Low Energy v Cross Sections

Sam Zeller LANL Neutrino 08 May 28, 2008

 review of experimental programs at K2K, MiniBooNE, SciBooNE, and MINERvA

Neutrino Cross Sections

- over the past ~5 years, renewed interest in low energy v cross sections for two reasons:
- advent of new high intensity v sources has brought with it a host of new v cross section measurement opportunities
 - taking a giant leap forward (both in terms of precision & sample sizes)
 new data revealing some rather intriguing results!
- growing realization that this is a very important ingredient to describe what seeing in v oscillation experiments

$$N_v(E) \sim \varepsilon \times \Phi_v(E) \times \sigma_v(E)$$

(M. Sorel's talk you just heard)

Sam Zeller, Neutrino 08

(this talk)

"Low Energy" v Cross Sections

- atmospheric & accelerator-based exps (100's MeV to few-GeV)
- dominant interactions are **QE & single pion production** (signal) (background)
- measurements in 70s-80s
 - mostly bubble chambers
 - largely H₂, D₂
- never looked back until now

Sam Zeller, Neutrino 08

Antineutrino Cross Sections

- will measure ØP by comparing v vs. v
 oscillation probabilities
- would prefer not to rely on extrapolation of predictions where no existing data

so need to repeat this program for antineutrinos as well

Good News ...

Sam Zeller, Neutrino 08

New σ_v Measurements

new v data is (& will be) coming in from a variety of sources ...

 field of low energy v cross section physics extremely active (>50 theory papers in past year, talk will concentrate on new exp'l results in past year)

K2K Experiment

... each detector responsible for at least one important publication in K2K ...

- 1kton water Cerenkov detector (1/50th scale miniature replica of Super-K)
- 1st meas of NC π⁰ prod in H₂O
 PLB 619, 255 (2005) -

- scintillating fiber tracker
 SciFi (H₂O target)
- 1st meas of M_A^{QE} in H₂O
 PRD 74, 052002 (2006) -
- fully-active scintillator strip SciBar (C₈H₈ target)
- 1st search for CC coherent π⁺ production at low energy - PRL 95, 252301 (2005) -
- became part of SciBooNE!

New K2K Result: CC π^0

- new measurement of CC π^0 events from K2K SciBar (¹²C)
- 1st time have revisited this reaction channel in ~20 years

$$N \rightarrow \mu N' \pi^0 X$$

 $\int \frac{1}{100} \int \frac{1}{100$

(C. Mariani)

New K2K Result: CC π^0

• inclusive CC π^0 /QE cross section ratio (paper in preparation)

 $\sigma_{CC \pi 0} / \sigma_{QE} = 0.306 \pm 0.023 (stat) \stackrel{+ 0.023}{_{- 0.021}} (syst)$

- rare glimpse at multi-π prod (not well-measured σ historically)
- ~40% higher than MC prediction
- already telling us something about the inadequacies of our multi-π predictions (larger effect for higher E exps)

(10% measurement)

New K2K Result: CC π^+

$$\sigma_{CC \pi^+}/\sigma_{QE} = 0.734 \pm 0.086$$
 (fit) $^{+0.076}_{-0.103}$ (nucl) $^{+0.079}_{-0.073}$ (syst)

(submitted to archive this month! arXiv:0805.0186)

consistent with ANL (1982, D₂)

- 20% measurement of σ ratio
- 1st published measurement of such a ratio on carbon target

(important for future v_{μ} disappearance exps that we start filling in this region! goal = 5% for T2K) Sam Zeller, Neutrino 08

QE Scattering

QE scattering important because is our signal sample

- nuclear model
 - experiments assume Fermi Gas model
- nucleon form factors
 - vector FF well known from e⁻ scattering
 - axial FF from v scattering (not as well known)

$$F_{A}(Q^{2}) = \frac{g_{A}}{(1+Q^{2}/M_{A}^{2})^{2}}$$

dipole form; fcn of single parameter "axial mass", M_A = 1.03 GeV

• M_A controls normalization & Q² shape of QE σ (a lot of interest & attempts to re-measure) Sam Zeller, Neutrino 08

New K2K Result: QE

new measurement of M_A from SciBar (¹²C) (paper in preparation)

MiniBooNE Experiment

- single detector designed to check LSND
- FNAL BNB, $\langle E_{v} \rangle = 0.7 \text{ GeV}$

- Cerenkov detector (CH₂)
 - record size event samples in this E range
 - recent addition of new \overline{v} data

New MiniBooNE Result: QE

New MiniBooNE Results: QE

 one of the advantages of having high stats (193k) is can check in 2D (1st time in history have looked at 2D distributions!)

New MiniBooNE Results: QE

 one of the advantages of having high stats (193k) is can check in 2D (1st time in history have looked at 2D distributions!)

- stunning agreement across entire phase space! important for MiniBooNE oscillation analysis
- since Fermi Gas model is of broader utility ... also of interest is M_A value itself ...

Sam Zeller, Neutrino 08

Modern Determinations of M_A

past world avg: M_A = 1.026 ± 0.021 GeV J. Phys. **G28**, R1 (2002)

- K2K SciFi (¹⁶O, Q²>0.2) Phys. Rev. D74, 052002 (2006) M_A =1.20 ± 0.12 GeV
- K2K SciBar (¹²C, Q²>0.2) M_A=1.14 ± 0.11 GeV
- MiniBooNE (1²C, Q²>0.25) Phys. Rev. Lett. 100, 032301 (2008) M_A=1.25 ± 0.12 GeV
 - new results consistent
- modern data measuring systematically higher M_A
 (measuring an "effective M_A"?)

