
Neutrinos
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neutrino ≡ fermion without strong or electromagntic interactions

(active/sterile neutrino ≡ weak-SU(2) doublet/singlet)

1. what we know: weak interactions, masses and mixing angles

2. how we know : oscillations in vacuum and matter

3. other possible observables

• [m2]ee from β decay
• [m]ee from neutrinoless double beta decay (0ν2β)
• (“non-standard” interactions, magnetic moments,...)

4. why are neutrino massses small : models

• suppressed by a large mass scale and small couplings: the seesaw
• suppressed by small couplings and loops: Rp violation in SUSY

Plots from Strumia + Vissani: hep-ph/0606054



An overview of the history of neutrinos

•
•
• inflation (produce large scale CMB fluctuations) (?could be driven by the sneutrino?)

• baryogenesis (excess of matter over anti-matter in room/Universe) ?leptogenesis in the seesaw?

• relic density of (cold) Dark Matter (?could be (heavy) neutrinos too??? Shaposhnikov et al)

• Big Bang Nucleosynthesis (produce H,D,3He,4He,7Li abundances at T ∼ MeV))

⇔ 3 species of relativistic ν in the thermal soup

• decoupling of photons — e+ p → H (CMB spectrum today)

cares about radiation density ↔ Nν,mν

• for 1010 yrs —stars are born, radiate (γ, ν), and die

• supernovae explode (?grace aux ν?) spreading heavy elements

• 1930: Pauli hypothesises the “neutrino”, to conserve E in n → p+ e(+ν)

• 1953 Reines and Cowan: neutrino CC interactions in detector near a reactor

• invention of the Standard Model

•
•
•



helicity, chirality and all that...

ψ a Dirac spinor, 4 degrees of freedom labelled by {±E,±s}.

Chiral decomposition of ψ = ψL + ψR,

ψL = PLψ avec PL =
(1 − γ5)

2
, ψR = PRψ avec PR =

(1 + γ5)

2

not an observable; property of the field ( PL,R simple to calculate with :) )

independent of reference frame—but becomes helicity in the relativistic limit.

Standard Model is chiral = different gauge interactions for LH, RH fermions.

define helicity as ±ŝ · k̂ = ±1/2, for particle of 4-momentum (k0, ~k). Observable. Ugly operator.

Gauge kinetic terms for chiral fermions : ψ γµDµψ = ψL γ
µDµψL + ψR γ

µDµψR,

but not the Dirac mass: mψψ = mψLψR +mψRψL

Careful about notation: (ψR) = (ψ)L 6= (ψ)R



Neutrinos in the Standard Model: weak interactions

3 generations of lepton doublets in the SM: νR not required by observation (gauge singlets, mν not detected)
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CC verified by lepton universality tests (τ → νν̄µ, τ → νν̄e ...),

NC: invisible decay of the Z: decays to 2.994 ±0.012 invisible chiral fermions (precision fit)



neutrino deficits—something other than weak interactions required?

Historical “problems”:

1. the sun produces energy by a network of nuclear reactions, which should produce νe (lines and

continuum) which escape. The energy diffuses to the surface. Observed νe flux ∼ .3 → .5

expected from solar energy output. Flux in
P

flavours ∼ expected.

⇒ new ν physics, that changes ν flavour on way out of sun:

• magnetic moments?

• wierd new interactions?

• masses (and mixing angles)

• ...

2. deficit of νµ arriving from the earth’s atmosphere,

produced in cosmic ray interactions:

expect N(νµ + ν̄µ) ≃ 2N(νe + ν̄e)

see deficit of νµ, ν̄µ from above. π

p, ...

µ
ν̄µ

e
νµ

ν̄e



To write a mass for νL... Dirac or Majorana

Work in effective theory of SM below mW . SU(2) (spontaneously) broken, so a mass term for νL
is allowed. It must be Lorentz invariant. Allowed mass term, four-component fermion ψ:

mψψ = mψLψR +mψR ψL

1. Dirac masss term:

SM has only νL, 2 dof chiral fermion ⇒ introduce another 2 dof chiral fermion νR
fermion number conserving mass term like all other SM fermions:

mνL νR +mνR νL

2. Majorana mass term: the charge conjugate of νL is right-handed !

⇒ can write a fermion number non-conserving mass term using just 2 dof of νL.

No new fields, but lepton number violating mass.



