
Exercises for Advanced Quantum Field Theory (2018/19)

Problem 1. Let T a ≡ (T a)ij, a = 1, · · · , N2 − 1, i, j = 1, · · · , N , be an antihermitian
basis for the fundamental representation R of the Lie algebra of SU(N), with

[T a, T b] = fabcT c, tr(T aT b) = −δ
ab

2
, tr(faf b) = −Nδab, tr(faf bf c) =

N

2
fabc.

a) Show that the completely symmetric tensor

dabc ≡ i tr(T (aT bT c)) (1)

- which can be defined for an arbitrary Lie group G and for any representation - is an
invariant real tensor.
b) Noting that the N ×N matrices

i

(
T (aT b) +

δab

2N
1

)
are antihermitian and traceless, and that the T a form a basis for such matrices, prove the
identity

T aT b =
1

2
fabcT c − δab

2N
1 + 2idabcT c. (2)

Verify this relation explicitly for SU(2).
c) Using (2) verify that the Casimir invariant of the fundamental representation, defined
by T aT a = −CR1, is CR = (N2 − 1)/2N .
d) Suppose that Cijmn is an invariant tensor, where the indices i and j transform in the
fundamental representation R, while m and n transform in the conjugate representation
R. Prove that one has

Cijmn = a δimδjn + b δinδjm, (3)

where a and b are constants. Hint: analyze the multiple product R × R × R × R using
that R×R = 1 + adj - where adj denotes the adjoint representation - and remember that
the product R1 ×R2 contains a (unique) singlet only if R1 = R2.
e) Show that one has the relation between invariant tensors

(T a)im(T a)jn =
1

2

(
1

N
δimδjn − δinδjm

)
. (4)

Problem 2. Le ϕ ≡ ϕi be complex scalar fields transforming in the fundamental repre-
sentation R of SU(N).
a) Show that there is only one independent quartic (particle number preserving) poly-
nomial invariant under SU(N), i.e. a polynomial of the kind ϕ†ϕ†ϕϕ. Explain why the
result suggested by the decomposition (R×R)×(R×R) = (1+adj)×(1+adj) = 1+1+· · ·,
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i.e. two singlets, is not correct.
b) Show that the polynomials

(ϕ†ϕ)(ϕ†ϕ), (ϕ†T aϕ)(ϕ†T aϕ), (ϕ†T aT bϕ)(ϕ†T aT bϕ), (5)

corresponding respectively to the invariant tensors δimδjn, (T a)im(T a)jn and (T aT b)im(T aT b)jn

contracting ϕ†iϕmϕ†jϕn, are SU(N)-invariant.
c) Are the three polynomials in (5) linearly independent? If not find the relations between
them.

Problem 3. Let ϕ ≡ ϕa, a = 1, · · · , 8, be complex scalar fields transforming in the
adjoint representation 8 of SU(3).
a) Using that 8 × 8 = (1 + 8 + 27)S + (8 + 10 + 10)A, see e.g. [Slansky, Phys. Rep.],
determine the number of independent invariant quartic interactions of the kind ϕ†ϕ†ϕϕ,
as in Problem 2.
b) Write three independent invariant quartic interaction terms.

Problem 4. Consider the Lagrangian of scalar QCD with gauge group SU(N)

L = −1

4
F aµνF a

µν + (Dµϕ)†Dµϕ−m2ϕ†ϕ− P (ϕ, ϕ†) ≡ −1

4
F aµνF a

µν + Lϕ, (6)

where P is an invariant quartic polynomial and the scalars transform in a generic irre-
ducible representation Θa of SU(N):

Dµϕ = (∂µ − gAµ)ϕ, Aµ = AaµΘa.

a) Determine the covariantly conserved color currents Jaµ and the conserved Nöther color
currents jaµ.
b) Writing the renormalized scalar Lagrangian as

Lrenϕ = Zϕ(∂µϕ
†∂µϕ− (m2 + δm2)ϕ†ϕ) + gZ1ϕ(ϕ†Aµ∂µϕ− ∂µϕ†Aµϕ)

−g2Z2ϕ ϕ
†AµAµ ϕ− P̃ (ϕ, ϕ†), (7)

derive the Slavnov-Taylor identities for Zϕ, Z1ϕ and Z2ϕ, analogous to Z3/Z1 = ZΨ/Z1Ψ

etc.
c) Draw all one-loop Feynman diagrams that contribute to the renormalization of the
four-gluon correlation function 〈AAAA〉.
d) Assuming that the scalars transform in the fundamental representation R of SU(N),

discuss the relation between P̃ (ϕ, ϕ†) and P (ϕ, ϕ†). In particular, how many independent
coupling constants appear in these polynomials, if you want the theory to be strictly
renormalizable?
e) Draw all one-loop Feynman diagrams contributing to the renormalization of the quartic
scalar correlation function 〈ϕ†ϕ†ϕϕ〉. Determine the group-theoretical structure of their
divergent parts and check explicitly if they are consistent with the answer to question d).