New MiniBooNE Result: NC π^0

- important background for v_e appearance searches (S. Brice's talk)
- one of benefits of large open volume (4 π) Čerenkov detector is excellent π^0 containment

world's largest NC π^0 sample - 28,600 ν_{μ} NC π^0 events - 97% purity, 40% ϵ

New MiniBooNE Result: NC π^0

- 1st measurement of NC coherent π⁰ production at low energy (E_v< 2 GeV)
- 14% measurement
 (helped reduce uncertainties in MiniBooNE's v_e search)
- 35% lower than most widely used model prediction (forced a change in bkg predictions)

• coherent π^0 fraction = (19.5 ± 2.7)%; MC prediction = 30% (arXiv: 0803.3423, accepted by Phy. Lett. B earlier this month)

1st Look at MiniBooNE \overline{v} Data

• just like in v case, there are no existing measurements of v NC coherent π^0 below 2 GeV

1,744 $\overline{\nu}_{\mu}$ NC π^0 events (more soon)

- largest sample of its kind
- see clear evidence for NC coherent π^0 production in both v and v data

Also from MiniBooNE

several other cross section measurements in the pipeline ...

Sam Zeller, Neutrino 08

SciBooNE Experiment

carrying on tradition first pioneered with the SciBar detector at K2K ...

- dedicated σ_{v} experiment
- FNAL BNB,
 - <E_v> = 0.7 GeV

• M. Wascko poster

Booster Neutrino Beam Decay region Decay region 100 m 440 m

- familiar detector in a familiar beam
- has come a long way in a short time (experiment 1st proposed in Nov 2005)
- both ν and $\overline{\nu}$
- just finished v run (0.99x10²⁰ POT, full v run)

1st results a a month later!

Sam Zeller, Neutrino 08

SciBooNE: CC Inclusive

μ

 \mathbf{v}

- μ's easily identified if penetrate MRD
- 96% pure CC
- 21,431 events

QE and CC 1π Separation

 sample can be further sub-divided to gain information on "signal" & "background" samples to our v oscillation searches

SciBooNE: CC π^+

• $\Delta \theta_{p} > 20^{\circ} + 2^{nd}$ track PID ($\mu + \pi$), 67% CC π^{+} ,~1200 events

see familiar disagreement at low Q²

- new data consistent with no CC coherent π⁺ production? (further analysis underway; this is similar to what was seen at K2K, PRL 95, 252301 (2005))
- interesting that we see this process at high energy and in NC at low E, but not here! (challenge for theorists?!)

Sam Zeller, Neutrino 08

Also from SciBooNE

several other analyses also currently in progress ...

in addition to anticipating upcoming results from SciBooNE, also look forward to ... Sam Zeller, Neutrino 08 28

MINERvA Experiment

- dedicated σ_v experiment
- FNAL NuMI beam

$$-LE: E_v^{peak} = 3 \text{ GeV}$$

- ME:
$$E_v^{peak} = 7 \text{ GeV}$$

- HE:
$$E_v^{peak} = 12 \text{ GeV}$$

- observe v ints over broad E range
- nuclear targets (He, C, Fe, Pb)
 - allow detailed study of nuclear effects in v's for the first time!
- impressive physics program:
 - channels from QE to DIS, millions of events!
 - just to give you 2 illustrative examples...

MINERvA: QE Scattering

 already seen systematically higher values of M_A from modern v data; also like to make a precise determination of F_A(Q²)

- is the axial form factor really dipole?
- MINERvA can uniquely access high Q² region
 - important to settle this
 - finally elevating v meas to the level have seen in the e⁻ sector for years

(long overdue!)

MINERvA: Coherent π Production

- MB, K2K have made single flux-integrated meas at low E
- able to precisely meas this σ as fcn of energy
- compare coherent σ
 on various nuclei (He to Pb)
 - able to carefully measure A dependence of this σ
 - 85k CC coherent π^+ 37k NC coherent π^0

- MINERvA on-schedule to start data-taking in 2009!
- also, see poster session ... J. Morfin and R. Gran

The "Take Away"

- making large strides in filling the gap in our understanding
- but there are still things we don't understand! some examples:

signal samples = QE

- order magnitude more data
- starting to study nuclear effects (has not been studied before in detail)
- higher M_A (nuclear effects? or axial form factor?)

• backgrounds: CC $\pi^{+,0}$ = bkg to ν_{μ} disappearance NC π^{0} = bkg to ν_{e} appearance

- 1st measurement of these σ 's on nuclear targets at low E
- several significantly different than expectation (~30-40%)
- nagging kinematic disagreement in CC π^+ (low Q²)
- intriguing difference between NC & CC coherent π prod at low E

Conclusions

- compelling evidence of v oscillations has increased both interest & need for σ_v meas
- lot of activity over past year!
 - latest results from K2K, MiniBooNE, SciBcoNE
 - including some surprises
- MINOS will also have $\sigma_{\!_{\nu}}$ on Fe

• now entering a phase where these input σ 's will be even more critical for the success of future ν oscillation experiments

- MINERvA collecting data soon ... taking this to the next level!

