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Interactions in Fermi systems can generate a Pomeranchuk instability leading to orien-
tational symmetry breaking, that is, nematic order. In a metallic system close to such an
instability the Fermi surface is easily deformed by anisotropic perturbations and exhibits
enhanced collective fluctuations. We analyze fluctuation effects in the quantum critical
regime near a d-wave Pomeranchuk instability in two dimensions. Density correlations with
a d-wave form factor and the dynamical forward scattering interaction diverge near the insta-
bility. The singular forward scattering leads to large self-energy contributions, which destroy
Fermi liquid behavior over the whole Fermi surface except at “cold spots” on the Brillouin
zone diagonal. The decay rate of single-particle excitations, which is related to the width
of the peaks in the spectral function, exceeds the excitation energy in the low-energy limit.
The dispersion of the spectra flattens strongly near those portions of the Fermi surface which
are remote from the zone diagonal. The decay rate for DC transport is linear in temper-
ature except at the cold spots. We discuss the possible relevance of d-wave Fermi surface
fluctuations for the “strange metal” behavior observed in the normal phase of cuprates.

§1. Introduction

Electron-electron interactions can generate a spontaneous breaking of the ro-
tation symmetry of an itinerant electron system without breaking translation in-
variance. From a Fermi liquid viewpoint, such an instability is driven by forward
scattering interactions and leads to a symmetry breaking deformation of the Fermi
surface. In isotropic three-dimensional Fermi liquids this instability sets in when Lan-
dau parameters exceed certain critical negative values, as derived already in 1958 by
Pomeranchuk.1) We therefore refer to instabilities leading to a symmetry-breaking
Fermi surface deformation as “Pomeranchuk instabilities”, extending the notion also
to anisotropic systems (on a lattice), two-dimensional systems, and non-Fermi liquid
metals.

Pomeranchuk instabilities leading to symmetry-breaking deformations of the
Fermi surface in interacting electron systems have attracted considerable interest
in the last few years. Effective interactions favoring a Pomeranchuk instability with
dx2−y2-wave symmetry have been found in the two most intensively studied models
for cuprate superconductors, that is, the two-dimensional t-J2) and Hubbard3),4)

model. The corresponding Fermi surface deformations are illustrated in Fig. 1.
These models thus exhibit enhanced “nematic” correlations, as usually discussed in
the context of fluctuating stripe order.5) Signatures for incipient nematic order with
d-wave symmetry have been observed in several cuprate materials.6) In particular,
nematic correlations close to a d-wave Pomeranchuk instability provide an appealing
explanation for the relatively strong in-plane anisotropy observed in the magnetic
excitation spectrum of YBa2Cu3Oy.7),8) A spin dependent Pomeranchuk instability
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Fig. 1. Schematic illustration of Fermi surface deformations with dx2−y2 -symmetry on a square

lattice; the deformed Fermi surface may be closed (left) or open (right).

was recently invoked to characterize a new phase observed in ultrapure crystals of
the layered ruthenate metal Sr3Ru2O7,9) and also to account for a puzzling phase
transition in URu2Si2.10)

A Pomeranchuk instability usually competes with other instabilities, but can also
coexist with other symmetry breaking order. For example, in the two dimensional
Hubbard model with a sizable next-to-nearest neighbor hopping and an electron den-
sity near van Hove filling a superconducting ground state with a d-wave deformed
Fermi surface can be established.11) The competition between d-wave superconduc-
tivity and a d-wave Pomeranchuk instability has been analyzed more comprehen-
sively in a phenomenological mean-field model.12) Superconducting nematic states
have also been included in a general classification of possible symmetry breaking pat-
terns.13) In the present article, however, we will focus on symmetry breaking Fermi
surface deformations in an otherwise normal state.

Electron systems in the vicinity of a Pomeranchuk instability exhibit peculiar
properties due to a “soft” Fermi surface, which can be easily deformed by anisotropic
perturbations. Critical fluctuations near a Pomeranchuk quantum critical point pro-
vide an interesting route to non-Fermi liquid behavior in two dimensions.14),15) For a
d-wave Pomeranchuk instability in an electron system on a square lattice the singular
part of the electronic self-energy is proportional to d2

k, where dk is a form factor with
d-wave symmetry.15) At the quantum critical point, the real and imaginary parts of
the self-energy scale as |ω|2/3 with energy. This leads to a complete destruction of
quasi-particles near the Fermi surface except for the “cold spots” on the Brillouin
zone diagonal, where the form factor dk vanishes. In the quantum critical regime
at T > 0 the self-energy consists of a “classical” and a “quantum” part with very
different dependences on T and ω. The classical part, which is due to classical fluc-
tuations, dominates at ω = 0 and yields a contribution proportional to

√
T/ log T

to the imaginary part of the self-energy on the Fermi surface.16) The momentum
dependent transport decay rate γtr

k (T ) is linear in temperature for all momenta on
the Fermi surface except at the cold spots on the Brillouin zone diagonal.17) Adding
a conventional T 2-term to γtr

k (T ) yields an overall resistivity ρ(T ) proportional to
T 3/2 at low temperatures. In the presence of impurities, the residual resistivity at
zero temperature is approached linearly.
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In the following, we review the derivation of the above-mentioned non-Fermi
liquid properties near a Pomeranchuk quantum critical point.

§2. Forward scattering model

Fluctuation effects in the vicinity of a Pomeranchuk instability are captured by
a phenomenological lattice model with an interaction which drives a Fermi surface
symmetry breaking, but no other instability. The model Hamiltonian15) reads

H =
∑
k,σ

εk nkσ +
1

2V

∑
k,k′,q

fkk′(q) nk(q) nk′(−q) , (2.1)

where εk is a single-particle dispersion, nk(q) =
∑

σ c†k−q/2,σck+q/2,σ, and V is the
volume of the system. As the Pomeranchuk instability is driven by interactions with
vanishing momentum transfers (forward scattering), we choose a function fkk′(q)
which contributes only for small momenta q, and refer to the above model as the
“f-model”. Obviously this model is adequate only if the Pomeranchuk instability
dominates over other instabilities and fluctuations in the system. Otherwise it would
have to be supplemented by interactions with large momentum transfers.

For a simplified treatment, which however fully captures the essential physics,
we choose an interaction of the form

fkk′(q) = u(q) + g(q) dk dk′ (2.2)

with u(q) ≥ 0 and g(q) < 0, and a form factor dk with dx2−y2 symmetry, such as
dk = cos kx − cos ky. The coupling functions u(q) and g(q) vanish if |q| exceeds a
certain small momentum cutoff Λ. This ansatz mimics the effective interaction in
the forward scattering channel as obtained from renormalization group calculations3)

and perturbation theory18) for the two-dimensional Hubbard model near van Hove
filling. The uniform term originates directly from the repulsion between electrons.
The d-wave term drives the Pomeranchuk instability.

