s_{13}^4 \quad \text{with} \quad V \to c_{13}^2 V$$

#### complementarity between solar and KamLAND data



## The KamLAND energy spectrum

## $\theta_{13}$ leads to a flatter energy spectrum



 $H_{\rm mat}^{\nu} = U_{23}U_{13}U_{12}\text{diag}\left(0, \Delta_{21}, \Delta_{31}\right)U_{12}^{\dagger}U_{13}^{\dagger}U_{23}^{\dagger} + \text{diag}(V, 0, 0)$ 

for  $\Delta m_{12}^2 = 0$  and  $\theta_{13} = 0$  one gets  $\nu_{\mu} \rightarrow \nu_{\tau}$  vacuum oscillations:

$$H_{\rm mat}^{\nu} = \begin{pmatrix} V & 0 \\ 0 & H^{2\nu} \end{pmatrix}, \quad \text{with} \quad H^{2\nu} = O_{23} \begin{pmatrix} 0 & 0 \\ 0 & \Delta m_{31}^2 \end{pmatrix} O_{23}^T$$

$$\Rightarrow P_{ee} = 1, P_{\mu\mu} = P^{2\nu}$$

let's keep  $\Delta m_{21}^2 \approx 0$  but allow for  $\theta_{13} \neq 0$ :

$$P_{\mu\mu} = \sin^2 2\theta_{\text{eff}} \sin^2 \frac{\Delta m_{31}^2 L}{4E}, \quad \sin^2 \theta_{\text{eff}} = \sin^2 \theta_{23} \cos^2 \theta_{13}$$

neglect matter effect

let's keep  $\Delta m_{21}^2 \approx 0$  but allow for  $\theta_{13} \neq 0$ :

$$P_{\mu\mu} = \sin^2 2\theta_{\text{eff}} \sin^2 \frac{\Delta m_{31}^2 L}{4E}, \quad \sin^2 \theta_{\text{eff}} = \sin^2 \theta_{23} \cos^2 \theta_{13}$$

neglect matter effect

 $\nu_e$  appearance:

$$P_{\mu e} = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{31}^2 L}{4E} + \mathcal{O}(\Delta m_{21}^2 \theta_{13}, \Delta m_{21}^2)$$

MINOS analysis in progress ( $e^-$  detection is difficult) expect minor improvement on CHOOZ  $\Rightarrow$  main goal of future LBL experiments (T2K, NOvA)

## Sub-leading effects in atmospheric neutrinos

$$\phi_e^{\text{obs}} = \phi_e^0 P_{ee} + \phi_\mu^0 P_{\mu e}$$
$$\phi_\mu^{\text{obs}} = \phi_\mu^0 P_{\mu \mu} + \phi_e^0 P_{e\mu}$$

e-like events are a good place to look for 3-flavour effects

## Sub-leading effects in atmospheric neutrinos

excess of electron-like events:

$$\begin{aligned} \frac{N_e}{N_e^0} - 1 \simeq & (r \, s_{23}^2 - 1) \, P_{2\nu}(\Delta m_{31}^2, \theta_{13}) & \theta_{13}\text{-effects} \\ &+ & (r \, c_{23}^2 - 1) \, P_{2\nu}(\Delta m_{21}^2, \theta_{12}) & \Delta m_{21}^2\text{-effects} \\ &- & 2s_{13}s_{23}c_{23} \, r \, \text{Re}(A_{ee}^* A_{\mu e}) & \text{interference: } \delta_{\text{CP}} \end{aligned}$$

$$r = r(E_{\nu}) \equiv rac{\phi_{\mu}^0(E_{\nu})}{\phi_e^0(E_{\nu})}$$
  $r \approx 2.6 - 4.5$  (sub-GeV)  
 $r \approx 2.6 - 4.5$  (multi-GeV)

Fogli, Lisi, Marrone, Palazzo, hep-ph/0506083

# Taking into account $\Delta m^2_{21}$



Gonzalez-Garcia, Maltoni, Smirnov, hep-ph/0408170

## Super-K atmospheric neutrino data



## Is there an indication for a non-max $\theta_{23}$ ?



## *Is there an indication for* $\theta_{13} \neq 0$ *?*



Bari: best fit:  $\sin^2 \theta_{13} \approx 0.01$ ,  $\Delta \chi^2 \approx 0.85$  for  $\theta_{13} = 0$ Maltoni: best fit:  $\sin^2 \theta_{13} \approx 0.005$ ,  $\Delta \chi^2 \approx 0.16$  for  $\theta_{13} = 0$ 

