Solar Neutrinos: Fluxes

Concha Gonzalez-Garcia

pp chain

CNO cycle

• Sun shines by :

$$4p \rightarrow {}^{4}He + 2e^{+} + 2\nu_{e} + \gamma$$

Solar Standard Model Fluxes

Concha Gonzalez-Garcia

Neutrinos in The Sun : MSW Effect

- For $\nu_e \leftrightarrow \nu_{\mu(\tau)}$, in vacuum $\nu_e = \cos \theta \nu_1 + \sin \theta \nu_2$
- For $10^{-9} \text{ eV}^2 \leq \Delta m^2 \leq 10^{-4} \text{ eV}^2 \Rightarrow 2E_{\nu}V_{CC,0} > \Delta m^2 \cos 2\theta$

- For $\nu_e \leftrightarrow \nu_{\mu(\tau)}$, in vacuum $\nu_e = \cos \theta \nu_1 + \sin \theta \nu_2$
- For $10^{-9} \text{ eV}^2 \leq \Delta m^2 \leq 10^{-4} \text{ eV}^2 \Rightarrow 2E_{\nu}V_{CC,0} > \Delta m^2 \cos 2\theta$

 $\Rightarrow \nu$ can cross resonance condition in its way out of the Sun

For $\theta \ll \frac{\pi}{4}$: In vacuum $\nu_e = \cos \theta \nu_1 + \sin \theta \nu_2$ is mostly ν_1 In Sun core $\nu_e = \cos \theta_{m,0} \nu_1 + \sin \theta_{m,0} \nu_2$ is mostly ν_2 For $\theta \ll \frac{\pi}{4}$: In vacuum $\nu_e = \cos \theta \nu_1 + \sin \theta \nu_2$ is mostly ν_1 In Sun core $\nu_e = \cos \theta_{m,0} \nu_1 + \sin \theta_{m,0} \nu_2$ is mostly ν_2

If $\frac{(\Delta m^2/\text{eV}^2)\sin^2 2\theta}{(E/\text{MeV})\cos 2\theta} \gg 3 \times 10^{-9}$ \Rightarrow Adiabatic transition * ν is mostly ν_2 before and after resonance * $\theta_m \downarrow$ dramatically at resonance $\Rightarrow \nu_e \text{ component } \downarrow \Rightarrow P_{ee} \downarrow$ This is the MSW effect μ^2 v_{μ} m_{2}^{2} v_1 v_{μ} ve m^2 A_R Α $P_{ee} = \frac{1}{2} \left[1 + \cos 2\theta_{m,0} \cos 2\theta \right]$

For $\theta \ll \frac{\pi}{4}$: In vacuum $\nu_e = \cos \theta \nu_1 + \sin \theta \nu_2$ is mostly ν_1 In Sun core $\nu_e = \cos \theta_{m,0} \nu_1 + \sin \theta_{m,0} \nu_2$ is mostly ν_2

If $\frac{(\Delta m^2/\text{eV}^2)\sin^2 2\theta}{(E/\text{MeV})\cos 2\theta} \gg 3 \times 10^{-9}$ \Rightarrow Adiabatic transition * ν is mostly ν_2 before and after resonance * $\theta_m \downarrow$ dramatically at resonance $\Rightarrow \nu_e \text{ component } \downarrow \Rightarrow P_{ee} \downarrow$ This is the MSW effect μ^2 v_{μ} m_{2}^{2} V_1 v_{μ} v_{e} m^2 AR A $P_{ee} = \frac{1}{2} \left[1 + \cos 2\theta_{m,0} \cos 2\theta \right]$

If $\frac{(\Delta m^2/\text{eV}^2)\sin^2 2\theta}{(E/\text{MeV})\cos 2\theta} \lesssim 3 \times 10^{-9}$ \Rightarrow Non-Adiabatic transition * ν is mostly ν_2 till the resonance * At resonance the state can jump into ν_1 (with probability P_{LZ}) $\Rightarrow \nu_e \text{ component } \uparrow \Rightarrow P_{ee} \uparrow$ μ^2 ve v_{μ} m_2^2 v_1 v_{μ} ve m^2_1 A_R Α $P_{ee} = \frac{1}{2} \left[1 + (1 - 2P_{LZ})\cos 2\theta_{m,0} \cos 2\theta \right]$

