Direct Search for Dark Matter WIMPs with Depleted Liquid Argon at the Gran Sasso Laboratory: **Dark-Side**

Aldo Ianni, DarkSide Collaboration INFN Gran Sasso Laboratory Padova, Sept. 18th, 2012

Evidence of Dark Matter

- Spiral galaxies rotation curves: $\Omega_{halo} \simeq 10 \Omega_{stars}$
- Clusters: galaxy motion, gravitational lensing and X-ray emission: $\Omega_{\rm matter}$ ~0.2-0.3
- CMB anisotropy: Ω_{matter} ~0.27, $\Omega_{baryons}$ ~0.04 - ~84% of mass in the Universe dark and non-baryonic
- Using early universe nucleosynthesis: Ω_{baryons} ~0.04
- Large Scale Structures:
 - Formation of structures by gravitational clustering
 - Comparison of observations with non-relativistic (cold) dark matter clustering agree well

WIMPs:

Weakly Interacting Massive Particles

- A general class of weakly interacting massive particles not from the Standard Model
- Assuming thermal equilibrium in the early Universe and non-relativistic decoupling, the energy density for these relic particles is predicted to be:
 - $\Omega_{\chi} \sim 10^{-36} \text{cm}^2 / < \sigma \text{ v} >$
 - annihilation cross section ~picobarns
 - relic abundance right order (i.e. $\Omega \sim 1$)
- This circumstance: a particle non-relativistic at decoupling with weak-scale mass and cross section which gives the right order for the relic abundance is given the name of **WIMP miracle**

Direct Search for WIMPs: nuclear recoil tagging

$$E_{recoil} = \frac{m_N M_{\chi}^2}{\left(m_N + M_{\chi}\right)^2} v^2 (1 - \cos\theta^*)$$

 $v \sim 300$ km/s

$$E_{recoil} \sim 1 - 100 \text{ keV}$$

- 170 km/s < v₀ < 270 km/s
- 450 km/s < v_{esc} < 650 km/s
- ρ_{χ} ~ 0.3 Gev/cm³
- F(E) = nuclear form factor
- f(v) = velocity distribution of
 WIMPs in the galaxy

Expected WIMPs Signal in LAr

Comments on expected WIMP signal

- No specific feature
- Low nuclear recoil energy
- 10-100 events for 1 ton-year exposure
- GOAL of WIMPs search:
 - If Dark Matter is made of WIMPs we need:
 - Strong suppression of background
 - As low as possible sensitivity to WIMP-nucleon cross section

Scintillation in LAr

- Minimum ionizing particles produce ~ $4 \times 10^4 \gamma$ /MeV
- Fast (~7ns) and slow (~1.6µs) decay components
- For nuclear recoil: fast component ~ 70%
- For electron recoil: fast component ~30%
- Scintillation light peaked at 128nm
- Need wavelength shifter to ~400nm to match PMTs Quantum Efficiency

Backgrounds for LAr

- β/γ radioactivity
- γ radioactivity from surface close to sensitive mass
- Radiogenic neutrons: (α,n) and spontaneous fissions
- Cosmogenic neutrons from muons

Neutrons can mimic a nuclear recoil

Double-Phase Argon TPC

Remarks on LAr target for WIMPs search

Advantages

- Good scintillator
- Moderate cryogenic requirements: at 1atm liquifies at 87K
- 1% abundance in atmosphere (but with ³⁹Ar see later)

• Disatvantages

- Need waveshifter to ~400nm from 128nm
- Must remove ³⁹Ar: use underground Ar (more difficult technology)

LAr TPC at Work [1]

S1 measures energy and time of event

S2 measures position of event in LAr and is proportional to fraction of charge that escapes recombination

LAr TPC at Work [2]

Background reduction performed by exploiting

a) Pulse shape of S1 through a parameter which measures the fraction of fast to slow component in scintillation

b) S2/S1

The problem of ³⁹Ar

- Ar naturally present in the atmosphere at 1% level
- ³⁹Ar formed by cosmic muon interactions
 ⁴⁰Ar(n,2n)³⁹Ar
- ^{39}Ar is a β decay emitter with $Q_{\beta}\text{=}565$ keV and $T_{1/2}\text{=}269$ years
- In Ar from the atmosphere, ³⁹Ar is at the level of 1 Bq/kg
 - ~ 9×10⁴ decays/kg/day
 - WIMPs(100GeV, 10⁻⁴⁵ cm²) ~ 10⁻⁴ events/kg/day

DarkSide Approach

• Double phase TPC

Exploit background rejection power

Low background technology

- Careful selection of materials
- Assembling in Rn-free clean room

Active neutron veto

Boron-loaded scintillator

Depleted Argon

- ³⁹Ar activity reduced to ~0.6% Bq/kg

Underground Argon [1]

- ⁴⁰Ar produced from ⁴⁰K
- The Earth is reach in ⁴⁰K in underground
- ⁴⁰Ar moves into the atmosphere and makes ³⁹Ar with muons interactions
- In underground ³⁹Ar is expected to be much less due to low muon flux
- However, ³⁹Ar underground can be produced by radiogenic neutrons interactions

- ³⁹K(n,p)³⁹Ar

• **Recipe**: go deep underground where surrounding rocks are poor in U and Th

Underground Argon [2]

- In exhaust stream gas (CO₂) of commercial mining facilities Ar at 400-600ppm level
 - In DS extraction site: CO_2 plant output, $CO_2(96\%) + N_2(2.4\%) + He(0.4\%) + Ar(0.06\%)$
- Make on-site preconcentration to ~40,000ppm, then cryogenic distillation at FNAL
 - After distillation: CO₂(~0)+N₂(<0.05%)+He(~0)+Ar(>99.95%)
- Purified depleted argon produced at 0.5kg/day
- ³⁹Ar depleted at <0.6% level wrt atmospheric level
 - ~500 decays/kg/day
 - For WIMPs ~ 10^{-4} interactions/kg/day
- Use LAr scintillation properties to perform background reduction
 - Prompt signal PSD shows: 90% n-recoil acceptance with <10⁻⁵ e-recoil leakage

Underground Argon [3]

Depleted Argon Measurement Counts/keV/sec 0-2 -010-1 Depleted Argon Spectrum @Surface, No Veto Depleted Argon Spectrum @Surface, Muon Vetoed Depleted Argon Spectrum @KURF, No Veto Normal Argon Spectrum @KURF, No Veto 10^{-3} 10^{-4} **10**⁻⁵ **10**⁻⁶ 200 400 600 800 1000 0 Energy/keV

³⁹Ar depletion factor >100

In progress study with counting detector underground at KURF (1400 m.w.e.) Virginia, USA

Neutrons from natural radioactivity

- Radiogenic neutrons
 - from (α ,n) and spontaneous fission of heavy elements such as U and Th
 - energy ~ a few MeV (<10 MeV)</p>
- Source in DarkSide:
 - PMTs (low background PMTs ~ few n/year/PMT)
 - Steel in cryostat and support structures

• Recipe:

- Passive shielding effective for ~MeV energies but asks for more surrounding materials
- Active veto

Cosmogenic Neutrons

- Flux at Gran Sasso lab:
 ✓ 2.4 m⁻² day⁻¹
 ✓ 0.7 m⁻² day⁻¹ for > 10 MeV
 Expected rate ~ 3×10⁻³³ /s/atom
- WIMPS rate ~ 10⁻³⁴ /s/atom
- Neutrons from surrounding rocks reduced by shielding
- ✓ In DS-50 3m of water ~ 10^{-3} and 0.04 from 1.5m of liquid scintillator: ~4 ×10⁻⁵

Neutron Veto

- Future Dark Matter Detectors @ LNGS, F. Calaprice, WONDER, Gran Sasso, March 22, 2010
- A highly efficient neutron veto for dark matter experiments, A. Write, P. Mosteiro and F. Calaprice, NIM A 644 (2011) 18-26
- Make use of a boron-loaded radiopure liquid scintillator
 - ${}^{10}B+n \rightarrow {}^{7}Li+\alpha(1.474MeV)+\gamma(0.478MeV)$ 93.7% with σ =3837b
 - $\,\alpha$ energy is contained
 - capture time ~ $3\mu s$
- 1m thick veto makes a reduction of 10⁷ against external neutrons
- Neutrons from internal LAr target mass captured in 60µs in 1m thick veto with 99.5% efficiency
- Water Tank muon veto + neutron veto reduces cosmogenic background >> 10³

Estimated background in the DS neutron veto

- 30 tons boron-loaded scintillator in 1000 m³ water tank, 100 PMTs
- Liquid scintillator
 - ¹⁴C: ~4 Bq (Borexino level ¹⁴C/¹²C ~ 2×10⁻¹⁸)
 - U+Th (1ppt): ~0.3 Bq
 - K(70ppb):~ 33Bq
- Stainless Steel Containment vessel: ~30 Bq (~1 mBq/kg in U and Th)
- External background < 1 Bq
- Inner Detector TPC < 1 Bq
- PMTs ~ 100 Bq
- Random coincidences ~ 160 Bq
- Total ~ 300 Bq which gives ~ 2% dead time in 1µs DAQ window

DarkSide Program

• DarkSide-10

- a prototype detector with 10 kg of LAr
- currently operating underground at Gran Sasso
- test cryogenic technology with double phase TPC
- test Light Yield and background rejection power

• DarkSide-50

- 50 kg of depleted LAr for 10⁻⁴⁵ cm² sensititivy for 100 GeV WIMP
- currently under construction (ready by early 2013)
- Test active veto concept and low background procedures

• DarkSide-G2

- 3 tons target mass of depleted LAr
- WIMP sensitivity 10^{-47} cm² for 100 GeV

DarkSide WIMP Sensitivity

DarkSide-10

- Test DarkSide technologies
 - Control of gas layer
 - Charge drift and S2 light collection
 - Light yield (determined to be ~9 p.e./keVee at zero field)
- Background suppression studies
- Experience operating an argon TPC

1 8" bottom PMT as in 1st test done at Princeton Replaced by 7 3" PMTs at LNGS

DarkSide-10 at LNGS

- In operation at Gran Sasso underground since summer 2011
- Water shielding to reduce background rate
- 15Hz with 4 PMTs trigger with water shielding
- Calibration with gamma and AmBe source

DS-10: PMTs calibrations

 7 3" PMTs high QE at each end of sensitive volume

QE ~ 30-36%

۲

DS 10: light-yield

Light-Yield measured by means of gamma sources located outside the cryostat vessel

		cool solution light [p.c.
Energy [keV]	Light-Yield [p.e./keV]	Resolution (σ) [%]
122	8.87	5.2
511	8.78	3.4
662	9.08	3.1
1275	8.60	2.9
average	8.9±0.4	

DS-10: event w/ drift field

DS-10: PSD with S1 signal

 Figure of merit for PSD: f90 = fraction of S1 light which arrives before 90ns

DS-10: neutron calibration

Data taken in TCP mode with AmBe source (10n/s) outside the cryostat. Rejection power against threshold under study

DarkSide-10: publications

- Light Yield in DarkSide-10: a prototype twophase liqid argon TPC for Dark Matter Searches, DarkSide coll., arXiv:2104.6218
- Study of the Residual ³⁹Ar content in Argon from Underground Sources, DarkSide coll, arXiv:1204.6011

Dark Side 50

- 50 kg DLAr sensitive mass
- WIMP-nucleon cross section sensitivity ~10⁻⁴⁵cm²
- Detector under construction
- Data taking expected in spring 2013
- First step toward 1 ton-scale detector

DarkSide-50 water tank

80 PMTs within Borexino CTF (11m dia. x 10 m high)

Acts as a muon and cosmogenic veto (~ 99% efficiency)

Provides passive gamma and neutron shielding

The Liquid Scintillator Contaiment Vessel for the DarkSide Neutron Veto as completed within the CTF water tank (Hall C of LNGS)

Summary

- DarkSide detector designed to have very low background for direct WIMP search with LAr
- First use of active boron-loaded liquid scintillator neutron veto
- Make use of Borexino fluind handling and purification plants
- 10kg prototype in operation since summer 2011
- 50kg DS-50 full design detector in construction
- DS-50 commissioning expected early 2013
- DS-50 sensitivity ~ 10^{-45} cm²

Darkside Collaboration