*Effects of*  $\delta_{CP}$ 

To observe an effect of  $\delta_{CP}$  one needs

- $\theta_{13} \neq 0$ , and
- sensitivity to  $\Delta m^2_{21}$

$$\mathsf{U} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & e^{-i\delta}s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $H_{\rm mat}^{\nu} = U_{23}U_{13}U_{12} {\rm diag}\left(0, \Delta_{21}, \Delta_{31}\right) U_{12}^{\dagger}U_{13}^{\dagger}U_{23}^{\dagger} + {\rm diag}(V, 0, 0)$ 

## $\delta_{\rm CP}$ effects in present data

# bound on $\theta_{13}$ depends on $\delta_{CP}$ and on hierarchy: (atmospheric data)



Gonzalez-Garcia, Maltoni, 0704.1800

## **Summary 3-flavour oscillation parameters**

## Three flavour osc. parameters summary

#### mass-squared differences:

| parameter                                         | ${\sf bf}{\pm}1\sigma$ | $1\sigma$ acc. | $3\sigma$ range |
|---------------------------------------------------|------------------------|----------------|-----------------|
| $\Delta m^2_{21} \left[ 10^{-5} { m eV}^2  ight]$ | $7.59 \pm 0.21$        | 2.8%           | 7.05 - 8.35     |
| $ \Delta m^2_{31}   [10^{-3} { m eV}^2]$          | $2.40^{+0.12}_{-0.10}$ | 4.6%           | 2.07 - 2.76     |

#### mixing angles:

| parameter          | ${\sf bf}{\pm}1\sigma$            | $1\sigma$ acc. | $3\sigma$ range |
|--------------------|-----------------------------------|----------------|-----------------|
| $\sin^2	heta_{12}$ | $0.31\substack{+0.016 \\ -0.023}$ | 6.3%           | 0.25 - 0.37     |
| $\sin^2	heta_{23}$ | $0.50\substack{+0.07 \\ -0.06}$   | 13%            | 0.36 - 0.67     |
| $\sin^2	heta_{13}$ | $0.01\substack{+0.016 \\ -0.01}$  | _              | $\leq 0.056$    |

Schwetz, Tortola, Valle, in preparation

## Three flavour osc. parameters summary



## Three flavour osc. parameters summary

## two possibilities for the neutrino mass spectrum



We know that the mass state containing most of  $\nu_e$  is the lighter of the two "solar mass" states

$$\Delta m_{21}^2 \equiv m_2^2 - m_1^2 > 0 \quad \text{and} \quad \theta_{12} < 45^o$$

thanks to the observation of the matter effect in the sun:

resonance condition:

$$\Delta m_{21}^2 \cos 2\theta_{12} = 2E_\nu V \quad \Rightarrow \quad \Delta m_{21}^2 \cos 2\theta_{12} > 0$$

We do not know the sign of  $\Delta m_{31}^2$ ! (normal or inverted mass ordering)

No matter effect has been observed for oscillations with  $\Delta m_{31}^2$ , only "vacuum"  $\nu_{\mu} \rightarrow \nu_{\mu}(\nu_{\tau})$  oscillations:

$$P_{\mu\mu} \approx 1 - \sin^2 2\theta_{23} \sin^2 \frac{\Delta m_{31}^2 L}{4E}$$

Has to look for matter effect in  $\nu_e \leftrightarrow \nu_\mu$  oscillations due to  $\Delta m_{31}^2, \theta_{13}$  $\Rightarrow$  future long-baseline experiments

## Why are neutrino masses so small?



## Why are neutrino masses so small?



Is the smallness of  $m_{\nu}$ related to a high scale  $\Lambda$ (GUT scale?) via the seesaw mechanism?

$$m_{\nu} \sim \frac{v^2}{\Lambda}$$

 $v \sim 174 \text{GeV}$
### Why is lepton mixing large?



