Exercises for Advanced Quantum Field Theory (2018/19)

Problem 1. Let $T^{a} \equiv\left(T^{a}\right)^{i j}, a=1, \cdots, N^{2}-1, i, j=1, \cdots, N$, be an antihermitian basis for the fundamental representation R of the Lie algebra of $S U(N)$, with

$$
\left[T^{a}, T^{b}\right]=f^{a b c} T^{c}, \quad \operatorname{tr}\left(T^{a} T^{b}\right)=-\frac{\delta^{a b}}{2}, \quad \operatorname{tr}\left(f^{a} f^{b}\right)=-N \delta^{a b}, \quad \operatorname{tr}\left(f^{a} f^{b} f^{c}\right)=\frac{N}{2} f^{a b c}
$$

a) Show that the completely symmetric tensor

$$
\begin{equation*}
d^{a b c} \equiv i \operatorname{tr}\left(T^{(a} T^{b} T^{c)}\right) \tag{1}
\end{equation*}
$$

- which can be defined for an arbitrary Lie group G and for any representation - is an invariant real tensor.
b) Noting that the $N \times N$ matrices

$$
i\left(T^{(a} T^{b)}+\frac{\delta^{a b}}{2 N} \mathbf{1}\right)
$$

are antihermitian and traceless, and that the T^{a} form a basis for such matrices, prove the identity

$$
\begin{equation*}
T^{a} T^{b}=\frac{1}{2} f^{a b c} T^{c}-\frac{\delta^{a b}}{2 N} \mathbf{1}+2 i d^{a b c} T^{c} \tag{2}
\end{equation*}
$$

Verify this relation explicitly for $S U(2)$.
c) Using (2) verify that the Casimir invariant of the fundamental representation, defined by $T^{a} T^{a}=-C_{R} 1$, is $C_{R}=\left(N^{2}-1\right) / 2 N$.
d) Suppose that $C^{i j m n}$ is an invariant tensor, where the indices i and j transform in the fundamental representation R, while m and n transform in the conjugate representation \bar{R}. Prove that one has

$$
\begin{equation*}
C^{i j m n}=a \delta^{i m} \delta^{j n}+b \delta^{i n} \delta^{j m} \tag{3}
\end{equation*}
$$

where a and b are constants. Hint: analyze the multiple product $R \times R \times \bar{R} \times \bar{R}$ using that $R \times \bar{R}=1+a d j$ - where adj denotes the adjoint representation - and remember that the product $R_{1} \times R_{2}$ contains a (unique) singlet only if $R_{1}=\bar{R}_{2}$.
e) Show that one has the relation between invariant tensors

$$
\begin{equation*}
\left(T^{a}\right)^{i m}\left(T^{a}\right)^{j n}=\frac{1}{2}\left(\frac{1}{N} \delta^{i m} \delta^{j n}-\delta^{i n} \delta^{j m}\right) \tag{4}
\end{equation*}
$$

Problem 2. Le $\varphi \equiv \varphi^{i}$ be complex scalar fields transforming in the fundamental representation R of $S U(N)$.
a) Show that there is only one independent quartic (particle number preserving) polynomial invariant under $S U(N)$, i.e. a polynomial of the kind $\varphi^{\dagger} \varphi^{\dagger} \varphi \varphi$. Explain why the result suggested by the decomposition $(R \times \bar{R}) \times(R \times \bar{R})=(1+a d j) \times(1+a d j)=1+1+\cdots$,
i.e. two singlets, is not correct.
b) Show that the polynomials

$$
\begin{equation*}
\left(\varphi^{\dagger} \varphi\right)\left(\varphi^{\dagger} \varphi\right), \quad\left(\varphi^{\dagger} T^{a} \varphi\right)\left(\varphi^{\dagger} T^{a} \varphi\right), \quad\left(\varphi^{\dagger} T^{a} T^{b} \varphi\right)\left(\varphi^{\dagger} T^{a} T^{b} \varphi\right) \tag{5}
\end{equation*}
$$

corresponding respectively to the invariant tensors $\delta^{i m} \delta^{j n},\left(T^{a}\right)^{i m}\left(T^{a}\right)^{j n}$ and $\left(T^{a} T^{b}\right)^{i m}\left(T^{a} T^{b}\right)^{j n}$ contracting $\varphi^{\dagger i} \varphi^{m} \varphi^{\dagger j} \varphi^{n}$, are $S U(N)$-invariant.
c) Are the three polynomials in (5) linearly independent? If not find the relations between them.