The mean-field solution of the f -model has been studied in detail for various
choices of parameters.19)–21) In the plane spanned by the chemical potential μ and
temperature T the symmetry-broken phase is formed below a dome-shaped transition
line Tc(μ) with a maximal transition temperature near van Hove filling. The phase
transition is typically first order near the edges of the transition line, that is where Tc

is relatively low, and always second order near its center.20) The two tricritical points
at the ends of the second order transition line can be shifted to lower temperatures
by a sizable uniform repulsion u included in fkk′ .21) For a suitable choice of hopping
and interaction parameters, one of the first order edges is suppressed completely
such that a quantum critical point is realized. Although quantum critical points
are usually prevented by first order transitions at low temperatures in the f -model,
the Fermi surface is nevertheless already very soft near the transition, such that
fluctuations can be expected to be important.21)
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§3. Effective interaction

We now derive and analyze the dynamical effective interaction for the f -model,
which is closely related to the dynamical d-wave density correlation function

Nd(q, ν) = −i

∫ ∞

0
dt eiνt 〈[nd(q, t), nd(−q, 0)]〉 . (3.1)

The d-wave density fluctuation operator is defined as

nd(q) =
∑

k

dk nk(q) , (3.2)

and nd(q, t) is the corresponding time-dependent operator in the Heisenberg picture.
We first analyze Nd(q, ν) and the effective interaction within the random phase
approximation (RPA), and subsequently discuss higher order corrections.

The RPA result for the d-wave density correlation function in the f -model reads

Nd(q, ν) =
Π0

d (q, ν)
1 − g(q) Π0

d (q, ν)
(3.3)

with the bare d-wave polarization function

Π0
d (q, ν) = −

∫
d2k

(2π)2
f(εk+q/2 − μ) − f(εk−q/2 − μ)
ν + i0+ − (εk+q/2 − εk−q/2)

d2
k . (3.4)

The coupling u(q) does not enter here because mixed polarization functions with a
constant and a d-wave vertex vanish for small q.

The RPA effective interaction is defined by the series of bubble chain diagrams
sketched in Fig. 2, yielding

Γkk′(q, ν) =
u(q)

1 − u(q) Π0(q, ν)
+

g(q)
1 − g(q) Π0

d (q, ν)
dk dk′ , (3.5)

where Π0(q, ν) is the usual (s-wave) bare polarization function.
Close to the Pomeranchuk instability the denominator 1− g(q) Π0

d (q, ν) in Eqs.
(3.3) and (3.5) becomes very small for q → 0 and ν → 0, if ν vanishes faster than q,
while 1−u(q) Π0(q, ν) remains of order one or even larger. The effective interaction
is then dominated by the second term in Eq. (3.5), and can be written as

Γkk′(q, ν) = g Sd(q, ν) dk dk′ (3.6)

Fig. 2. Feynman diagrams contributing to the dynamical effective interaction Γ .
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with g = g(0) and the “dynamical Stoner factor”

Sd(q, ν) =
1

1 − g(q) Π0
d (q, ν)

. (3.7)

The d-wave density correlation function Nd(q, ν) is also proportional to Sd(q, ν). In
case of a second order phase transition, the static Stoner factor

Sd = lim
q→0

lim
ν→0

Sd(q, ν) (3.8)

diverges on the transition line. Near the first order transition obtained typically
for low temperatures in the mean-field solution of the f -model, Sd is still strongly
enhanced.21)

Within RPA, the dynamical d-wave density fluctuations near the Pomeranchuk
instability and the corresponding singularity of the effective interaction are deter-
mined by the asymptotic behavior of the d-wave polarization function Π0

d(q, ν).
Expanding Π0

d (q, ν) for small q and ν with small ν/|q|, one obtains16)

Π0
d (q, ν) = a1 + a2 |q|2 − ib(q̂)

ν

|q| + . . . . (3.9)

The coefficient a1 is always negative and can be written as

a1 =
∫

dε f ′(ε − μ) Nd2(ε) , (3.10)

where f is the Fermi function and Nd2(ε) =
∫ d2p

(2π)2
δ(ε− εp) d2

p a weighted density of
states. The sign of a2 depends on the dispersion εk and the precise form of dk. The
coefficient b(q̂) is always positive and depends on the orientation of q, as indicated
by the unit vector q̂ in the argument.

Guided by the RPA result, but envisaging already corrections beyond RPA, we
parametrize the dynamical Stoner factor for small q and ν, with ν/|q| also small, as
follows:

Sd(q, ν) =
1

(ξ0/ξ)2 + ξ2
0 |q|2 − i ν

c(q̂)|q|
. (3.11)

Within RPA, the length scales ξ0 and ξ and the velocity c(q̂) are related in a simple
fashion to the expansion coefficients of Π0

d and the coupling function g(q). Expanding
g(q) = g + g2|q|2 + . . . for small q, we get

ξ2
0 = −g a2 − g2 a1 , (3.12)

(ξ0/ξ)2 = S−1
d = 1 − g a1 , (3.13)

c(q̂) = − 1
g b(q̂)

. (3.14)

For g < 0 the velocity c(q̂) is positive. The static Stoner factor Sd diverges at the
Pomeranchuk transition, if it is continuous, and the correlation length ξ diverges
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accordingly as
√

Sd. The relation for ξ0 is applicable only if the right-hand side is
positive. This is guaranteed if we restrict ourselves to systems where the Pomer-
anchuk transition is the leading instability. For −g a2 − g2 a1 < 0 a charge density
wave instability with a wave vector q �= 0 would set in first. The parameters ξ0 and
c(q̂) remain finite at the Pomeranchuk transition and do not vary much around it.
The correlation length ξ(δ, T ) near the transition depends sensitively on control pa-
rameters δ, such as the chemical potential, and on the temperature. If the transition
is continuous, ξ(δ, T ) diverges for T → Tc(δ). Within the RPA, ξ(δ, T ) diverges as
(T − Tc)−1/2 if Tc(δ) > 0, and as T−1 if δ is tuned to a quantum critical point δc.

For small q and ν, with ν/|q| also small, the d-wave density correlation function
can be written as Nd(q, ν) = −κ0

d Sd(q, ν), where κ0
d = − limq→0 limν→0 Π0

d (q, ν) is
the non-interacting d-wave compressibility.21)

We now discuss corrections due to contributions not captured by the RPA. The
exact density correlation function Nd(q, ν) can be written in the form of Eq. (3.3),
with the full polarization function Πd(q, ν), which is dressed by interactions, instead
of the bare one. Similarly, the full effective interaction is given by Eq. (3.5) with
dressed polarization functions Π(q, ν) and Πd(q, ν). Close to a continuous phase
transition two types of interaction corrections can be distinguished, namely regular
interactions, which remain finite at the transition, and singular effective interactions
associated with large order parameter fluctuations, which diverge.

