Current and Future Reactor Based Neutrino Experiments

F.Suekane RCvS Tohoku University

Physics of Massive Neutrinos @Milos Island May 20, 2008

Χυρρεντ ανδ Φυτυρε Ρεαχτορ Βασεδ Νευτρινο Εξπεριμεντσ

> Φ.Συεκανε ΡΧνΣ Τοηοκυ Υνισερσιτψ

Πηψσιχσ οφ Μασσιωε Νευτρινοσ @Μιλοσ Ισλανδ Μαψ 20, 2008

Φ.Συεκανε≅ΠΜΝ08

Contents of this talk

- Quick Review of v Oscillation
- Scope of Reactor v experiments
- θ_{12} , Δm_{12}^2 : KamLAND
- θ_{13} : DoubleChooz, Dayabay, RENO
- Future prospects;

Precise θ_{12} , Very Precise θ_{13} , Δm^2_{13}

• Summary

What We Measure by v Oscillation

Both Mass and Mixing are a combination of flavor transition amplitude. \Rightarrow Measurment of mixing angle is as importnat as measurement of mass.

 \Rightarrow Physics of v oscillation is to measure the flavor transition amplitudes and think of its origin.

v Oscillations: 3 flavor case

Oscillations

$$\begin{split} P(\mathbf{v}_{\alpha} \rightarrow \mathbf{v}_{\beta}) &= \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin^{2}\Phi_{ij} \mp 2\sum_{i>j} \operatorname{Im}\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin 2\Phi_{ij} \\ &\left(\Phi_{ij} = \frac{\Delta m_{ij}^{2}L}{4E}, \quad \Delta m_{ij}^{2} = m_{j}^{2} - m_{i}^{2}\right) \end{split}$$

$$\begin{split} \mathbb{E}\left[\Delta m_{12}^{2}\right], \quad \Delta m_{23}^{2}\right], \quad \theta_{12}, \quad \theta_{23}, \quad \theta_{31}, \quad \delta \end{split}$$

6 parameters can be accessible from neutrino oscillation.

 v_{μ}

 $|V_{\tau}|$

Our Current Knowledge

$$\begin{aligned} \left| m_{3}^{2} - m_{2}^{2} \right| &\sim 2.5 \times 10^{-3} \,\text{eV}^{2}, \quad \left(m_{2}^{2} - m_{1}^{2} \right) &\sim 8 \times 10^{-5} \,\text{eV}^{2} \\ U_{MNS} &\sim \begin{pmatrix} 0.8 & 0.5 & s_{13} e^{i\delta} \\ -0.4 & 0.6 & 0.7 \\ 0.4 & -0.6 & 0.7 \end{pmatrix} \quad \left| s_{13} \right| < 0.2 \end{aligned}$$

Reactor Neutrinos

080520

Accessible Oscillations by Reactor v

2002/12: Evidence of v_e Deficit (PRL 90:021802, 2003) 2004/06: Evidence of spectrum distortion (PRL 94,081801,2005) 2008/01: Precise measurement of $\Delta m_{12}^2 \& \sin^2 2\theta_{12}$ (arXiv:0801.4589, submitted to PRL)

KamLAND keeps taking reactor data while purification. However, KL has already run 5 years and significant improvement of the accuracy from here will be difficult.

On the other hand, precise θ_{12} is needed to understand the sun.

ϵ	$\frac{\nu_{e} \qquad \nu_{\mu,\tau}}{A_{e\mu} \sim (30 \sin \theta_{13} e^{i\delta} + -3) \text{meV}}$
Remaining Issue	How to measure
θ_{13}	$\begin{bmatrix} \overline{v}_e \rightarrow \overline{v}_e \end{bmatrix}_R = 1 - \sin^2 2\theta_{13}$ $\begin{bmatrix} v_\mu \rightarrow v_e \end{bmatrix}_A \sim \sin^2 \theta_{23} \sin^2 2\theta_{13} \mp 0.05 \cdot \sin \theta_{13} \sin \delta$
δ	$\left[\boldsymbol{v}_{\mu} \rightarrow \boldsymbol{v}_{e}\right]_{A} - \left[\overline{\boldsymbol{v}}_{\mu} \rightarrow \overline{\boldsymbol{v}}_{e}\right]_{A} \sim \sin 2\theta_{13} \sin \delta$
θ_{23} degeneracy	$\left[\boldsymbol{v}_{\mu} \rightarrow \boldsymbol{v}_{e} \right]_{A} \sim \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \mp 0.05 \cdot \sin\theta_{13} \sin\delta$
Mass hierarchy	Matter Effect ~ 0.00017L[km] $\cdot sign(\Delta m_{23}^2)sin^2 2\theta_{13}$
Precise θ_{12}	$\left[\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}\right]_{KamLAND} = \cos^{4}\theta_{13}\left(1 - \sin^{2}2\theta_{12}\right)$

All the measurements are related to θ_{13} => Determination of θ_{13} is urgent

Complementarity of Reactor-accelerator θ_{13} measurement

19

How to improve the Chooz limit

Systematic Error:

Reactor- θ_{13} Site Historical Map

Sensitivity & Start years

We will know the results within a few years!

DayaBay K.B.-Luk kindly provided me the following sliedes

Civil Construction

Getting Ready To Build The Detectors

4-m prototype in the U.S.

3-m prototype in Taiwan

 $\delta \sin^2 2q_{13} < 0.01$ will be possible by large statisitics & shape analyisis.

The current Reactor θ_{13} experiments will be in stable condition within a few years => It is time to think of the next generation experiments seriously δ_{CP} detection in future

If $\delta \sin^2 2\theta_{13} < 0.01$ is achieved, there is chance to detect finite δ_{CP} combined with Accelerator data.

Reactor-Accelerator cooperation

J-Parc group has already started to discuss about post T2K CP experiments.

Future reactor and accelerator programs should be interweaved from the first, in order to make efficient storategy to attack δ_{CP} .

Δm_{13}^2 & Mass Hierarchy

•Typical energy of reactor v is ~4MeV. Both $\Delta m_{12}^2 \& \Delta m_{13}^2$ oscillations are accessible.

•tan² θ_{12} , Δm_{12}^2 are being measured by KamLAND with L~180km.

•For precise $tan^2\theta_{12}$ measuremnt, L=50km with KamLAND size detector=> 3.6%

- ·1st phase $\sin^2 2\theta_{13}$ experiments (DoubleChooz, Dayabay, RENO) will start within 1~2 years. Their targetting sinsitivities are $\delta \sin^2 2\theta_{13} = 0.01 \sim 0.03$
- 2nd phase $\sin^2 2\theta_{13}$ experiment ($\delta \sin^2 2\theta_{13} < 0.01$) should be useful to detect δ_{CP} together with accelerator measurement of precise $P(v_{\mu} > v_{e})$.

•There is a possiblity to measure Δm_{13}^2 @L~10km.

·Reactor v experiments /have had/are going to have/will have/ rich programs to do.