Problem 3. Let $\varphi \equiv \varphi^{a}, a=1, \cdots, 8$, be complex scalar fields transforming in the adjoint representation 8 of $S U(3)$.
a) Using that $8 \times 8=(1+8+27)_{S}+(8+10+\overline{10})_{A}$, see e.g. [Slansky, Phys. Rep.], determine the number of independent invariant quartic interactions of the kind $\varphi^{\dagger} \varphi^{\dagger} \varphi \varphi$, as in Problem 2.
b) Write three independent invariant quartic interaction terms.

Problem 4. Consider the Lagrangian of scalar QCD with gauge group $S U(N)$

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} F^{a \mu \nu} F^{a}{ }_{\mu \nu}+\left(D_{\mu} \varphi\right)^{\dagger} D^{\mu} \varphi-m^{2} \varphi^{\dagger} \varphi-P\left(\varphi, \varphi^{\dagger}\right) \equiv-\frac{1}{4} F^{a \mu \nu} F^{a}{ }_{\mu \nu}+\mathcal{L}_{\varphi}, \tag{6}
\end{equation*}
$$

where P is an invariant quartic polynomial and the scalars transform in a generic irreducible representation Θ^{a} of $S U(N)$:

$$
D_{\mu} \varphi=\left(\partial_{\mu}-g A_{\mu}\right) \varphi, \quad A_{\mu}=A_{\mu}^{a} \Theta^{a}
$$

a) Determine the covariantly conserved color currents $J^{a \mu}$ and the conserved Nöther color currents $j^{a \mu}$.
b) Writing the renormalized scalar Lagrangian as

$$
\begin{align*}
\mathcal{L}_{\varphi}^{r e n}= & Z_{\varphi}\left(\partial_{\mu} \varphi^{\dagger} \partial^{\mu} \varphi-\left(m^{2}+\delta m^{2}\right) \varphi^{\dagger} \varphi\right)+g Z_{1 \varphi}\left(\varphi^{\dagger} A^{\mu} \partial_{\mu} \varphi-\partial_{\mu} \varphi^{\dagger} A^{\mu} \varphi\right) \\
& -g^{2} Z_{2 \varphi} \varphi^{\dagger} A^{\mu} A_{\mu} \varphi-\widetilde{P}\left(\varphi, \varphi^{\dagger}\right) \tag{7}
\end{align*}
$$

derive the Slavnov-Taylor identities for $Z_{\varphi}, Z_{1 \varphi}$ and $Z_{2 \varphi}$, analogous to $Z_{3} / Z_{1}=Z_{\Psi} / Z_{1 \Psi}$ etc.
c) Draw all one-loop Feynman diagrams that contribute to the renormalization of the four-gluon correlation function $\langle A A A A\rangle$.
d) Assuming that the scalars transform in the fundamental representation R of $S U(N)$, discuss the relation between $\widetilde{P}\left(\varphi, \varphi^{\dagger}\right)$ and $P\left(\varphi, \varphi^{\dagger}\right)$. In particular, how many independent coupling constants appear in these polynomials, if you want the theory to be strictly renormalizable?
e) Draw all one-loop Feynman diagrams contributing to the renormalization of the quartic scalar correlation function $\left\langle\varphi^{\dagger} \varphi^{\dagger} \varphi \varphi\right\rangle$. Determine the group-theoretical structure of their divergent parts and check explicitly if they are consistent with the answer to question d).