Corrections to the RPA and corresponding subleading corrections to Fermi liq-
uid behavior due to regular interactions, in a generic stable Fermi liquid regime,
have been analyzed carefully in the last few years.22) The low energy behavior of
most quantities receives non-analytic corrections to Fermi liquid behavior in dimen-
sions d ≤ 3. For example, in two dimensions the spin susceptibility varies as |q|
instead of |q|2 for small q at T = 0. However, the charge susceptibility for small q
remains unaffected. In this case non-analytic contributions appearing on the level
of single Feynman diagrams cancel systematically when all relevant diagrams at a
certain order are summed.22) A simple argument establishing the cancellation of
non-analytic corrections for the charge susceptibility can be readily extended to our
case of a d-wave density instead of the conventional density operator:23) A perturb-
ing field coupling to the d-wave density operator does not alter the singularities in
the polarization function at q = 0 and q = 2kF . Hence, corrections due to regular
interactions may shift the parameters with respect to the RPA result for Nd(q, ν)
and Γkk′(q, ν), but they do not yield any qualitative changes. Within the f -model,
one such correction appears already on the mean-field level: the u-term in fkk′(q)
generates a constant (momentum-independent) Hartree self-energy correction, which
renormalizes the relation between μ and the density.21)

Near a continuous phase transition, order parameter correlations can be strongly
modified with respect to the mean-field or RPA result. These fluctuation effects
are most naturally treated by a renormalization group analysis of an effective field
theory, where the order parameter fluctuations are represented by a bosonic field.
The propagator of that field corresponds to the order parameter correlation function,
that is to Nd(q, ν) in our case. The singular effective interaction between electrons,
which is generated by large order parameter fluctuations, is then mediated by the
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bosonic field. In the bosonic representation, corrections to the RPA result for the
order parameter correlations are due to interactions of the Bose field. Close to a
continuous Pomeranchuk transition at finite Tc these terms are relevant and lead
to the classical non-Gaussian asymptotic behavior of the Ising universality class in
two dimensions. We will focus on the behavior in the quantum critical regime near
the zero temperature critical point at δ = δc. In that regime the upper critical
dimension separating Gaussian from non-Gaussian behavior is dc = 4− z, where z is
the dynamical exponent.24) In our case of a charge instability at q = 0 one has z = 3,
in complete analogy to the ferromagnetic quantum critical point in itinerant electron
systems.24) Hence we have dc = 1, while the dimensionality of our system is two,
such that Gaussian behavior is stable. However, as first pointed out by Millis,25)

the irrelevant quartic interaction of the order parameter fluctuations changes the
temperature dependence of the correlation length near the quantum critical point
completely compared to the RPA result. In particular, in a two-dimensional system
with z = 3, the correlation length at δc behaves as25)

ξ(δc, T ) ∝ (T | log T |)−1/2 (3.15)

instead of the naive T−1-divergence. Also the dependence of the transition tem-
perature Tc on the control parameter is strongly affected by interactions. Near the
quantum critical point, the condition ξ−1 = 0 yields an almost linear relation be-
tween the control parameter and the transition temperature,26) δ− δc ∝ Tc log Tc, in
agreement with estimates from the Ginzburg criterion.25)

In summary, near the Pomeranchuk instability the electrons interact via a sin-
gular effective interaction of the form15),16)

Γkk′(q, ν) =
g dkdk′

(ξ0/ξ)2 + ξ2
0 |q|2 − i[ν/(c(q̂)|q|)] , (3.16)

where q and ν is the momentum and energy transfer, respectively. The parameters
g, ξ0 and c(q̂) can be treated as constants, whereas the correlation length ξ depends
sensitively on control parameters and temperature. The behavior of ξ(δ, T ) in the
critical region is strongly influenced by interactions of order parameter fluctuations.

§4. Single-particle excitations

In this section, we analyze the low energy behavior of single-particle excitations
in the presence of critical d-wave Fermi surface fluctuations.15),16) All fluctuation
effects are encoded in the self-energy. We compute the self-energy explicitly within
the random phase approximation, that is, to first order in the singular interaction
Γkk′(q, ν), and then briefly discuss corrections due to higher order terms.

4.1. Random phase approximation

To first order in Γ , the self-energy is given by the Feynman diagram (Fock term)
shown in Fig. 3. The Hartree term vanishes because the expectation value of the
d-wave density operator vanishes in the symmetric phase. The analytic expression
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Fig. 3. Fock diagram relating the self-energy Σ to the dynamical effective interaction Γ .

corresponding to the Fock diagram reads

Σ(k, iωn) = −T
∑
νn

∫
d2q

(2π)2
Γkk(q, iνn) G(k + q, iωn + iνn) ei0+(ωn+νn) , (4.1)

where G is the propagator of the interacting system in a self-consistent perturbation
expansion, which is replaced by the bare propagator G0 in a non-selfconsistent cal-
culation. We have approximated Γkk′ with k′ = k + q by Γkk , which makes almost
no difference since only small q contribute and the effective interaction does not vary
rapidly as a function of k and k′. The analytic continuation from imaginary to real
frequencies yields

Σ(k, ω + i0+) = − 1
π

∫
dν

∫
d2q

(2π)2
[
b(ν) ImΓkk(q, ν + i0+) G(k + q, ν + ω + i0+)

− f(ν) Γkk(q, ν − ω − i0+) ImG(k + q, ν + i0+)
]

, (4.2)

where b(ν) = [eβν − 1]−1 is the Bose, and f(ν) = [eβν + 1]−1 the Fermi function.
It is convenient to focus on the imaginary part of Σ, from which the real part can
be easily obtained via the Kramers-Kronig relation. Using Eq. (3.6) to express the
effective interaction by the dynamical Stoner factor, ImΣ can be expressed as

ImΣ(k, ω) = − g d2
k

π

∫
dν

∫
d2q

(2π)2
[
b(ν) + f(ν + ω)

]
ImSd(q, ν) ImG(k + q, ω + ν) .

(4.3)
Here and in the following G, Σ, and Sd are retarded functions, that is, the real
frequency axis is approached from above. The imaginary part of Sd can be written
as

ImSd(q, ν) =
c(q̂) |q| ν

ν2 + [(ξ0/ξ)2 + (ξ0|q|)2]2 [c(q̂) |q|]2 . (4.4)

In the non-selfconsistent calculation one can exploit the relation ImG0(p, ω) =
−πδ(ω − ξp), where ξp = εp − μ, to perform the ν-integral analytically, which yields

ImΣ(k, ω) = g d2
k

∫
d2q

(2π)2
[
b(ξk+q − ω) + f(ξk+q)

]
ImSd(q, ξk+q − ω) . (4.5)

We are interested in the renormalization of low energy excitations, with k close
to the Fermi surface. Furthermore, only small momentum transfers q contribute
to the self-energy. It is therefore convenient to introduce a local coordinate system
in momentum space, centered around the Fermi point kF which is reached from
k by a projection on the Fermi surface (see Fig. 4), such that the vector k−kF is
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Fig. 4. Decomposition of momentum transfers q in radial and tangential components relative to

the Fermi surface in kF .

perpendicular to the Fermi surface in kF . We can then parametrize k by the variable
kr = ±|k−kF |, with a positive sign for k on the exterior side of the Fermi surface, and
minus inside. The momentum transfer q can be parametrized by a radial variable
qr and a tangential variable qt, as shown in Fig. 4.