### Why is lepton mixing large?

### Lepton mixing:

$$U_{PMNS} = \frac{1}{\sqrt{3}} \begin{pmatrix} \mathcal{O}(1) & \mathcal{O}(1) & \epsilon \\ \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(1) \\ \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(1) \end{pmatrix}$$

Quark mixing:

$$U_{CKM} = \begin{pmatrix} 1 & \epsilon & \epsilon \\ \epsilon & 1 & \epsilon \\ \epsilon & \epsilon & 1 \end{pmatrix}$$

## Is there a special pattern in lepton mixing?

### example: Tri-bimaximal mixing

Harrison, Perkins, Scott, PLB 2002, hep-ph/0202074

$$\sin^2 \theta_{12} = 1/3$$
,  $\sin^2 \theta_{23} = 1/2$ ,  $\sin^2 \theta_{13} = 0 \implies$ 

$$U = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0\\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2}\\ 1/\sqrt{6} & -1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

**Open questions:** 

 Is this basic picture correct? LSND hint? non-standard effects beyond oscillations?

- Is this basic picture correct? LSND hint? non-standard effects beyond oscillations?
- Increase the precision on solar and atmospheric parameters (e.g. Is  $\theta_{23}$  exactly 45°?)

- Is this basic picture correct?
   LSND hint?
   non-standard effects beyond oscillations?
- Increase the precision on solar and atmospheric parameters (e.g. Is  $\theta_{23}$  exactly 45°?)
- How small is  $\theta_{13}$ ?

- Is this basic picture correct? LSND hint? non-standard effects beyond oscillations?
- Increase the precision on solar and atmospheric parameters (e.g. Is  $\theta_{23}$  exactly 45°?)
- How small is  $\theta_{13}$ ?
- What is the value of the CP phase  $\delta$ ?

- Is this basic picture correct? LSND hint? non-standard effects beyond oscillations?
- Increase the precision on solar and atmospheric parameters (e.g. Is  $\theta_{23}$  exactly 45°?)
- How small is  $\theta_{13}$ ?
- What is the value of the CP phase  $\delta$ ?
- Type of the neutrino mass ordering (sign of  $\Delta m^2_{31}$ )

### The LSND puzzle

### The LSND signal





 $L \simeq 35 \text{ m}$ signal:  $\bar{\nu}_e + p \rightarrow e^+ + n$ 

## The LSND signal





 $L\simeq$  35 m

evidence for  $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$  oscillations A. Aguilar *et al.*, PRD 64 (2001) 112007

 $87.9 \pm 22.4 \pm 6.0$  excess events  $P = (0.264 \pm 0.067 \pm 0.045)\%$ ~  $3.3\sigma$  away from zero

# **Oscillation interpretation of LSND**

several bounds from other no-evidence SBL experiments, (KARMEN)

# combined analysis of LSND and KARMEN:

Church, Eitel, Mills, Steidl, PRD (2002)



## **Oscillation interpretation of LSND**

#### the problem:

 $\Delta m^2 \sim eV^2$  not consistent with solar (8 × 10<sup>-5</sup>) and atmospheric (2 × 10<sup>-3</sup>) mass splittings for three neutrinos!



#### MiniBooNE's Design Strategy...

Keep L/E same while changing systematics, energy & event signature

 $P(v_{\mu} \rightarrow v_{e}) = \sin^{2}2\theta \sin^{2}(1.27\Delta m^{2}L/E)$ 



### MiniBooNE neutrino flux



"Intrinsic"  $\mathbf{v}_{e} + \overline{\mathbf{v}}_{e}$  sources:  $\mu^{+} \rightarrow e^{+} \overline{\mathbf{v}}_{\mu} \mathbf{v}_{e}$  (52%)  $K^{+} \rightarrow \pi^{0} e^{+} \mathbf{v}_{e}$  (29%)  $K^{0} \rightarrow \pi e \mathbf{v}_{e}$  (14%) Other (5%)

# obs. events minus background:

 $475 < E_{\nu}^{\rm QE} < 1250 \,{\rm MeV}$ :  $22 \pm 19 \pm 35 \,{\rm events}$ (consistent with zero)

 $300 < E_{\nu}^{\text{QE}} < 475 \text{ MeV}$ :  $96 \pm 17 \pm 20 \text{ events}$ (excess at  $3.6\sigma$ )



### The MiniBooNE 2-neutrino limit



In the 2-neutrino framework MiniBooNE and LSND are incompatible at the 98% CL Aguilar-Arevalo et al., PRL08