Problem 5. Consider a gauge theory invariant under a generic gauge group G, with N_{f} fermions and N_{s} complex scalars transforming respectively in the representations T^{a} and
Θ^{a} of the Lie algebra of G, whose dynamics is governed by the Lagrangian

$$
\begin{equation*}
\mathcal{L}_{f s}=-\frac{1}{4} F^{a \mu \nu} F^{a}{ }_{\mu \nu}+\bar{\Psi}\left(i \gamma^{\mu} D_{\mu}-M\right) \Psi+\left(D_{\mu} \varphi\right)^{\dagger} D^{\mu} \varphi-m^{2} \varphi^{\dagger} \varphi-P\left(\varphi, \varphi^{\dagger}\right), \tag{8}
\end{equation*}
$$

where

$$
D_{\mu} \varphi=\left(\partial_{\mu}-g A_{\mu}^{a} \Theta^{a}\right) \varphi, \quad D_{\mu} \Psi=\left(\partial_{\mu}-g A_{\mu}^{a} T^{a}\right) \Psi, \quad P\left(\varphi, \varphi^{\dagger}\right)=\frac{1}{4} C_{I J M N} \varphi^{\dagger I} \varphi^{J} \varphi^{\dagger M} \varphi^{N}
$$

In $P\left(\varphi, \varphi^{\dagger}\right)$ the indices I, J etc. label the representation associated with Θ^{a}, the quantities $C_{I J M N}$ are constants with suitable symmetry properties, and a sum over the N_{s} scalars is understood.
a) Write down the Feynman rules of the theory.
b) Show that, in Lorenz-Feynman gauge with $\lambda=1$, using dimensional regularization and relying on the minimal subtraction scheme, at one loop the gluon wave-function renormalizes according to

$$
Z_{3}=1+\frac{g^{2}}{(4 \pi)^{2} \varepsilon}\left(\frac{10}{3} C_{a d j}-\frac{8}{3} N_{f} T_{f}-\frac{2}{3} N_{s} T_{s}\right),
$$

where T_{f} and T_{s} are the Dynkin indices of the representations T^{a} and Θ^{a} respectively and $C_{a d j}$ is the Casimir invariant of the adjoint representation. Hint: use the known results of a theory without scalars.
c) Using the known results of a theory without scalars, derive the one-loop β-function

$$
\beta(g)=-\frac{g^{3}}{(4 \pi)^{2}}\left(\frac{11}{3} C_{a d j}-\frac{4}{3} N_{f} T_{f}-\frac{1}{3} N_{s} T_{s}\right) .
$$

d) Derive the one-loop β-function $\beta(\alpha)$ for the strong coupling constant $\alpha=g^{2} / 4 \pi$.
e) How many color-scalars N_{s} in the adjoint (or fundamental) representation of $S U(3)$ could we add at most to the Standard Model, to keep QCD asymptotically free?

Problem 6. Consider the Lagrangian (8) of Problem 5, where $P\left(\varphi, \varphi^{\dagger}\right)$ is the most general G-invariant quartic polynomial in the scalars, and take $N_{f}=N_{s}=1$.
a) Is $\mathcal{L}_{f s}$ strictly renormalizable?
b) Suppose henceforth that the scalars are real and transform in the adjoint representation of G, i.e. $\varphi \equiv \varphi^{a}$ and $\left(\Theta^{a}\right)^{b c}=-f^{a b c}$. Choose the G-invariant quartic polynomial

$$
\begin{equation*}
P(\varphi)=\frac{\alpha}{4}\left(\varphi^{a} \varphi^{a}\right)^{2}+\frac{\beta}{4!} d^{a b c d} \varphi^{a} \varphi^{b} \varphi^{c} \varphi^{d} \tag{9}
\end{equation*}
$$

where α and β are coupling constants, and $d^{a b c d}$ is the unique independent completely symmetric invariant tensor with all indices in the adjoint representation ${ }^{1}$. In this case, a