The energy variable ξk+q appearing in the above expressions for ImΣ can be
expanded as ξk+q = vkF

kr + vkF
qr + 1

2mt
kF

q2
t for small q and k near kF . The

parameter mt
kF

is given by the second derivative of ξk in tangential direction,
(mt

kF
)−1 = ∂2

kt
ξk|k=kF

. The term of order q2
t has been included since some asymp-

totic results are dominated by contributions with |qt| 
 |qr|. It is convenient to use
q′r = qr + 1

2mt
kF

vkF

q2
t instead of qr as integration variable (in addition to qt), since

the excitation energy ξk+q = vkF
(kr + q′r) is linear in that variable. The Jacobi

determinant corresponding to this change of variables is one.

4.2. Ground state

At T = 0, the combination of Bose and Fermi functions contributing to ImΣ(k, ω)
reduces to a step function. In the following we restrict to the case ω > 0 in deriva-
tions, but state final results also for ω < 0.

At the quantum critical point (T = 0, ξ = ∞), the self-energy Eq. (4.5) can be
written as

ImΣ(k, ω) = g d2
kF

∫ ω
vkF

−kr

−kr

dq′r
2π

∫
dqt

2π

c(q̂) |q| [ω − vkF
(kr + q′r)]

[ω − vkF
(kr + q′r)]2 + ξ4

0 [c(q̂)]2 |q|6 (4.6)

for ω > 0. Imposing a cutoff on the qt-integral would not affect the asymptotic
behavior for small ω.

For k = kF , that is for kr = 0, the asymptotic ω-dependence of ImΣ can be
extracted by using dimensionless variables q̃r and q̃t defined by q′r = (ω/vkF

) q̃r and
qt = (ξ2

0 ckF
)−1/3ω1/3q̃t, respectively. Here ckF

= c(tkF
), where tkF

is a unit vector
tangential to the Fermi surface in kF . For small ω and kr = 0 the above q-integral
is dominated by almost tangential q-vectors, that is |qt| 
 |qr|; more precisely |q′r|
scales as |qt|3, and |qr| consequently as |qt|2. We can thus replace |q| by |qt| and c(q̂)
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by ckF
. This yields, for ω → 0,

ImΣ(kF , ω) =
g d2

kF

vkF

c
1/3
kF

ω2/3

ξ
4/3
0

∫ 1

0

dq̃r

2π

∫ ∞

−∞

dq̃t

2π

|q̃t| (1 − q̃r)
(1 − q̃r)2 + q̃6

t

. (4.7)

This asymptotic result does not depend on any cutoff. The integral can be done
analytically and yields the number (4

√
3π)−1. For ω < 0 one obtains the same

expression with (−ω)2/3. We have thus shown that

ImΣ(kF , ω) =
g d2

kF

4
√

3π vkF

c
1/3
kF

ξ
4/3
0

|ω|2/3 (4.8)

for small |ω|. Note that ν = vkF
q′r−ω = (q̃r−1) ω vanishes faster than |q| for ω → 0,

which justifies our expansion of Sd(q, ν) for small ratios ν/|q|.
Not surprisingly, ImΣ(kF , ω) has the same energy dependence as for the quan-

tum critical points near phase separation27) and ferromagnetism28) in two dimen-
sions, and also for fermions coupled to a U(1)-gauge field.29),30) What differs, how-
ever, is the d-wave form factor making ImΣ(kF , ω) strongly anisotropic. It is
strongest near the van Hove points, while the leading terms vanish on the Brillouin
zone diagonal.

A strongly anisotropic decay rate for single-particle excitations obeying a power-
law with exponent 2/3 has also been found for an isotropic continuum (instead of
lattice) version of our model.14) However, that result was obtained for the symmetry-
broken “nematic” phase, and the large anisotropic decay rate is due to the anisotropy
of the nematic state and its Goldstone modes. At the quantum critical point the
decay rate for the isotropic model also obeys a power law with exponent 2/3, but
isotropically over the whole Fermi surface.14)

For k �= kF , that is, for finite kr, the asymptotic behavior of ImΣ(k, ω), Eq.
(4.6), is found by rewriting the integral with a dimensionless variable q̃r defined by
q′r + kr = (ω/vkF

) q̃r, and q̃t defined by qt = (ξ2
0c)

−1/3ω1/3q̃t. Here we approximate
the velocity c(q̂) by a constant c. In the limit ω → 0 one can replace |q| by

√
q2
t + k2

r .
Carrying out the q̃r-integral one then obtains

ImΣ(k, ω) =
g d2

kF

2π vkF

c1/3 |ω|2/3

ξ
4/3
0

∫ ∞

0

dq̃t

2π

√
q̃2
t + κ2 ln

[
1 +

1
(q̃2

t + κ2)3

]
, (4.9)

with κ = (cξ2
0/|ω|)1/3 kr. Two different asymptotic regimes are separated by the

frequency scale
ωkr = cξ2

0 |kr|3 . (4.10)

For |ω| 
 ωkr , corresponding to κ � 1, one recovers the previous result Eq. (4.8),
while for |ω| � ωkr one can expand the integrand in κ−1 to obtain

ImΣ(k, ω) =
g d2

kF

6π2 vkF

1
c ξ4

0 k4
r

ω2 . (4.11)
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In the latter limit momentum transfers normal to the Fermi surface dominate, and
the above result can thus be easily generalized to a direction dependent c(q̂) replacing
c by c(nkF

). Note that for small kr the low frequency behavior of ImΣ(k, ω) deviates
from |ω|2/3-behavior only below a tiny scale of order |kr|3. The same crossover has
been obtained previously for fermions coupled to a U(1) gauge field.30)

We now investigate the behavior of ImΣ(kF , ω) at T = 0 in the symmetric phase
at a small distance from the quantum critical point, where the correlation length ξ
is large, but not infinite. Using the same dimensionless variables q̃r and q̃t as for
ξ = ∞, one finds that the q-integral is still dominated by tangential momentum
transfers for small ω, such that we can approximate |q| by |qt| and c(q̂) by ckF

. The
q̃r-integral can then be performed analytically, yielding

ImΣ(kF , ω) =
g d2

kF

2π vkF

c
1/3
kF

|ω|2/3

ξ
4/3
0

∫ ∞

0

dq̃t

2π
q̃t ln

[
1 +

1
q̃2
t (q̃

2
t + ζ2)2

]
, (4.12)

with ζ = (ckF
ξ2
0/|ω|)1/3ξ−1. There are two asymptotic regimes, separated by the

characteristic frequency scale

ωξ = ckF
ξ2
0/ξ3 = ckF

ξ−1
0 S

−3/2
d . (4.13)

For |ω| 
 ωξ one has ζ � 1, and one recovers the previous result Eq. (4.8). For
|ω| � ωξ, an expansion of the integral yields the asymptotic behavior

ImΣ(kF , ω) =
g d2

kF

6π2 vkF

ξ4

ckF
ξ4
0

ω2 ln
ωξ

|ω| . (4.14)

Hence, below the scale ωξ one obtains Fermi liquid behavior. Close to the quantum
critical point, that is for large ξ and Sd, the crossover from |ω|2/3 scaling to Fermi
liquid behavior sets in only for tiny frequencies, and the coefficient in front of the
asymptotic ω2 log ωξ

|ω| law is anomalously large.