Concha Gonzalez-Garcia

Neutrinos in The Sun : MSW Effect

 ν does not cross resonance: $P_{ee} = 1 - \frac{1}{2}\sin^2 2\theta > \frac{1}{2}$

 ν does not cross resonance: $P_{ee} = 1 - \frac{1}{2}\sin^2 2\theta > \frac{1}{2}$

 ν does not cross resonance: $P_{ee} = 1 - \frac{1}{2} \sin^2 2\theta > \frac{1}{2}$

 ν does not cross resonance: $P_{ee} = 1 - \frac{1}{2} \sin^2 2\theta > \frac{1}{2}$

Solar Neutrinos: Data

All experiments measuring mostly ν_e observed a deficit Deficit is energy dependent Deficit disappears in NC

Solar Neutrinos: Oscillation Solutions

 ν_e oscillation parameters compatible with $\overline{\nu}_e$: Sensible to assume CPT: $P_{ee} = P_{\overline{e}\overline{e}}$

 $\Delta m^2 = 7.7 \times 10^{-5} \text{ eV}^2$ $\tan^2 \theta = 0.43$

Solar+Atmospheric+Reactor+LBL 3 ν **Oscillations**

U: 3 angles, 1 CP-phase	(1)	0	0 \	(c_{13}	0	$s_{13}e^{i\delta}$)	1	c_{21}	s_{12}	0
+(2 Majorana phases)	0	c_{23}	s_{23}		0	1	0		$-s_{12}$	c_{12}	0
+ (2 Majorana phases)	$\int 0$	$-s_{23}$	c_{23} /	\ -	$-s_{13}e^{-i\delta}$	0	c_{13} /		0	0	1/

 2ν oscillation analysis $\Rightarrow \Delta m_{21}^2 = \Delta m_{\odot}^2 \ll \Delta M_{atm}^2 \simeq \pm \Delta m_{32}^2 \simeq \pm \Delta m_{31}^2$

Solar+Atmospheric+Reactor+LBL 3 ν **Oscillations**

U: 3 angles, 1 CP-phase	(1)	0	0 \	(c_{13}	0	$s_{13}e^{i\delta}$	(c_{21}	s_{12}	0
+(2 Majorana phases)	0	c_{23}	s_{23}		0	1	0		$-s_{12}$	c_{12}	0
(2 Wajorana phases)	$\int 0$	$-s_{23}$	c_{23} /	/ -	$-s_{13}e^{-i\delta}$	0	c_{13} /		0	0	1/

 2ν oscillation analysis $\Rightarrow \Delta m_{21}^2 = \Delta m_{\odot}^2 \ll \Delta M_{atm}^2 \simeq \pm \Delta m_{32}^2 \simeq \pm \Delta m_{31}^2$ Generic 3ν mixing effects:

- Effects due to θ_{13}
- Difference between Inverted and Normal
- Interference of two wavelength oscillations
- CP violation due to phase δ

Global Analysis: Three Neutrino Oscillations

z-Garcia

The derived ranges for the six parameters at 1σ (3σ) are:

$$\Delta m_{21}^2 = 7.7 + 0.22 + 0.67 + 0.67 + 0.67 + 0.67 + 0.61 \times 10^{-5} \text{ eV}^2 \quad \left| \Delta m_{31}^2 \right| = 2.37 \pm 0.17 + 0.17 + 0.46 \times 10^{-3} \text{ eV}^2$$

$$\theta_{12} = 34.5 \pm 1.4 + 0.46 +$$

	0.77-0.86	0.50 - 0.63	0.00 - 0.22
$ U _{3\sigma} =$	0.22 - 0.56	0.44 - 0.73	0.57 - 0.80
	0.21 - 0.55	0.40 - 0.71	0.59 - 0.82