[^0]more natural normalization for the terms quadratic in the scalars of the Lagrangian (8) is
$$
\frac{1}{2}\left(D_{\mu} \varphi^{a} D^{\mu} \varphi^{a}-m^{2} \varphi^{a} \varphi^{a}\right)
$$

Consider the interaction terms

$$
X=i \bar{\Psi} T^{a} \Psi \varphi^{a}, \quad Y=\frac{1}{3!} d^{a b c} \varphi^{a} \varphi^{b} \varphi^{c}
$$

where $d^{a b c}$ is the invariant tensor given in equation (1) of Problem 1. Suppose for simplicity that the product $R \times \bar{R}=1+a d j+\cdots$ contains the adjoint representation just once, where R denotes the representation corresponding to T^{a}. Can (the Yukawa coupling) X and (the triple scalar interaction) Y appear as divergent one-loop counterterms? Can they appear at higher loops? Answer using symmetry arguments.
c) Consider the Lagrangians

$$
\mathcal{L}_{1}=\mathcal{L}_{f s}+\gamma X, \quad \mathcal{L}_{2}=\mathcal{L}_{f s}+\mu Y,
$$

where γ and μ are coupling constants. Are the Lagrangians \mathcal{L}_{1} and \mathcal{L}_{2} strictly renormalizable? Hint: remember the concept of renormalizable and super-renormalizable interactions. If the answer is negative, draw some divergent one-loop or two-loop Feynman diagrams, whose renormalization requires the introduction of interaction terms not present respectively in \mathcal{L}_{1} and \mathcal{L}_{2}. Hint: it may be useful to deal first with Problem 7.
d) Specify the discussion of the questions above to the particular case $G=S U(2)$.

Problem 7. Consider the Lagrangian \mathcal{L}_{2} of Problem 6.
a) Are there divergent one-loop Feynman diagrams contributing to the correlation functions $\langle A A \varphi\rangle$ and $\langle A A A \varphi\rangle$?
b) Discuss the renormalizability, in the strict sense, of the theory associated with \mathcal{L}_{2} in the light of the answer to the previous question.

Problem 8. Consider the Lagrangian (see Problems 5 and 6)

$$
\mathcal{L}_{X Y}=\mathcal{L}_{f s}+\gamma X+\mu Y
$$

a) Are there divergent one-loop Feynman diagrams contributing to the correlation functions $\langle A A \varphi\rangle$ and $\langle A A A \varphi\rangle$?
b) Discuss the renormalizability, in the strict sense, of the theory associated with $\mathcal{L}_{X Y}$ in the light of the answer to the previous question.

Problem 9. Consider the Lagrangian $\mathcal{L}_{X Y}$ of Problem 8.
a) Draw all one-loop Feynman diagrams that contribute to the renormalization of the correlation function $\langle\bar{\Psi} \Psi A\rangle$.
b) Introducing the renormalized minimal-interaction Lagrangian $\mathcal{L}^{r e n}=-i g Z_{1 \Psi} \bar{\Psi} \gamma^{\mu} A_{\mu} \Psi$, compute the renormalization constant $Z_{1 \Psi}$ at one-loop order. Hint: using the known result in the absence of scalars, one concludes that

$$
Z_{1 \Psi}=1-\frac{g^{2}}{(4 \pi)^{2} \varepsilon}\left(2 C_{a d j}+2 C_{f}\right)+O\left(\gamma^{2}\right)
$$

where C_{f} is the Casimir invariant of the fermion representation.
c) Draw all one-loop Feynman diagrams contributing to the renormalization of the correlation function $\langle\varphi \varphi A\rangle$.
d) Draw all one-loop Feynman diagrams contributing to the renormalization of the correlation function $\langle\varphi \varphi A A\rangle$.
e) Introduce the renormalization constants $Z_{1 \varphi}$ and $Z_{2 \varphi}$ for the scalar interactions according to equation (7) of Problem 4. Show that they have the general one-loop structure