4.3. Low finite temperature

At T > 0 the non-selfconsistent RPA self-energy, Eq. (4.5), has the form

ImΣ(k, ω) = g d2
kF

∫
dq′r
2π

∫
dqt

2π

{
b[vkF

(kr + q′r) − ω] + f [vkF
(kr + q′r)]

}

× c(q̂) |q| [vkF
(kr + q′r) − ω]

[vkF
(kr + q′r) − ω]2 + [(ξ0/ξ)2 + (ξ0 |q|)2]2 [c(q̂) |q|]2 . (4.15)

To extract the asymptotic behavior of this integral for low T , small ω and small kr,
it is helpful to consider first the special case kr = ω = 0, that is

ImΣ(kF , 0) = g d2
kF

∫
dq′r
2π

∫
dqt

2π

[
b(vkF

q′r) + f(vkF
q′r)
]

× c(q̂) |q| vkF
q′r

(vkF
q′r)2 + [(ξ0/ξ)2 + (ξ0 |q|)2]2 [c(q̂) |q|]2 . (4.16)
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We introduce dimensionless variables q̃r and q̃t defined by the relations q′r = ξ2
0 q̃r/ξ3

and qt = q̃t/ξ, respectively. We assume that ξ diverges faster than T−1/3 for T →
0, as is indeed the case when we approach the quantum critical point from the
quantum critical region.25) Then the above integral is dominated by momenta with
a small ratio vkF

q′r/T , such that the Bose function can be expanded as b(vkF
q′r) →

T/(vkF
q′r), and the Fermi function can be neglected. Furthermore we can take

advantage of the fact that the integral is dominated by momenta q which are almost
tangential to the Fermi surface for large ξ, since |q′r| scales as |qt|3, and hence |qr| as
|qt|2. We can thus substitute |q| by |qt| and c(q̂) by ckF

, and find the simple result

ImΣ(kF , 0) → g d2
kF

ξ2
0

T ξ

∫ ∞

−∞

dq̃r

2π

∫ ∞

−∞

dq̃t

2π

ckF
|q̃t|

(vkF
q̃r)2 + (1 + q̃2

t )2 (ckF
q̃t)2

=
g d2

kF

4vkF
ξ2
0

T ξ (4.17)

for T → 0. A similar contribution of order Tξ has been found previously for almost
antiferromagnetic31),32) and almost ferromagnetic33) metals. Note that the T 2/3-law
proposed for ImΣ(kF , 0) in Ref. 15), which one might expect by identifying T and
ω scaling, does not describe the leading asymptotic behavior at low T .

We now consider the case of finite frequencies ω, which shall however be suffi-
ciently small that we can still use the expansion of the Bose function and neglect
the Fermi function. We set ω = vkF

x/ξ, where x is a dimensionless scaling variable
which is kept fixed in the low temperature limit. Once again we use dimensionless
integration variables q̃r and q̃t, now defined by q′r − ω/vkF

= ξ2
0 q̃r/ξ3 and qt = q̃t/ξ,

respectively. For ξ → ∞ we can then replace qr in |q| =
√

q2
t + q2

r by ω/vkF
, which

yields |q| = q̃/ξ with q̃ =
√

q̃2
t + x2. The Bose function can again be expanded and

the Fermi function neglected for T → 0, for ξ diverging faster than T−1/3, and we
obtain

ImΣ(kF , ω) → g d2
kF

4vkF
ξ2
0

T ξ l(x) (4.18)

with a dimensionless scaling function

l(x) =
∫ ∞

−∞

dq̃r

2π

∫ ∞

−∞

dq̃t

2π

4 vkF
c(q̂) q̃

(vkF
q̃r)2 + (1 + q̃2)2 [c(q̂) q̃]2

. (4.19)

The unit vector q̂ can be parametrized by x and q̃t, it does not depend on q̃r.
Performing the elementary q̃r-integral, the velocities vkF

and c(q̂) in the above ex-
pression for l(x) drop out completely. Carrying out the remaining q̃t-integral, we
find the simple universal result

l(x) =
1√

1 + x2
. (4.20)

For ω = 0 the previous result for ImΣ(kF , 0) is recovered. For large x the scaling
function decays as x−1. Hence, the contribution from the Bose function singularity
to ImΣ(kF , ω) leads to a peak with an amplitude scaling as Tξ(T ) and a width of
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order vkF
/ξ(T ). The product of amplitude and width is thus proportional to T .

Since the contribution proportional to the Bose function to ImΣ(k, ω), Eq. (4.15),
depends only via the linear combination ω − vkF

kr on ω and kr, the right-hand side
of Eq. (4.18) is applicable also for k �= kF , where it yields the contribution from the
expanded Bose term for T → 0, ω → vkF

kr , with fixed x = (ω/vkF
− kr) ξ .

The asymptotic behavior derived above is entirely due to “classical” fluctuations,
corresponding to the contribution with νn = 0 to the Matsubara frequency sum in
Eq. (4.1). The analytic continuation of that contribution to real frequencies reads

Σc(k, ω) = −T

∫
d2q

(2π)2
Γkk(q, 0) G(k + q, ω). (4.21)

Note that Γkk(q, 0) is real and does not depend on the parameter c(q̂). For G = G0

one can easily show that indeed

ImΣc(k, ω) → g d2
kF

4vkF
ξ2
0

T ξ l[(ω/vkF
− kr)ξ] (4.22)

with l(x) from Eq. (4.20).
We now split the total self-energy in two parts, Σ = Σc + Σq, where the

“quantum” contribution is obtained by summing Matsubara frequencies νn �= 0 in
Eq. (4.1). After analytical continuation to real frequencies, ImΣc was obtained from
the Bose function singularity T/ν. To analyze ImΣq for real frequencies we thus
subtract T/ν from the Bose function, that is we replace b(ν) by the regular function
b̄(ν) = b(ν)−T/ν in Eq. (4.15). The asymptotic behavior of ImΣq at low frequency
and low temperature can be extracted by using the same dimensionless variables q̃t

and q̃r as already in the case T = 0, and scaling ω as T by keeping ω̃ = ω/T fixed in
the limit T → 0, ω → 0. Asymptotically one can replace |q| by |qt| and c(q̂) by ckF

as for T = 0. Furthermore one can neglect ξ−2 in the denominator of ImSd since ξ−2

scales to zero faster than |q|2. The q̃t-integral can then be done analytically, and we
obtain

ImΣq(kF , ω) → g d2
kF

vkF

c
1/3
kF

|ω|2/3

ξ
4/3
0

s(ω̃) , (4.23)

with the dimensionless scaling function

s(ω̃) =
sgn(ω̃)
3
√

3

∫ ∞

−∞

dq̃r

2π

[
1

eω̃(q̃r−1) − 1
− 1

ω̃(q̃r − 1)
+

1
eω̃q̃r + 1

]
q̃r − 1

|1 − q̃r|4/3
. (4.24)