Majorana mass term: the charge conjugate of νL is right-handed
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Allowed mass term, four-component fermion ψ: mψψ = mψL ψR +mψR ψL
⇒ with only the 2 dof of a chiral fermion, can write mass term:

m[νL(νL)
c + (νL)cνL] = m[(νL)

†γ0(νL)
c + ((νL)

c)†γ0νL] = −im[ν†
Lσ2ν

∗
L + νTLσ2νL]



Mass matrices: Dirac or Majorana

1. Dirac mass matrix (Add 3 νR to the SM): arbitrary 3 × 3 matrix (like other SM Yukawa

couplings). In charged lepton mass eigenstate basis for νL ≡ “ flavour basis” (indices α, β...),

diagonalise with independent transformations on SU(2) doublet/singlet indices:

νLα[m]αbνRb + νRb [m]
∗
bανLα = νLα[V

∗
LV

T
L mV

∗
RV

T
R ]abνRb + h.c = νLjmjνRj + h.c.

mm† hermitian, obtain VL from V T
L mm

†V ∗
L = D2

m. (real eigenvals for hermitian matrices).

2. Majorana mass matrix:can write a majorana mass term (one generation) as

1

2
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c
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−im
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[ν
†
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∗
L + ν

T
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2
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With multiple generations, [m]αβ will be a symmetric matrix:

1

2
νLα[m]αβνLβ + h.c. =

1

2
νLα[U

∗UTmUU†]αβνLβ + h.c. =
1

2
νLimiνLi + h.c.

Yes! fermion fields anti-commute. But for ρ, σ spinor indices, ν
ρ
Li
ερσν

σ
Lj = −νσLjερσν

ρ
Li

= νσLjεσρν
ρ
Li

mm† hermitian, obtain U from UTmm†U∗ = D2
m.

U called PMNS matrix (for Pontecorvo, Maki, Nakagawa and Sakata) : UPMNS.



counting mixing matrix phases: 1 for Dirac, 3 for Majorana

• A 3 × 3 complex matrix has 18 real parameters

• the unitarity condition V V † = 1, UU† = 1 reduces this to 9, which can be taken as 3 angles

and 6 phases.

• five of those phases are relative phases between the fields e, µ, τ, ν1, ν2 and ν3

• ...so if we are free to choose the phases of all the LH fermions, we are left with one phase in the

mixing matrix. This is the case for a dirac mass matrix (e.g. quarks), where any potential phase

on the masses could be absorbed by the RH fermion fields. Also the case in oscillations, where

appears mm†.

• if νL have Majorana masses, between themselves and their antiparticle, it is the LH neutrino

field which must absorb the phase off the Majorana mass. So in physical processes where the

Majorana mass appears linearly (not as mm∗; eg 0ν2β), one can choose the phase such that

the mass is real—in which case one can remove one less phase from MNS, or one can keep MNS

with one phase, and allow complex masses.

• it is always possible to remove the phase from one majorana mass, by using the global overall

phase of all the leptons (the sixth phase of e, µ, τ, ν1, ν2 and ν3, which we could not use to

remove phases from the lepton number conserving PMNS matrix). So in three generations, there

are possibly two complex majorana neutrino masses, so two “Majorana” phases in addition to

the “Dirac” phase δ of PMNS.



So,finally...observables

Majorana mixing matrix is U . Dirac neutrino mixing matrix is V :

U = V · diag{e−iφ/2, e−iφ
′/2
, 1}

Vαi =

2

4

c12c13 c13s12 s13e
−iδ

−c23s12 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s23s12 − c12c23s13e
iδ −c12s23 − c23s12s13e

iδ c13c23

3

5 .

θ23 ≃ .7 ± .2 ≃ π/4 θ12 ≃ .6 ± .1 ≃ π/6 θ13 ≤ .2

δ, φ, φ′ unknown —CPV in lepton sector not observed (yet).

Three masses: in hierarchical pattern m1 < m2 < m3, or inverse hierarchical m2 > m1 > m3:

∆m
2
atm = m

2
3 −m

2
2 ≃ 2.6 × 10

−3
eV

2
∆m

2
⊙ = m

2
2 −m

2
1 ≃ 7.9 × 10

−5
eV

2

with overall scale bounded above:

X

i

|mi| ≤ .37 − 2 eV LSS and CMB [m2]ee <∼ 2 eV β decay, Mainz

|[m]ee|


<∼ .35 eV 0ν2β,HM

≃ .3 eV 0ν2β,KK



Tangent—diagonalising a Majorana mass matrix

To find eigenvectors ~vi of a hermitian matrix A, with eigenvalues {ai} (recall from high-school)

A~vi = ai~vi

For Majorana matrix ?