#### 4-neutrino mass schemes:



### Adding a sterile neutrino





In (3+1) schemes the SBL appearance probability is effectively 2- $\nu$  oscillations:

$$P_{\mu e} = \sin^2 2\theta_{\rm SBL} \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$

with

$$\sin^2 2\theta_{\rm SBL} = 4|U_{e4}|^2|U_{\mu4}|^2$$

LSND / MiniBooNE inconsistency is the same as in the 2-flavour analysis presented by the MiniBooNE collaboration (98% CL)

# Appearance vs disappearance in (3+1)

appearance amplitude  $\sin^2 2\theta_{\text{SBL}} = 4|U_{e4}|^2|U_{\mu4}|^2$ disappearance experiments bound  $|U_{e4}|^2$  and  $|U_{\mu4}|^2$ 



(3+1) global



before MB:  $\chi^2_{\rm PG} = 20.9 \,(2 \, {\rm dof})$ 

MB incl.:  $\chi^2_{\rm PG} = 24.7 \,(2 \, {\rm dof})$ 

disagreement at about  $4\sigma$ 

### More sterile neutrinos?

### **5-neutrino oscillations**



Sorel, Conrad, Shaevitz, hep-ph/0305255

# (3+2) appearance probability

$$P_{\nu_{\mu} \to \nu_{e}} = 4 |U_{e4}|^{2} |U_{\mu4}|^{2} \sin^{2} \phi_{41} + 4 |U_{e5}|^{2} |U_{\mu5}|^{2} \sin^{2} \phi_{51} + 8 |U_{e4} U_{\mu4} U_{e5} U_{\mu5}| \sin \phi_{41} \sin \phi_{51} \cos(\phi_{54} - \delta)$$

with the definitions

$$\phi_{ij} \equiv \frac{\Delta m_{ij}^2 L}{4E}, \qquad \delta \equiv \arg \left( U_{e4}^* U_{\mu 4} U_{e5} U_{\mu 5}^* \right) \,.$$

(3+2) osc. include the possibility of CP violation! remember: MiniBooNE: neutrinos, LSND: anti-neutrinos

# (3+2) appearance data

### best fit point spectra:

### MiniBooNE



Perfect fit to appearance data: w/o MB low energy excess:  $\chi^2_{min} = 16.9/(29-5)$ with MB low energy excess:  $\chi^2_{min} = 18.5/(31-5)$ 

T. Schwetz, Neutrino Oscillation Phenomenology – p.48

LSND

## (3+2) disappearance data

what about the disappearance data?

$$P_{\nu_{\alpha} \to \nu_{\alpha}} = 1 - 4 \left( 1 - \sum_{i=4,5} |U_{\alpha i}|^2 \right) \sum_{i=4,5} |U_{\alpha i}|^2 \sin^2 \phi_{i1}$$
$$- 4 |U_{\alpha 4}|^2 |U_{\alpha 5}|^2 \sin^2 \phi_{54}$$

 $\Rightarrow$  bound  $|U_{ei}|$  and  $|U_{\mu i}|$  (i = 4, 5), similar as in (3+1) to be reconciled with appearance amplitudes  $|U_{ei}U_{\mu i}|$ 

# (3+2) app vs disap

### projection

#### section



(3+2) global

# testing consistency of disappearance and appearance data:

$$\chi^2_{\rm PG} = 17.2 \,(4 \, {\rm dof}) \qquad {\rm PG} = 0.18\%$$
 (without MB:  $\chi^2_{\rm PG} = 17.5$ )

#### inconsistency at about $3.1\sigma$

parameters in common  $|U_{e4}U_{\mu4}|, |U_{e5}U_{\mu5}|, \Delta m^2_{41}, \Delta m^2_{51}$ 

best fit:  $\Delta m_{41}^2 = 0.9 \text{ eV}^2$ ,  $\Delta m_{51}^2 = 6.5 \text{ eV}^2$ ,  $\chi_{\min}^2 = 94.5/(107 - 7)$  $\chi_{\min, \text{ global (3+1)}}^2 - \chi_{\min, \text{ global (3+2)}}^2 = 6.1/4 \text{ dof}$  (81% CL)

# the low energy MB excess in the (3+2) fit

the MB low energy excess is not reproduced at the global best fit point:



### adding another sterile: (3+3)

# (3+3) global fit



|       | $\Delta m^2_{41}$ | $\Delta m_{51}^2$ | $\Delta m_{61}^2$ | $\chi^2_{ m min}$ | $\chi^2_{(3+2)} - \chi^2_{(3+3)}$ | CL  |
|-------|-------------------|-------------------|-------------------|-------------------|-----------------------------------|-----|
| MB475 | 0.46              | 0.83              | 1.84              | 92.8              | 1.7/4                             | 20% |
| MB300 | 0.46              | 0.83              | 1.84              | 100.9             | 3.5/4                             | 52% |

All these sterile neutrino schemes have problems with cosmology

- sterile states contribute to the relativistic degrees of freedom (CMB, BBN)
- conflict with bound on the sum of neutrino masses from various cosmological data sets (LSS)



SN Ia, LSS (2dF, SDSS), BAO, CMB (WMAP, BOOMERANG)



68%, 95%, 99% CL

Hannestad, Raffelt, astro-ph/0607101

### More 'exotic' proposals
- **3-neutrinos and CPT violation** Murayama, Yanagida 01; Barenboim, Borissov, Lykken 02; Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-decay Babu, Pakvasa 02
- CPT viol. quantum decoherence Barenboim, Mavromatos 04
- Lorentz violation

mass varying neutrinos

- shortcuts of sterile neutrinos in extra dimensions Paes, Pakvasa, Weiler 05
- 1 decaying sterile neutrino Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07
- sterile neutrino with exotic energy dependence Schwetz 07
- quantum decoherence with special energy dependence Farzan, Schwetz, Smirnov, 08

- 3-neutrino Control Contron Control Control Control Control Control Control Control Contro
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-decay Babu, Pakvasa 02
- CPT viol. quantum decoherence Barenboim, Mavromatos 04
- Lorentz violation

mass varying neutrinos

- shortcuts of sterile neutrinos in extra dimensions Paes, Pakvasa, Weiler 05
- 1 decaying sterile neutrino Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07
- sterile neutrino with exotic energy dependence Schwetz 07
- quantum decoherence with special energy dependence Farzan, Schwetz, Smirnov, 08

- 3-neutrin KamLAND+atmospheric antineutrino data Barenboim, B
   KamLAND+atmospheric antineutrino data
   Schweit 02; Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger. Marfatia, Whisnant 03
- Exotic muon-decay KARMEN, TWIST
- CPT viol. quantum decoherence Barenboim, Mavromatos 04
- Lorentz violation

mass varying neutrinos

- shortcuts of sterile neutrinos in extra dimensions Paes, Pakvasa, Weiler 05
- 1 decaying sterile neutrino Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07
- sterile neutrino with exotic energy dependence Schwetz 07
- quantum decoherence with special energy dependence Farzan, Schwetz, Smirnov, 08

- 3-neutrinos and Andreamospheric antineutrino data Barenboim, B
   KamLAND+atmospheric antineutrino data
   June 102; Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger. Marfatia, Whisnant 03
- Exotic muon-decay KARMEN, TWIST
- CPT viol. quantum spectrum, NuTeV arenboim, Mavromatos 04
- Lorentz violation

mass varying neutrinos

- shortcuts of sterile neutrinos in extra dimensions Paes, Pakvasa, Weiler 05
- 1 decaying sterile neutrino Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07
- sterile neutrino with exotic energy dependence Schwetz 07
- quantum decoherence with special energy dependence Farzan, Schwetz, Smirnov, 08

- 4-neutrinos and CPT violation Barger. Marfatia, Whisnant 03
- Exotic muon-decay KARMEN, TWIST
- CPT viol. quickamL spectrum, NuTeV arenboim, Mavromatos 04
- Lorentz violation Kostelecky, energy dependence, MiniBooNE?
   energy dependence, MiniBooNE?
- mass varying neutrinos
  Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05
- shortcuts of sterile neutrinos in extra dimensions Paes, Pakvasa, Weiler 05
- 1 decaying sterile neutrino Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07
- sterile neutrino with exotic energy dependence Schwetz 07
- quantum decoherence with special energy dependence Farzan, Schwetz, Smirnov, 08

- 4-neutrinos and CPT violation Barger. Marfatia, Whisnant 03
- Exotic muon-decay KARMEN, TWIST
- CPT viol. quickamL spectrum, NuTeV arenboim, Mavromatos 04
- Lorentz violation Kostelecky, energy dependence, MiniBooNE?
   energy dependence, MiniBooNE?
- mass varying neutrinoon Kaplan, Nelson, Wei CDHS+atmospheric data?
- shortcuts of sterile neutrinos in extra dimensions Paes, Pakvasa, Weiler 05
- 1 decaying sterile neutrino Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07
- sterile neutrino with exotic energy dependence Schwetz 07
- quantum decoherence with special energy dependence Farzan, Schwetz, Smirnov, 08