For |ω̃| → ∞ the scaling function tends to 1
4
√

3π
, and one recovers the zero temper-

ature result, Eq. (4.8). The convergence to the zero temperature limit is however
rather slow. For small |ω̃|, s(ω̃) is negative and proportional to |ω̃|−2/3, such that

ImΣq(kF , 0) → α
g d2

kF

vkF

c
1/3
kF

ξ
4/3
0

T 2/3 , (4.25)

where α ≈ −0.15 is a constant. We note that ImΣq(kF , 0) is positive but smaller
than the absolute value of the classical contribution for low T , since the latter is
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proportional to Tξ, such that the imaginary part of Σc + Σq remains negative, as
required. For k �= kF , that is for finite kr, the momentum dependence of ImΣq(k, ω)
is negligible for |ω| 
 ωkr , with ωkr = cξ2

0 |kr|3, as in the ground state.
In summary, at low finite T the RPA self-energy is given by a classical contribu-

tion Σc of order Tξ, and a quantum contribution Σq of order T 2/3 and |ω|2/3, which
obeys ω/T -scaling. A similar structure of the self-energy, with a classical part and a
quantum part obeying (ω/T )-scaling, has been obtained also for electrons coupled to
strong ferromagnetic33) or antiferromagnetic32) fluctuations in the quantum critical
regime.

4.4. Self-consistency and vertex corrections

The self-energy obtained above strongly modifies the propagator G, compared
to the bare propagator G0. Since Σ was computed from the Fock diagram with the
bare propagator G0, the question of self-consistency arises.

At T = 0, replacing G0 by G in the Fock diagram does not change the result. The
self-energy in the internal propagator drops out completely when the loop integral
is done.16) Hence, the above result for Σ is already the self-consistent one at zero
temperature.

At T > 0, the quantum part of the self-energy, Σq, remains almost unaffected
by self-consistency, but the classical part Σc changes more strongly. However, the
leading temperature dependence at zero frequency in the quantum critical regime,
ImΣ(kF , ω) ∝ Tξ(T ), remains the same.16)

Vertex corrections to the Fock diagram seem to lead only to moderate finite
renormalizations, leaving the qualitative behavior of the self-energy unchanged. At
the quantum critical point, this can be deduced from the earlier analysis of vertex
corrections in the analogous problem of fermions coupled to a U(1) gauge field,34)

which was confirmed in a very careful recent work in the context of quantum critical-
ity.35) By virtue of ω/T scaling, one may expect that quantum contributions (from
finite Matsubara frequencies) to vertex corrections behave similarly at zero and low
finite temperatures, and lead to finite renormalizations only. By contrast, contribu-
tions from classical fluctuations at T > 0 have no counterpart at T = 0 and might
thus behave differently. However, an explicit calculation of the classical first order
vertex correction also yields a finite result.16)

4.5. Dispersion and decay of excitations

The momentum resolved spectral function for single particle excitations is de-
termined by the self-energy as

A(k, ω) = − 1
π

Im
1

ω − ξk − Σ(k, ω)
. (4.26)

At the quantum critical point the asymptotic low-energy result for the self-energy
reads16)

Σ(k, ω) → ΣkF
(ω) = −CkF

[
sgn(ω) +

i√
3

]
|ω|2/3 , (4.27)
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where

CkF
=

|g| d2
kF

4π vkF

c
1/3
kF

ξ
4/3
0

. (4.28)

The real part of Σ is simply the Kramers-Kronig transform of the imaginary part.
Strictly speaking, this simple kr-independent behavior is valid only for |ω| 
 ωkr ,
but the scale ωkr is proportional to k3

r and thus tiny for k near the Fermi surface.
The prefactor CkF

depends strongly on the position of kF . It decreases rapidly for
kF near the Brillouin zone diagonal, where dkF

vanishes, while it is enhanced near
the van Hove points, where vkF

becomes small. The kF -dependence of c
1/3
kF

is com-
paratively weak. The competition between ω and the self-energy in the denominator
of A(k, ω) leads to the characteristic energy scale

ωc = C3
kF

∝ d6
kF

v3
kF

, (4.29)

which obviously varies very strongly along the Fermi surface.
For fixed k with |ξk| 
 ωc the spectral function A(k, ω) has almost Lorentzian

shape as a function of ω, with a maximum near ω = ξk and a width of order
CkF

|ξk|2/3. The life-time broadening thus decreases more slowly than the excita-
tion energy ξk, as k approaches the Fermi surface, such that no well-defined quasi-
particles exist. For |ξk| ≈ ωc the maximum of A(k, ω) is shifted strongly away from
ξk and the width is of order of the peak energy. For |ξk| � ωc one can neglect ω
compared to ReΣ(k, ω) in Eq. (4.26), and A(k, ω) is now peaked at ω = ξ̄k, with
the renormalized dispersion

ξ̄k = sgn(ξk) (C−1
kF

|ξk|)3/2 ∝ k3/2
r . (4.30)

Extracting a dispersion relation from the momentum dependence of the peak position
in A(k, ω), one thus obtains a flat band with a vanishing slope near the Fermi surface.
The width of the peak centered around ξ̄k is of order CkF

|ξ̄k|2/3 = |ξk| and thus linear
in kr.

Momentum scans of A(k, ω) perpendicular to the Fermi surface at fixed ω lead
to Lorentzian peaks centered around kr = 1

vkF
[ω + CkF

sgn(ω)|ω|2/3] . The integral
∫

dkr

2π
A(k, ω) =

1
2π vkF

(4.31)

does not depend on the self-energy. The k-integrated density of states at the Fermi
level remains therefore unrenormalized, that is, it is determined by the bare Fermi
velocity.

The most important temperature effect is that ImΣ(kF , 0) increases quickly
from zero to sizable finite values upon increasing T . For small T near the quantum
critical point we obtained

ImΣ(kF , 0) → g d2
kF

4vkF
ξ2
0

T ξ ∝ d2
kF

vkF

√
T

| log T | (4.32)
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both in the non-selfconsistent and self-consistent calculation. This cuts off the di-
vergence of A(kF , ω) for ω → 0 occurring at zero temperature and replaces it by a
maximum of order

√| log T |/T . Note that ImΣ(kF , 0) vanishes much slower with T
than in conventional Fermi liquids, where one has T 2 (in 3D) or T 2| log T | (in 2D)
behavior.