Tangent—diagonalising a Majorana mass matrix... to not waste two weeks :)

To find eigenvectors ~vi of a hermitian matrix A, with eigenvalues {ai}

A~vi = ai~vi

For Majorana matrix :

A~vi = ai~v
∗
i



Tangent—diagonalising a Majorana mass matrix

To find eigenvectors ~vi of a hermitian matrix A, with eigenvalues {ai}

A~vi = ai~vi

For Majorana matrix :

A~ui = ai~u
∗
i

hermitian : V †AV = DA = diag{a1, ...an} (V unitary)
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majorana : UTAU = DA ⇒ AU = U∗DA (U unitary UU† = 1)
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And another curiosity about diagonalisation...

A hermitian matrix with degenerate eigenvalues is always diagonal. Not true for majorana mass

matrix (due to phases on masses): its not the same to diagonalise M†M = V †D2
MV , or

M = UTDMU (for degenerate eigenvalues) Ex:

M =

»

0 M1e
iφ

M1e
iφ 0

–

, M†M =

»

M2
1 0

0 M2
1

–

M1 ∈ ℜ



oscillations in vaccuum (sloppy field theory)

Take a toy model with two generations: να = Uαiνi

„

νe
νµ

«

=

„

cos θ sin θ

− sin θ cos θ

«

·
„

ν1

ν2

«

.

Suppose relativistic neutrinos, produced in muon decay at t = 0. Amplitude to produce mass

eigenstate i

Uµi

Neutrinos travel distance L = time τ to a detector. Propagator in position space for(scalar) mass

eigenstate:

G[(0, 0); (L, τ)] ∝
Z

d3p

(2π)3
e
i(Eτ−pL)

Describe νi by a wave packet peaked at ∼ (E,~k). ≃ fixed 4-momentum and detector/source

positions... so amplitude

Aµα ∝
X

j

Uµj × e
−i(Ejτ−kjL) × U

∗
αj

where, at detector, produce an e or a µ by CC scattering (α = e or µ)



Aµα ∝
X

j

Uµj × e−i(Ejτ−kjL) × U∗
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mj ≪ E, p ⇒ L ≃ τ , so
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E is ν energy, L is distance from source- detector.



Comment : quarks are different—how?

Produce at source a flavour eigenstate wave packet (superpositions of mass eigenstates)

Mass eigenstates remain “superposed” over L ∼ (E/GeV )(eV 2/∆m2) km ⇔ averaging

Pα→α(t) = 1 − sin2(2θ) sin2
“

L ∆m2

4E

”

over Ei of eigenstates has negligeable effect.

For L ≫ E/∆m2, decoherence of wavepacket

Pα→α(t) = 1 − 1

2
sin

2
(2θ) = 1 − 2 sin

2
(θ) cos

2
(θ) = (sin

2
θ + cos

2
θ)

2 − 2 sin
2
(θ) cos

= sin4 θ + cos4 θ =
“

|〈α|1〉|2
”2

+
“

|〈α|2〉|2
”2

↔ propagating mass eigenstates

1. L is a classical distance for neutrinos (≪ 10−6 cm for quarks)

2. ν can travel distance L before interacting (quarks have strong/electromagntic interactions)



Comment : why two (not three) flavour analysis is relevant?

Amplitude to oscillate from flavour α to β over distance L:

Aαβ(L) = Uα1U
∗
β1 + Uα2U

∗
β2e

−i(m2
2−m

2
1)τ/(2E) + Uα3U

∗
β3e

−i(m2
3−m

2
1)τ/(2E)

at L = 0, unitarity: ⇒ Aαβ = 1 for α = β

Aαβ = 0 for α 6= β

⇔ unitarity triangle(in complex plane)

Uµ1U
∗
τ1

Uµ2U
∗
τ2 Uµ3U

∗
τ3

At L = τ 6= 0, two of the vectors rotate in the complex plane, with frequencies (m2
j −m2

1)/2E

(oscillations ↔ time-dependent non-unitarity)

• “Atmospheric” neutrinos (oscillations via ∆m2
31): Uµ3U

∗
τ3 oscillates on timescale τ = L ∼

(m2
3 −m2

1)/E, but Uµ2U
∗
τ2 ∼ stationary.