$$
Z_{1 \varphi}=1+\frac{1}{\varepsilon}\left(a_{1} g^{2}+b_{1} \gamma^{2}+c_{1} \alpha+d_{1} \beta\right), \quad Z_{2 \varphi}=1+\frac{1}{\varepsilon}\left(a_{2} g^{2}+b_{2} \gamma^{2}+c_{2} \alpha+d_{2} \beta\right)
$$

where a_{i}, b_{i}, c_{i} and d_{i} are numerical constants.
f) Prove the equalities $b_{1}=b_{2}, c_{1}=c_{2}, d_{1}=d_{2}$. Hint: use the Salvnov-Taylor identities derived in Problem 4, together with the fact that at one loop scalar fields do not contribute to the renormalization of the ghost Lagrangian $\partial_{\mu} \bar{C}^{a} D^{\mu} C^{a}$.

Problem 10 (optional). Consider the gauge group $G=S O(N)$ and denote the YM potentials by $A_{\mu}^{I J}$, where $A_{\mu}^{I J}=-A_{\mu}^{J I}$ and $I, J=1, \cdots, N$. Choose the fermions in the fundamental (vector) representation of $S O(N), \Psi \equiv \Psi^{I}$, and denote the local $S O(N)$ transformation parameters by $\Lambda^{I J}(x)=-\Lambda^{J I}(x)$. For an infinitesimal transformation of the fermions one has thus

$$
\begin{equation*}
\delta \Psi^{I}=\Lambda^{I J} \Psi^{J} \tag{10}
\end{equation*}
$$

a) Derive the expression $\delta A_{\mu}^{I J}$ of the infinitesimal transformation of the YM potentials, using that the covariant derivative is given by

$$
D_{\mu} \Psi^{I}=\partial_{\mu} \Psi^{I}-A_{\mu}^{I J} \Psi^{J}
$$

b) Derive the form of the YM field-strength $F_{\mu \nu}^{I J}$.
c) In which way are the expressions $D_{\mu} \Psi^{I}, \delta A_{\mu}^{I J}, F_{\mu \nu}^{I J}$ related to the corresponding expressions of the conventional construction of non-abelian gauge theories, where one introduces a Lie algebra-valued YM potential $A^{\mu}=T^{a} A_{\mu}^{a}$?
d) Add real scalar fields φ^{I} transforming in the fundamental representation, too, and construct the most general renormalizable Lagrangian using the fields $A_{\mu}^{I J}, \Psi^{I}$ and φ^{I}. Is a Yukawa coupling allowed? Hint: $S O(N)$ is the euclidean version of the N-dimensional Lorentz-group, and as the latter it has only two independent invariant tensors for vector indices, i.e. $\delta^{I J}$ and $\varepsilon^{I_{1} \cdots I_{N}}$.
e) Consider the gauge group $G=S O(10)$ with fermions in the "spinor" representation 16 of $G, \Psi \equiv \Psi^{i}, i=1, \cdots, 16$. If you want to couple these fermions to scalar fields via a Yukawa coupling, which representations can you choose for the scalars? In particular, would a scalar multiplet of the form $\varphi^{I J K M}$ - completely antisymmetric in all four vector indices - do the job? How many independent Yukawa couplings can you construct for each chosen representation of the scalars? Hint: use the products of $S O(10)$ irreducible representation listed in Slansky.
f) Find the BRST-transformation $\delta C^{I J}$ of the ghost field $C^{I J}$ - replacing the transformation parameter $\Lambda^{I J}$ - and verify that it is nihilpotent, i.e. $\delta^{2} C^{I J}=0$.