§5. DC resistivity

We now turn to the computation of the DC resistivity and the corresponding
transport decay rate, which turns out to be much smaller than the decay rate of
single-particle excitations.17)

The DC charge conductivity can be obtained from the retarded current-current
correlator Πjj′(q, ω) as

σjj′ = − lim
ω→0

lim
q→0

e2

ω
ImΠjj′(q, ω) . (5.1)

For electrons moving in a crystal with square lattice symmetry, the conductivity
tensor is diagonal. The current-current correlator can be expressed in terms of the
single-particle Green function G and current vertices, yielding

σjj′ = −e2

π

∫
dω f ′(ω)

∫
d2k

(2π)2
Λ0

j (k) |G(k, ω)|2 Λj′(k, ω) , (5.2)

where Λ0(k) = vk = ∇εk is the bare current vertex, and Λ(k, ω) is the interact-
ing current vertex in the mixed advanced-retarded DC limit, that is, Λ(k, ω) =
Λ(k, ω + i0+; k, ω − i0+). The product |G|2 can be expressed in terms of the single-
particle spectral function A(k, ω) = − 1

π ImG(k, ω) and the (retarded) self-energy
as |G(k, ω)|2 = −πA(k, ω)/ImΣ(k, ω). At low temperatures the derivative of the
Fermi function f ′(ω) has a sharp peak of width T at ω = 0. Since all other factors
under the integral in Eq. (5.2) have a broader ω-dependence, one can replace f ′(ω)
by −δ(ω), such that the conductivity can be written as

σjj′ = −e2

∫
d2k

(2π)2
Λ0

j (k)
A(k, 0)

ImΣ(k, 0)
Λj′(k, 0) . (5.3)

The approximation for the current vertex corresponding to the RPA self-energy
involves current vertex corrections given by the sum of all particle-hole ladder dia-
grams, in close analogy to the Born approximation for impurity scattering.36) We
assume that the Pomeranchuk fluctuations thermalize sufficiently rapidly such that
the effective interaction Eq. (3.16) is not modified by the electric current. This relax-
ation to equilibrium is not described by our model Eq. (2.1) and has to be provided
by an additional mechanism such as impurity, umklapp or phonon scattering.37),38)

Summing all particle-hole ladders, and performing an analytic continuation to
the real frequency axis, leads to the following linear integral equation for the current
vertex

Λ(k, ω) = Λ0(k) +
∫

dε

∫
d2q

(2π)2
[b(ε) + f(ω + ε)]
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× ImΓkk(q, ε)
A(k + q, ω + ε)

ImΣ(k + q, ω + ε)
Λ(k + q, ω + ε) . (5.4)

Approaching the quantum critical point for T → 0, the correlation length ξ(T )
diverges. Repeating the arguments used for the calculation of Σ(k, ω) in the preced-
ing section, one finds that the integration variable ε in Eq. (5.4) scales as ξ−3 and
can therefore be set to zero in the arguments of A, Σ, and Λ on the right-hand side
of Eq. (5.4). Expanding the Bose function as b(ε) ∼ T/ε, one can easily perform the
ε-integration,

∫
dε ε−1 ImΓkk(q, ε) = πΓkk(q, 0), yielding a closed equation for the

static current vertex Λ(k) = Λ(k, 0)

Λ(k) = Λ0(k) + T

∫
d2q

(2π)2
Γkk(q, 0)

πA(k + q, 0)
ImΣ(k + q, 0)

Λ(k + q) . (5.5)

This result could have been obtained more directly by taking only the classical fluc-
tuations into account, that is, by including only the term Γkk(q, iεn) with Matsubara
frequency εn = 0 in the Matsubara sums for the current vertex corrections.

Inserting the ansatz Λ(k) = λ(k)vk into the above equation, one obtains the
following equation for λ(k):

λ(k) = 1 + T

∫
d2q

(2π)2
Γkk(q, 0)

πA(k + q, 0)
ImΣ(k + q, 0)

vk · vk+q

v2
k

λ(k + q) . (5.6)

Since the conductivity is determined by momenta near the Fermi surface, we focus on
the case k = kF . For large ξ the above integral is dominated by small momentum
transfers q of order ξ−1, due to the effective interaction Γkk(q, 0). The spectral
function is peaked for momenta on the Fermi surface, with a width determined
by ImΣ(kF , 0), which is proportional to Tξ(T ). The self-energy Σ(k, 0) varies on
a momentum scale of order ξ−1 for momentum shifts perpendicular to the Fermi
surface. The same can be expected for λ(k), since the current vertex correction can
be related to the shift of the self-energy in the presence of a field coupled to the
current operator. Since Tξ2(T ) ∝ 1/ log T in the quantum critical regime, and since
the tangential q-dependence of ImΣ(kF +q) and λ(kF +q) is negligible on the scale
ξ−1, we can neglect the q-dependence of ImΣ(kF + q) and λ(kF + q) in Eq. (5.6),
which can then be solved explicitly. The solution reads

λ(kF ) =

[
1 − πT

ImΣ(kF , 0)

∫
d2q

(2π)2
ΓkF kF

(q, 0) A(kF + q, 0)
vkF

· vkF +q

v2
kF

]−1

.

(5.7)
Using

ImΣ(kF , 0) = πT

∫
d2q

(2π)2
ΓkF kF

(q, 0) A(kF + q, 0) , (5.8)

which is valid within self-consistent RPA restricted to classical fluctuations, one can
write λkF

as
λ(kF ) = γkF

/γtr
kF

, (5.9)
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where γkF
= −ImΣ(kF , 0) is the single-particle decay rate while

γtr
kF

= −πT

∫
d2q

(2π)2
ΓkF kF

(q, 0) A(kF + q, 0)

(
1 − vkF

· vkF +q

v2
kF

)
. (5.10)

is the scattering rate determining transport properties.
The momentum integral in the formula (5.3) for the conductivity is peaked at

the Fermi surface. For T → 0 with ξ(T ) ∝ (T log T )−1/2 one can substitute A(k, 0)
under the integral by δ(εk − μ), neglecting possible corrections of order 1/ log T ,
such that the conductivity can be expressed as a Fermi surface integral. Inserting
Eq. (5.9) for λ(kF ), one obtains

σ =
e2

8π2

∫
dΩkF

vkF

γtr
kF

(5.11)

for the diagonal part σ = σjj of the conductivity tensor.
To calculate γtr

kF
, we parametrize the small momentum transfer q in Eq. (5.10)

by their radial and tangential components, qr and qt, respectively (see Fig. 4). For
T → 0, we can again approximate A(kF +q, 0) by a δ-function, δ(εkF +q−μ). For the
dispersion relation we use the expansion εkF +q−μ = vkF

qr+q2
t /(2mt

kF
). Since kF +q

is confined to the Fermi surface, the momentum transfers q are almost tangential to
the Fermi surface in kF , such that the term of order q2

t cannot be neglected compared
to the term linear in qr. Expanding also the kinematic factor 1− vkF

·vkF +q

v
k2

F

to linear

order in qr and quadratic order in qt, the momentum integral in Eq. (5.10) can be
carried out explicitly. For ξ−1(T ) � mt

kF
vkF

, one finds17)

γtr
kF

=
|g|
πξ2

0

mt
kF

arctan
( qc

2mt
kF

vkF

)
KkF

d2
kF

T , (5.12)

where qc is a momentum cutoff and

KkF
=

1
2v2

k

(
vk · ∂krvk

vk mt
k

− vk · ∂2
kt

vk

)∣∣∣∣
k=kF

. (5.13)

The scattering rate γtr
kF

is thus linear in T at low temperatures. Note that the
correlation length ξ(T ) does not appear in the asymptotic low temperature behavior
of γtr

kF
. By contrast, in the Fermi liquid regime close to the quantum critical point

γtr
kF

is proportional to ξ2T 2 log T , where ξ = ξ(T → 0).38),39)