• “Solar” neutrinos (survival of νe over L ↔ (m2
2 −m2

1)/2E): 2 ν approx works because θ13 is

small (Ue3 = sinθ13):

Aee = |Ue1|2 + |Ue2|2e−i(m
2
2−m

2
1)τ/(2E) + |Ue3|2e−i(m

2
3−m

2
1)L/(2E)

≃ |Ue1|2 + |Ue2|2e−i(m
2
2−m

2
1)τ/(2E)



Oscillations in matter

Coherent forward scattering of ν in matter give extra contribution to the Hamiltonian:
να να

p, n, e p, n, e

Z

νe e−

e− νe

W

NC are same for all generations of ν (add unit matrix to H—irrelevant for oscillations)

CC for νe only (no µ or τ in the matter)

In two generations: write Hmat in flavour basis (νe, (νµ + ντ)/
√

2):

Hmat = ... +

»

cos θ − sin θ

sin θ cos θ

– »

0 0

0 ∆m2/(2E)

– »

cos θ sin θ

− sin θ cos θ

–

+

»

Ve 0

0 0

–

Ve =
√

2GFne ≃ 8 eV×Ye
ρ

1014g/cm3
, Ye =

ne

nn + np
, ρ =

8

<

:

10g/cm3 earth core

100g/cm3 solar core

1014g/cm3 supernova

NB: “large” Ve suppresses oscillations; its flavour diagonal



Oscillations in matter — ctd

In two generations: write Hmat in flavour basis (νe, (νµ + ντ)/
√

2):

Hmat = ...+

"

−∆m2

4E cos 2θ + Ve
∆m2

4E sin 2θ
∆m2

4E sin 2θ ∆m2

4E cos 2θ

#

Define UT
matHmatU

∗
mat = diagonal... so the mixing angle in matter is:

tan(2θmat) =
∆m2 sin(2θvac)

2EVe − ∆m2 cos(2θvac)

2EVe→∆m2c2θ−→ large

• for 2EVe ≪ ∆m2 cos(2θvac), matter effects are negligeable

(in the sun E < few MeV)

• θmat → π/4 (“resonance”) at 2EVe = ∆m2 cos(2θvac)

(V of opposite sign for anti-neutrinos. eg, coming out of SN, resonance for ν, or ν̄)

• for 2EV ≫ ∆m2 cos(2θvac), mixing angle is suppressed (νe ∼ mass eigenstate)



matter of varying density

Recall Ve ≃ 8Ye
ρ

1014g/cm3 eV. For varying ρ(r), have t-dep Hamiltonian:

"

−∆m2

4E cos 2θ + Ve(t)
∆m2

4E sin 2θ
∆m2

4E sin 2θ ∆m2

4E cos 2θ

#

Matter mixing angle θmat time dependent...two limits:

1. adiabatic case: neglect θ̇mat,

instantaneous mass eigenstates νi do not mix.

NB: Pee → 0 possible

2. non-adiabatic ⇔ level hopping



The sun and the bathtub

• produce νe at the core of the sun: .4 MeV <∼ E <∼ 10 MeV.

• matter oscillation length < vacuum oscillation length ∼ 10 E
MeV

10−4eV 2

∆m2 ≪ Rsun. So

oscillations decohere ⇔ propagate mass eigenstates.

• Matter effects negligeable for E <∼ few MeV:

Pee = 1 − 1

2
sin2 2θvac >

1

2

• adiabatic matter effects for E >∼ few MeV, allows Pee < .5.



Summary

There are three “left-handed” massless neutrinos, with charged current and neutral current weak

interactions.

That’s it in the Standard Model, so in the SM, three lepton flavours Le, Lµ, Lτ are conserved.

Beyond the Standard Model physics! Neutrinos have (very small <∼ eV) masses ⇔ mixing matrix

UPMNS. Two mixing angles are large (≃ π/4, π/6) , one unmeasured (<∼ .2).

Masses can be

• Dirac — add light sterile fermions (right-handed neutrinos) to the SM. Lepton number conserved.

One phase in U .

• Majorana — lepton number non-conserving masses. Three phases in UPMNS.

We know about the mixing angles and mass differences because we see oscillations : flavour change

in propagation. In matter, there is contribution to ee element of “mass matrix” from interactions

with matter.