Problem 11 (optional). Prove that an antisymmetric massless two-index potential $B_{\mu \nu}$ in four dimensions is physically equivalent to a scalar massless field φ, proceeding along
the following lines based on the functional integral approach.
a) Start from the partition function (g is a coupling constant)

$$
Z=\int \mathcal{D} B e^{i I[B]}, \quad I[B]=\frac{1}{2 g^{2}} \int \frac{1}{6} H_{\alpha \beta \gamma} H^{\alpha \beta \gamma} d^{4} x, \quad H_{\alpha \beta \gamma}=3 \partial_{[\alpha} B_{\beta \gamma]}
$$

and show that Z can be rewritten as ($F^{\alpha \beta \gamma}$ is a completely antisymmetric tensor)

$$
\begin{equation*}
Z=\int \mathcal{D} F \mathcal{D} \varphi e^{i I[F, \varphi]}, \quad I[F, \varphi]=\int\left(\frac{1}{12 g^{2}} F_{\alpha \beta \gamma} F^{\alpha \beta \gamma}-\frac{1}{6} \varepsilon^{\alpha \beta \gamma \delta} \partial_{\alpha} \varphi F_{\beta \gamma \delta}\right) d^{4} x \tag{11}
\end{equation*}
$$

Hint: use the functional integral identities

$$
\int \mathcal{D} \varphi e^{-i \int \frac{1}{6} \varepsilon^{\alpha \beta \gamma \delta} \partial_{\alpha} \varphi F_{\beta \gamma \delta} d^{4} x}=\delta\left(\partial_{[\alpha} F_{\beta \gamma \delta]}\right)=\frac{1}{\operatorname{det}(\partial)} \int \mathcal{D} B \delta\left(F_{\alpha \beta \gamma}-3 \partial_{[\alpha} B_{\beta \gamma]}\right),
$$

generalizations of the finite-dimensional identities

$$
\int e^{i k x} d k=2 \pi \delta(x), \quad \delta(f(x))=\sum_{j} \frac{\delta\left(x-x_{j}\right)}{\left|f^{\prime}\left(x_{j}\right)\right|}
$$

b) Perform in (11) the gaussian functional integral over $F^{\alpha \beta \gamma}$ to get

$$
Z=\int \mathcal{D} \varphi e^{i I[\varphi]}, \quad I[\varphi]=\frac{g^{2}}{2} \int \partial_{\mu} \varphi \partial^{\mu} \varphi d^{4} x .
$$

Give an interpretation of the occurrence of the inversion $g^{2} \leftrightarrow 1 / g^{2}$.
c) Generalize the above procedure to the duality between massless p-form potentials $B_{\mu_{1} \cdots \mu_{p}}$ and their dual ($D-p-2$)-form potentials in D dimensions. What is the physical meaning of the particular case $p=1, D=4$?

[^0]: ${ }^{1}$ In every simple Lie algebra \mathcal{G} there is a one-to-one correspondence between completely symmetric algebraically independent invariant tensors with all indices in the adjoint representation, and algebraically independent Casimir operators: for a Lie algebra of rank r there exist precisely r of them. In particular every \mathcal{G} admits a unique quadratic Casimir operator, that for a compact \mathcal{G} is given by $\tau^{a} \tau^{b} \delta^{a b}=\tau^{a} \tau^{a}$. There exists a unique cubic Casimir operator $d^{a b c} \tau^{a} \tau^{b} \tau^{c}$ for the algebras $A_{r}=s u(r)(r>2)$, see the definition (1), and none for the others; remember that $D_{3}=s o(6)=s u(4)$. There exists a unique quartic Casimir operator $d^{a b c d} \tau^{a} \tau^{b} \tau^{c} \tau^{d}$ for $A_{r}(r>2), B_{r}(r>1), C_{r}(r>1)$ and $D_{r}(r>2$ and $r \neq 4)$, there exist two of them for $D_{4}=s o(8)$, while none of them exist for the remaining ones, i.e. $A_{1}=s u(2)$, $A_{2}=s u(3), G_{2}, F_{4}, E_{6}, E_{7}$ and E_{8}; see e.g. T.v. Ritbergen et. al., Int. J. Mod. Phys. A4 (1999) 41, hep-th/9802376.