The prefactor of the T -linear behavior of γtr
kF

varies strongly along the Fermi
surface and vanishes on the Brillouin zone diagonal. This is reminiscent of the cold
spot scenario of transport in cuprates.40) Inserting γtr

kF
from (5.12) in Eq. (5.11) for

the conductivity one runs into a divergent Fermi surface integral, due to the zeros of
γtr

kF
at the cold spots kc

F , leading to an infinite conductivity. However, other (than
d-wave forward scattering) residual interactions will lead at least to the conventional
Fermi liquid decay rate of order T 2 all over the Fermi surface, including the cold
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spots. Including a Fermi liquid contribution of order T 2, the scattering rate acquires
the form

γtr
kF

(T ) = akF
T 2 + bkF

d2
kF

T , (5.14)

where the coefficients akF
and bkF

are finite for all kF . Inserting this ansatz into
Eq. (5.11), one obtains the resistivity17)

ρ(T ) =
2π

e2

√
akc

F
bkc

F

vkc
F

T 3/2 (5.15)

for low T . This result for ρ(T ) is reminiscent of the puzzling T 3/2-behavior of the
resistivity observed in overdoped La2−xSrxCuO4.41)

In the presence of impurities, the scattering rate has the form γtr
kF

(T ) = γimp
kF

+
bkF

d2
kF

T , for temperatures low enough that the Fermi liquid term of order T 2 can
be neglected compared to the impurity term. For T → 0 one then obtains a finite
residual resistivity determined by impurity scattering. For low finite temperatures
the resistivity increases linearly with T at low temperatures T � γimp

kF
/bkF

.

§6. Conclusions

Critical fluctuations in the vicinity of a d-wave Pomeranchuk instability in a
two-dimensional electron system provide an interesting route to non-Fermi liquid
behavior. The fluctuations can be viewed as long-wavelength density fluctuations
with a d-wave form factor or as d-wave fluctuations of the Fermi surface. They lead to
a singularity in the dynamical d-wave density correlation function at small momenta
and frequencies, and to singular forward scattering. The momentum and energy
dependence of the singularity is captured essentially correctly by the random phase
approximation. However, interactions of fluctuations determine the temperature
dependence of the correlation length ξ(T ).

Single-particle excitations are strongly affected by the fluctuations. The dom-
inant contributions to the electronic self-energy Σ(k, ω) generated by the singular
forward scattering in the quantum critical regime are proportional to d2

k, where dk is
a form factor with d-wave symmetry, such as cos kx − cos ky. This leads to a strong
momentum dependence of Σ(k, ω) along the Fermi surface. The singular contribu-
tions vanish on the Brillouin zone diagonal, and have the largest amplitude near the
van Hove points. The momentum dependence of Σ(k, ω) perpendicular to the Fermi
surface is quite weak at low temperatures.

At the quantum critical point, the self-energy scales as |ω|2/3 with energy. This
leads to a destruction of quasi-particles near the Fermi surface except on the Bril-
louin zone diagonal. The dispersion of the maxima of the spectral function A(k, ω)
becomes flat for momenta k near the Fermi surface away from the zone diagonal.
In the quantum critical regime at T > 0 the self-energy can be decomposed in a
“classical” and a “quantum” part with very different dependences on T and ω. The
classical part is due to classical fluctuations and dominates at ω = 0, where it yields
a contribution proportional to Tξ(T ) ∝ √

T/ log T to ImΣ(kF , ω). The quantum
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part is generated by quantum fluctuations and obeys (ω/T )-scaling in the quantum
critical regime.

The relaxation of a DC charge current is determined by classical fluctuations.
The transport decay rate γtr

kF
(T ) is linear in temperature everywhere on the Fermi

surface except at the cold spots on the Brillouin zone diagonal. For pure systems,
this leads to a DC resistivity proportional to T 3/2 in the low-temperature limit. In
the presence of impurities the residual impurity resistance at T = 0 is approached
linearly at low temperatures.

To what extent could soft Fermi surfaces and critical Fermi surface fluctuations
play a role in cuprate superconductors? Close to a Pomeranchuk instability of the
electronic system, electronic properties can be expected to react unusually strongly
to slight lattice distortions which break the symmetry of the electronic system ex-
plicitly. Such “overreactions” of electronic properties have indeed been observed
early on in several cuprate compounds.42),43) In particular, a slight orthorhombicity
of the lattice structure would lead to a relatively strong orthorhombic distortion of
the Fermi surface.44) Recent experiments on YBCO have established a remarkably
strong in-plane anisotropy of electronic and magnetic properties,7),45),46) although
the structural anisotropy of the CuO2-planes, which is induced indirectly by the
CuO-chains between the planes in that material, is rather weak.47) Fermi surface
softening with d-wave symmetry due to forward scattering interactions provides a
natural explanation of the fairly strong in-plane anisotropy observed in YBCO.8)

Many experimental observations, which have been attributed to static or fluctu-
ating stripes,6) actually provide evidence only for a tendency to orientation, not
translation, symmetry-breaking, and could therefore be described equally well by a
(incipient) Pomeranchuk instability.

Fermi surface fluctuations could be at least partially responsible for the non-
Fermi liquid behavior observed in the “strange metal” regime of cuprate supercon-
ductors near optimal doping. In our model calculation we have obtained a strongly
anisotropic anomalously large decay rate for single-particle excitations and a flatten-
ing of the dispersion relation near the Fermi surface away from the nodal direction.
The properties of single-particle excitations in various cuprate compounds have been
investigated in considerable detail by numerous angular resolved photoemission ex-
periments.48) Extended flat bands in the van Hove region have been observed by
various groups already in the early 1990s.49)–51) Large anisotropic decay rates have
been extracted from the linewidth of low-energy peaks in the photoemission spectra
observed in optimally doped cuprates, using in particular momentum scans perpen-
dicular to the Fermi surface at various fixed energies.52),53) The line shape of these
scans is almost Lorentzian, which is consistent with our results. Most recent mea-
surements indicate that the previously suggested non-Fermi liquid behavior in the
nodal direction, which could not be explained by d-wave fluctuations, is not tenable
any more.54)

Concerning transport, an anisotropic scattering rate with nodes on the Brillouin
zone diagonal can very naturally account for the pronounced anisotropy between the
intra- and inter-plane mobility of charge carriers, as pointed out by Ioffe and Mil-
lis40) in their phenomenological “cold spot” scenario. According to their idea, the
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intra-plane transport is dominated by quasi-particles with a long life-time near the
diagonal of the Brillouin zone, while these carriers are not available for inter-plane
transport, since transverse hopping amplitudes vanish on the diagonal. Strikingly, re-
cent measurements of the momentum resolved transport decay rate in Tl2Ba2CuO6+δ

revealed a T -linear contribution with a d-wave form factor, in addition to a less mo-
mentum dependent Fermi liquid type background,55),56) precisely as in our result for
γtr

kF
(T ).∗)
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