- 3-neutrino and and a statement of the statement of t
- 4-neutrinos and CPT violation Barger. Marfatia, Whisnant 03
- Exotic muon-decay KARMEN, TWIST
- CPT viol. quickamL spectrum, NuTeV arenboim, Mavromatos 04
- Lorentz violation Kostelecky, energy dependence, MiniBooNE?
   energy dependence, MiniBooNE?
- mass varying neutrinoon Kaplan, Nelson, Wei CDHS+atmospheric data?
   Kaplan, Nelson, Wei CDHS+atmospheric data?
- shortcuts of sterile neutrine.
  Paes, Pakvasa, We MiniB+KamL+atmospheric? imensions
- 1 decaying sterile neutrino Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07
- sterile neutrino with exotic energy dependence Schwetz 07
- quantum decoherence with special energy dependence Farzan, Schwetz, Smirnov, 08

- 3-neutrino and and a statement of the statement of t
- 4-neutrinos and CPT violation Barger. Marfatia, Whisnant 03
- Exotic muon-decay KARMEN, TWIST
- CPT viol. quickamL spectrum, NuTeV arenboim, Mavromatos 04
- Lorentz violation Kostelecky, energy dependence, MiniBooNE?
   energy dependence, MiniBooNE?
- mass varying neutrinoo Kaplan, Nelson, Wei CDHS+atmospheric data?
- shortcuts of sterile neutrine.
  Paes, Pakvasa, We MiniB+KamL+atmospheric? imensions
- 1 decaying sterile ne MiniBooNE ares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07
- sterile neutrino with exotic energy dependence Schwetz 07
- quantum decoherence with special energy dependence Farzan, Schwetz, Smirnov, 08

- 3-neutrino and antiperio antiperio data Barenboim, Bi KamLAND+atmospheric antipeutrino data
- 4-neutrinos and CPT violation Barger. Marfatia, Whisnant 03
- Exotic muon-decay KARMEN, TWIST
- CPT viol. quickamL spectrum, NuTeV arenboim, Mavromatos 04
- Lorentz violation Kostelecky, energy dependence, MiniBooNE? energy dependence, MiniBooNE?
- mass varying neutrinoo Kaplan, Nelson, Wei CDHS+atmospheric data?
- shortcuts of sterile neutring.
  Paes, Pakvasa, We MiniB+KamL+atmospheric? imensions
- 1 decaying sterile ne MiniBooNE ares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrino MINOS+atmospheric? 300 Nelson, Walsh 07
- sterile neutrino with exotic energy dependence Schwetz 07
- quantum decoherence with special energy dependence Farzan, Schwetz, Smirnov, 08

## Sterile neutrino oscillations - outlook

- CPV is being tested by MiniBooNE anti-neutrino data (problem of statistics?)
- MB low-*E* excess is a real puzzle for pheno

## Sterile neutrino oscillations - outlook

- CPV is being tested by MiniBooNE anti-neutrino data (problem of statistics?)
- MB low-*E* excess is a real puzzle for pheno
- the problem of (3+s) schemes heavily relies on SBL disappearance experiments Bugey ( $\bar{\nu}_e$  reactor) and CDHS ( $\nu_\mu$  accelerator)
- could be worth to look for disappearance at the  $\Delta m^2 \sim 1 \, {\rm eV^2}$  scale at future reactor or LBL experiments (near detectors)

## Sterile neutrino oscillations - outlook

- CPV is being tested by MiniBooNE anti-neutrino data (problem of statistics?)
- MB low-*E* excess is a real puzzle for pheno
- the problem of (3+s) schemes heavily relies on SBL disappearance experiments Bugey ( $\bar{\nu}_e$  reactor) and CDHS ( $\nu_\mu$  accelerator)
- could be worth to look for disappearance at the  $\Delta m^2 \sim 1 \, {\rm eV}^2$  scale at future reactor or LBL experiments (near detectors)
- sterile neutrinos with  $\Delta m^2 \sim 1 \, {\rm eV^2}$  might lead to large effects for high energy atmospheric neutrinos in IceCube S. Choubey, 0709.1937