The derived ranges for the six parameters at 1σ (3σ) are:

$$\Delta m_{21}^2 = 7.7 + 0.22 + 0.67 + 0.67 + 0.67 + 0.67 + 0.61 \times 10^{-5} \text{ eV}^2 \quad \left| \Delta m_{31}^2 \right| = 2.37 \pm 0.17 + 0.17 + 0.46 \times 10^{-3} \text{ eV}^2$$

$$\theta_{12} = 34.5 \pm 1.4 + 0.46 +$$

	(0.77 - 0.86)	0.50 - 0.63	0.00 - 0.22
$ U _{3\sigma} =$	$0.22 {-} 0.56$	0.44 - 0.73	0.57 - 0.80
	0.21 - 0.55	0.40 - 0.71	0.59 - 0.82 /

with structure

$$|U_{\text{LEP}}| \simeq \begin{pmatrix} \frac{1}{\sqrt{2}}(1+\mathcal{O}(\lambda)) & \frac{1}{\sqrt{2}}(1-\mathcal{O}(\lambda)) & \epsilon \\ -\frac{1}{2}(1-\mathcal{O}(\lambda)+\epsilon) & \frac{1}{2}(1+\mathcal{O}(\lambda)-\epsilon) & \frac{1}{\sqrt{2}} \\ \frac{1}{2}(1-\mathcal{O}(\lambda)-\epsilon) & -\frac{1}{2}(1+\mathcal{O}(\lambda)-\epsilon) & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{matrix} \lambda \sim 0.2 \\ \epsilon \lesssim 0.2 \end{cases}$$

The derived ranges for the six parameters at 1σ (3σ) are:

$$\Delta m_{21}^2 = 7.7 + 0.22 + 0.67 + 0.67 + 0.67 + 0.67 + 0.61 \times 10^{-5} \text{ eV}^2 \quad \left| \Delta m_{31}^2 \right| = 2.37 \pm 0.17 + 0.17 + 0.46 \times 10^{-3} \text{ eV}^2$$

$$\theta_{12} = 34.5 \pm 1.4 + 0.46 +$$

	(0.77 - 0.86)	0.50 - 0.63	0.00 - 0.22
$ U _{3\sigma} =$	0.22 - 0.56	0.44 - 0.73	0.57 - 0.80
	0.21 - 0.55	0.40 - 0.71	0.59 - 0.82 /

with structure

$$|U_{\text{LEP}}| \simeq \begin{pmatrix} \frac{1}{\sqrt{2}}(1+\mathcal{O}(\lambda)) & \frac{1}{\sqrt{2}}(1-\mathcal{O}(\lambda)) & \epsilon \\ -\frac{1}{2}(1-\mathcal{O}(\lambda)+\epsilon) & \frac{1}{2}(1+\mathcal{O}(\lambda)-\epsilon) & \frac{1}{\sqrt{2}} \\ \frac{1}{2}(1-\mathcal{O}(\lambda)-\epsilon) & -\frac{1}{2}(1+\mathcal{O}(\lambda)-\epsilon) & \frac{1}{\sqrt{2}} \end{pmatrix} \lambda \sim 0.2$$

very different from quark's

$$|U_{
m CKM}| \simeq egin{pmatrix} 1 & \mathcal{O}(\lambda) & \mathcal{O}(\lambda^3) \ \mathcal{O}(\lambda) & 1 & \mathcal{O}(\lambda^2) \ \mathcal{O}(\lambda^3) & \mathcal{O}(\lambda^2) & 1 \end{pmatrix} \qquad \lambda \sim 0.2$$

Open Questions

(1) Is θ₁₃ ≠ 0? How small?
(2) Is θ₂₃ = π/4? If not, is it > or <?
(3) Is there CP violation in the leptons (is δ ≠ 0, π)? (4) What is the ordering of the neutrino states? (5) Are neutrino masses: (b) The hermitian hierarchical: $m_i - m_j \sim m_i + m_j$? degenerated: $m_i - m_j \ll m_i + m_j$? (6) Dirac or Majorana?

We still ignore: