Neutrinos from the sun and from radioactive sources in Borexino

A. Ianni, Borexino collaboration INFN, LNGS

Padova 2012, Sept 17th

Solar Neutrinos

Solar Neutrinos

 $4p \rightarrow {}^{4}\text{He}+2e^{+}+2v_{e}^{+}+(24.69+2\cdot1.022)\text{MeV}$ <E, > ~ 0.53 MeV, 2% of total energy produced

$$\phi_{v} = 2 \cdot \frac{2.4 \cdot 10^{39} \text{ MeV/s}}{26.73 MeV - 0.53 MeV} \cdot \frac{1}{4\pi (AU.)^{2}} \approx 6.5 \cdot 10^{10} \text{ cm}^{-2} \text{s}^{-1}$$

Solar neutrinos are a unique tool to probe the physics at the core of the Sun and neutrino propagation in dense matter (100 g/cm³)

<u>Solar Standard Model</u>

The SSM is the framework from which we make predictions on the production of solar neutrinos

Within the SSM solar neutrino fluxes are written as:

$$\begin{split} \phi_{\rm pp} &\propto S_{11}^{+0.14} \cdot S_{33}^{+0.03} \cdot S_{34}^{-0.06} \cdot S_{1,14}^{-0.02} \cdot L_{\odot}^{+0.73} \cdot \tau_{\odot}^{-0.07} \\ &\quad \cdot Op_{\odot}^{+0.14} \cdot (Z/X)^{-0.08}, \\ \phi_{\rm Be} &\propto S_{11}^{-0.97} \cdot S_{33}^{-0.44} \cdot S_{34}^{+0.88} \cdot L_{\odot}^{+3.56} \cdot \tau_{\odot}^{+0.69} \\ &\quad \cdot Op_{\odot}^{-1.49} \cdot (Z/X)^{+0.59}, \\ \phi_{\rm B} &\propto S_{11}^{-2.59} \cdot S_{33}^{-0.40} \cdot S_{34}^{+0.81} \cdot L_{\odot}^{+6.76} \cdot \tau_{\odot}^{+1.28} \\ &\quad \cdot Op_{\odot}^{-2.93} \cdot (Z/X)^{+1.36}. \end{split}$$

Solar Neutrino Spectrum at Earth

A. Serenelli at al., Astrophys. J 7432, 2011

Luminosity Constraint

$$4p \rightarrow \begin{cases} {}^{4}He + 2v_{pp} + 26.20 \text{ MeV} \\ {}^{4}He + v_{pp} + v_{Be} + 25.65 \text{ MeV} \\ {}^{4}He + v_{pp} + v_{B} + 19.75 \text{ MeV} \end{cases}$$

$$\frac{L_{Sun}}{4\pi (AU.)^2} = \sum_i a_i \phi_i$$
$$f_i = \frac{\phi_i}{\phi_i^{SSM}}$$
$$f_{pp} = 1.09 - 0.08 f_{Be} - 0.01 f_{CNO}$$

Recent developments of the SSM

Since 2004 a number of improvements in the SSM have taken place which are worth reporting:

- New determination of ${}^{14}N(p,\gamma){}^{15}O$ cross section reduces by a factor ~2 CNO fluxes
- A factor of 2 better accuracy for ${}^{3}\text{He}({}^{4}\text{He},\gamma){}^{7}\text{Be cross section}$
- New opacities calculations

New surface abundance calculations based on improved 3D model

			.
	$R_{ m CZ}/R_{\odot}$	$Y_{ m surf}$	$(Z/X)_{\rm surf}$
SSM(GS98)	0.713	0.2423	0.0229
SSM(AGSS09)	0.724	0.2314	0.0178
Helioseismology	0.713 ± 0.001	0.2485 ± 0.0035	

<u>Solar Standard Model neutrino flux</u> predictions

Source	Flux [cm ⁻² s ⁻¹] SSM-GS98	Flux [cm ⁻² s ⁻¹] SSM-AGSS09	Flux [cm ⁻² s ⁻¹] SSM-GS98-2004
рр	5.98(1±0.006)×10 ¹⁰	6.03(1±0.006)×10 ¹⁰	5.94(1±0.01)×10 ¹⁰
рер	1.44(1±0.012)×10 ⁸	1.47(1±0.012)×10 ⁸	1.40(1±0.02)×10 ⁸
⁷ Be	5.00(1±0.07)×10 ⁹	4.56(1±0.07)×10 ⁹	4.86(1±0.12)×10 ⁹
⁸ B	5.58(1±0.13)×10 ⁶	4.59(1±0.13)×10 ⁶	5.79(1±0.23)×10 ⁶
¹³ N	2.96(1±0.15)×10 ⁸	2.17(1±0.15)×10 ⁸	5.71(1±0.36)×10 ⁸
¹⁵ O	2.23(1±0.16)×10 ⁸	1.56(1±0.16)×10 ⁸	5.03(1±0.41)×10 ⁸
¹⁷ F	5.52(1±0.18)×10 ⁶	3.40(1±0.16)×10 ⁶	5.91(1±0.44)×10 ⁶
Total CN	\mathbf{D}^{\cdot} 5 24×10 ⁸	3 76×10 ⁸	10.8×10 ⁸

The metallicity problem

Given a number of input parameters ...

The SSM determines: the depth of the convective zone, the helium surface abundance at the present time and ...

Helioseismology provides data for these output quantities

Solar Neutrinos Observations

Detecting Solar Neutrinos

• Electron capture: $v_e + (A,Z-1) \rightarrow (A,Z) + e^{-10^{-42}}$ ($\sigma \sim 10^{-42}$ cm²)

• Elastic Scattering: $v_x + e^- \rightarrow v_x + e^-$ ($\sigma \sim 10^{-44} \text{cm}^2$)

• $v_e + d \rightarrow e^- + p + p (E_v \ge 1.44 \text{ MeV})$ ($\sigma \sim 10^{-42} \text{cm}^2$) • $v_x + d \rightarrow v_x + p + n (E_v \ge 2.74 \text{ MeV})$ • pure NC interaction

Solar Neutrino Experiments

Detector	Target mass	Threshold [MeV]	Data taking	
Homestake	615 tons C ₂ Cl ₄	0.814	1970-1994	
Kamiokande	3ktons H ₂ O	7.5	1983-1990	
SAGE	50tons molted metal Ga	0.233	1989-present	
GALLEX	30.3tons GaCl ₃ -HCl	0.233	1991-1997	
GNO	30.3tons GaCl ₃ -HCl	0.233	1998-2003	
Super-Kamiokande	22.5ktons	4.5 6.5 4.5 4	1996-2001 2003-2005 2006-2008 2008-present	
SNO	1kton D ₂ O	5[3.5]	1999-2006	
Borexino	300ton C ₉ H ₁₂	0.2 MeV	2007-present	

Solar Neutrino Measurements

Experiment	Sources contributing to data	Data
Homestake	⁷ Be(13.1%)+pep(2.7%)+ CNO(2.4%)+ ⁸ B(81.8%)	2.56±0.16±0.16 SNU
GALLEX/GNO/SAGE	pp(55%)+ ⁷ Be(28.3%)+ pep(2.3%)+ CNO(3.4%)+ ⁸ B(11%)	66.2±3.2 SNU
Super-Kamiokande (I, II, II)	⁸ B	$\Phi_{ve} = (2.38\pm0.08)\times10^{6} \text{ cm}^{-2}\text{s}^{-1}$ $\Phi_{ve} = (2.41\pm0.16)\times10^{6} \text{ cm}^{-2}\text{s}^{-1}$ $\Phi_{ve} = (2.39\pm0.07)\times10^{6}$ $\text{ cm}^{-2}\text{s}^{-1}[\sim3\%]$
SNO	⁸ B	$\phi_{\rm B}$ = 5.25±0.16 ^{+0.11} -0.13 [~4%] CC/NC=0.301±0.033
BOREXINO	⁷ Be(0.862MeV) pep ⁸ B(>3MeV)	46±1.5±1.6 cpd/100tons [~5%] 3.1±0.6±0.3 cpd/100tons 0.22±0.04±0.01 cpd/100tons

Observations vs Predictions

⁸B Solar Neutrino Spectrum

Detection by neutrino-electron ES

v_e -equivalent flux for ⁸B neutrinos

⁷Be Solar Neutrino Measurement in Borexino

MAIN sources of systematic uncertainties	%
Fiducial Volume	+0.5 -1.3
Energy response	2.7
Fit methods	2.0

1200 1400 npe

pep Solar Neutrino Measurement in Borexino

MAIN sources of systematic uncertainties	%
Fiducial Volume	+0.6 -1.1
Energy response	4.1
Fit methods	5.7
PSD	5
²¹⁰ Bi shape	+1 -5

Multivariate maximum likelihood fit

Pulse shape parameter

Pulse shape test

Energy spectral fit

Radial fit

pep vs CNO rates in Borexino

Global Analysis of Solar Neutrino Data

In the framework of neutrino oscillations one defines:

 $\chi^2_{\text{solar}+\text{KL}} = \chi^2_{\text{solar}}(\Delta m^2_{21}, \tan^2 \theta_{12}, \sin^2 \theta_{13}) + \chi^2_{\text{KL}}(\Delta m^2_{21}, \tan^2 \theta_{12}, \sin^2 \theta_{13})$

Solar Neutrinos Survival Probability

Determine neutrino fluxes and probe the SSM with neutrinos

⁸B and ⁷Be Solar Neutrino Flux from data

Super-K + SNO + Borexino + KamLAND:

 $\Phi(^{8}B) = (5.40\pm0.17) \times 10^{6} \text{ cm}^{-2}\text{s}^{-1}$

SNO results combined:

 $\Phi(^{8}B) = (5.25 \pm 0.20) \times 10^{6} \text{ cm}^{-2} \text{s}^{-1}$

Borexino:

 $\Phi(^{7}Be) = 4.84(1\pm0.05)\times10^{9} \text{ cm}^{-2}\text{s}^{-1}$

High-Z and Low-Z SSM vs Data

Solar Neutrino fluxes:

observations vs predictions

Source	Flux [cm ⁻² s ⁻¹] SSM-GS98	Flux [cm ⁻² s ⁻¹] SSM-AGSS09	Flux [cm ⁻² s ⁻¹] Data	
рр	5.98(1±0.006)×10 ¹⁰	6.03(1±0.006)×10 ¹⁰	6.06(1 ^{+0.003} -0.01)×10 ¹⁰	
рер	1.44(1±0.012)×10 ⁸	1.47(1±0.012)×10 ⁸	1.60(1±0.19)×10 ⁸	
⁷ Be	5.00(1±0.07)×10 ⁹	4.56(1±0.07)×10 ⁹	4.84(1±0.05)×10 ⁹	
⁸ B	5.58(1±0.13)×10 ⁶	4.59(1±0.13)×10 ⁶	5.40(1±0.031)×10 ⁶	
¹³ N	2.96(1±0.15)×10 ⁸	3.76(1±0.15)×10 ⁸	<6.7×10 ⁸	
¹⁵ O	2.23(1±0.16)×10 ⁸	1.56(1±0.16)×10 ⁸	<3.2×10 ⁸	
¹⁷ F	5.52(1±0.18)×10 ⁶	3.40(1±0.16)×10 ⁶	<59×10 ⁶	
CNO	5.24×10 ⁸	3.76×10 ⁸	<7.7×10 ⁸ (2ơ)	
Without the luminocity constrainty				

Without the luminosity constraint: ϕ_{pp} determined with 15% uncertainty

upper limit smaller than 2004 prediction!

What Next with Solar Neutrinos?

- Three experiments in data taking at present:
 - Super-K: running w/ lower threshold, improved DAQ
 - Borexino: running w/ lower background w/ the possibility to improve it further
 - SAGE: ~21 years regularly in operation
- SNO+ approaching (>2013):
 - main goal double beta decay
 - check radiopurity for solar neutrinos
 - see talk by S. Peeters

• Long term projects: LENS, CLEAN, XMASS, LENA, MOON ...

Goals for next steps

- Upturn of survival probability and NSI
 - Need to measure 1 MeV range -> NOT easy!
- Observation and/or measurement of pp neutrinos
 - Discussion next slides
 - Improved ⁷Be measurement to 3% for a 3% pp neutrino measurement in LENS
- MAIN goal: CNO neutrinos observation
 - Need very low background and ¹¹C suppression
 - Observation in Borexino possible but VERY difficult, comments later
 - SNO+ could offer an opportunity in the coming years

Toward a CNO observation: step 1

CNO neutrino measurements

Degeneragy in the energy spectrum between ²¹⁰Bi and CNO with the addition of ¹¹C background makes this measurement very challenging

One possibility is offered by trying to constrain ²¹⁰Bi rate using the ²¹⁰Po tagging (Villante et al. , Phys. Lett. B 701, 2011).

Toward CNO observation: step 2

Toward CNO observation: step 3

... at the end of the solar neutrino phase ... before turning to a "new" detector or stopping A neutrino radioactive source project seems a good opportunity to make use of present performances and equipments ... Artificial Neutrino Sources with a low threshold Solar Neutrino detector

The idea: make use of a neutrino source in a Borexino-like detector

- N.G.Basov, V.B.Rozanov, JETP 42 (1985)
- Borexino proposal, 1991
- J.N.Bahcall, P.I.Krastev, E.Lisi, Phys.Lett.B348:121-123,1995
- N.Ferrari, G.Fiorentini, B.Ricci, Phys. Lett B 387, 1996
- I.R.Barabanov et al., Astrop. Phys. 8 (1997
- Gallex coll. PL B 420 (1998) 114
- A.lanni, D.Montanino, Astrop. Phys. 10
- A.lanni, D.Montanino, G.Scioscia, Eur. Phys. J C8, 1999
- SAGE coll. PRC 59 (1999) 2246
- SAGE coll. PRC 73 (2006) 045805
- C.Grieb, J.Link, R.S.Raghavan, Phys. Rev. D75:093006, 2007
- V.N.Gravrin et al., arXiv: nucl-ex:1006.2103
- C.Giunti, M.Laveder, Phys.Rev.D82:113009,2010
- C.Giunti, M.Laveder, arXiv:1012.4356
- White paper, arXiv:1204.5376

Sterile Neutrino Case and Source Experiment

Recently the Gallium and reactor anomaly gave a boost to the interest in a new possible physics at very short baselines.

Low threshold detector such as Borexino, KamLAND, SAGE and in the near future SNO+ might offer a possibility to perform a <10m baseline oscillation search

The case of reactor anti-neutrinos

Source Experiment: Physics Case

- Probing Short Baseline Flavor Oscillations in disappearance
- Search for Neutrino Magnetic moment
- Probe neutrino-electron scattering at 1 MeV scale
 - Weinberg's angle
 - g_V and g_A coupling

Radioactive Sources

Source	decay	τ [days]	Energy [MeV]	Kg/MCi	W/kCi
⁵¹ Cr	e-capture (Ε _γ =0.32 MeV 10%)	40	0.746 81%	0.011	0.19
⁹⁰ Sr- ⁹⁰ Y	Fission product β⁻	15160	<2.28 MeV 100%	7.25	6.7
¹⁴⁴ Ce- ¹⁴⁴ Pr	Fission product β ⁻	411	<2.9975 MeV 97.9%	0.314	7.6

Source location in Borexino (SOX project)

- A: underneath WT
 - D=825 cm
 - No change to present configuration
- B: inside WT
 - D = 700 cm
 - Need to remove shielding water
- C: center
 - Major change
 - Remove inner vessels
 - To be done at the end of solar neutrino physics

Source position A

⁵¹Cr in a Borexino

Features for an electron neutrino source outside Borexino

Sensitivity of a ⁵¹Cr source in Borexino

⁵¹Cr source outside Borexino

Baseline < 7m ~14500 events predicted w/o oscillations

Source location in KamLAND

CeLAND proposal PRL 107, 201801, 2011
1.85 PBq Ce-Pr source

Borexino with source @ center

¹⁴⁴Ce-¹⁴⁴Pr source @ center of Borexino

 $\Delta m_{SBL}^2 = 1 \text{ eV}^2$, $\sin^2 2\theta_{SBL} = 0.1$, $N_{\text{predicted}} (\Delta m_{SBL}^2, \sin^2 2\theta_{SBL}) = 59294$ with an exposure = 0.584 kton-y

Weinberg's Angle @ 1 MeV

EW couplings

- Standard Model
 - $g_V = -1/2 + 2\sin^2 q_W = -0.038$ • $g_A = -0.5$
- Use three-level cross-section
- Use ⁵¹Cr and ¹⁴⁴Ce source

Neutrino Magnetic Moment

Reactor anti-neutrinos: ~ $6 \times 10^{-11} \mu_B$ (90% CL) From Borexino: ~ $5 \times 10^{-11} \mu_B$ (90% CL)

Conlusions

Direct real time solar neutrino fluxes (pep, ⁷Be and ⁸B) measured
⁷Be and ⁸B measured at <5% level

• At present three experiments in data taking (Super-K, SAGE and Borexino)

• Next goals for present and near future experiments: pp and CNO

 With some R&D, based on previous experience (GALLEX/SAGE) low threshold solar neutrino detectors could be used to probe oscillations at <10m scale and physics for neutrino-electron interactions at 1 MeV with neutrino radioactive sources [an alternative to IsoDAR-like projects]

- SOX in Borexino
- CeLAND in KamLAND

Spares

Weinberg's Angle @ 1 MeV

- ⁵¹Cr source outside Borexino
- Expected statistics:
 - ~ 12650 events from source
 - ~4300 from background
- Recent determination from reactor anti-v: $sin^2\theta_W = 0.251\pm0.031\pm0.024$

Data reduction in Borexino

Detector Calibration

Detector response vs position:

✓ 100 Hz ¹⁴C+²²²Rn in scintillator in >100 positions

Quenching and energy scale:

✓ Beta: ¹⁴C, ²²²Rn in scintillator
✓ Alpha: ²²²Rn in scintillator
✓ Gamma: ¹³⁹Ce, ⁵⁷Co, ⁶⁰Co, ²⁰³Hg, ⁶⁵Zn, ⁴⁰K, ⁸⁵Sr, ⁵⁴Mn
✓ Neutron: AmBe