Problem 5. Consider a gauge theory invariant under a generic gauge group G, with Nf

fermions and Ns complex scalars transforming respectively in the representations T a and

2



Θa of the Lie algebra of G, whose dynamics is governed by the Lagrangian

Lfs = −1

4
F aµνF a

µν + Ψ(iγµDµ −M)Ψ + (Dµϕ)†Dµϕ−m2ϕ†ϕ− P (ϕ, ϕ†), (8)

where

Dµϕ = (∂µ − gAaµΘa)ϕ, DµΨ = (∂µ − gAaµT a)Ψ, P (ϕ, ϕ†) =
1

4
CIJMNϕ

†IϕJϕ†MϕN .

In P (ϕ, ϕ†) the indices I, J etc. label the representation associated with Θa, the quantities
CIJMN are constants with suitable symmetry properties, and a sum over the Ns scalars
is understood.
a) Write down the Feynman rules of the theory.
b) Show that, in Lorenz-Feynman gauge with λ = 1, using dimensional regularization
and relying on the minimal subtraction scheme, at one loop the gluon wave-function
renormalizes according to

Z3 = 1 +
g2

(4π)2ε

(
10

3
Cadj −

8

3
NfTf −

2

3
NsTs

)
,

where Tf and Ts are the Dynkin indices of the representations T a and Θa respectively and
Cadj is the Casimir invariant of the adjoint representation. Hint: use the known results
of a theory without scalars.
c) Using the known results of a theory without scalars, derive the one-loop β-function

β(g) = − g3

(4π)2

(
11

3
Cadj −

4

3
NfTf −

1

3
NsTs

)
.

d) Derive the one-loop β-function β(α) for the strong coupling constant α = g2/4π.
e) How many color-scalars Ns in the adjoint (or fundamental) representation of SU(3)
could we add at most to the Standard Model, to keep QCD asymptotically free?

Problem 6. Consider the Lagrangian (8) of Problem 5, where P (ϕ, ϕ†) is the most
general G-invariant quartic polynomial in the scalars, and take Nf = Ns = 1.
a) Is Lfs strictly renormalizable?
b) Suppose henceforth that the scalars are real and transform in the adjoint representation
of G, i.e. ϕ ≡ ϕa and (Θa)bc = −fabc. Choose the G-invariant quartic polynomial

P (ϕ) =
α

4
(ϕaϕa)2 +

β

4!
dabcdϕaϕbϕcϕd, (9)

where α and β are coupling constants, and dabcd is the unique independent completely
symmetric invariant tensor with all indices in the adjoint representation1. In this case, a

1In every simple Lie algebra G there is a one-to-one correspondence between completely symmetric
algebraically independent invariant tensors with all indices in the adjoint representation, and algebraically
independent Casimir operators: for a Lie algebra of rank r there exist precisely r of them. In particular
every G admits a unique quadratic Casimir operator, that for a compact G is given by τaτ bδab = τaτa.
There exists a unique cubic Casimir operator dabcτaτ bτ c for the algebras Ar = su(r) (r > 2), see the
definition (1), and none for the others; remember that D3 = so(6) = su(4). There exists a unique quartic
Casimir operator dabcdτaτ bτ cτd for Ar (r > 2), Br (r > 1), Cr (r > 1) and Dr (r > 2 and r 6= 4), there
exist two of them for D4 = so(8), while none of them exist for the remaining ones, i.e. A1 = su(2),
A2 = su(3), G2, F4, E6, E7 and E8; see e.g. T.v. Ritbergen et. al., Int. J. Mod. Phys. A4 (1999) 41,
hep-th/9802376.
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more natural normalization for the terms quadratic in the scalars of the Lagrangian (8)
is

1

2

(
Dµϕ

aDµϕa −m2ϕaϕa
)
.

Consider the interaction terms

X = iΨT aΨϕa, Y =
1

3!
dabcϕaϕbϕc,

where dabc is the invariant tensor given in equation (1) of Problem 1. Suppose for simplicity
that the product R × R = 1 + adj + · · · contains the adjoint representation just once,
where R denotes the representation corresponding to T a. Can (the Yukawa coupling) X
and (the triple scalar interaction) Y appear as divergent one-loop counterterms? Can
they appear at higher loops? Answer using symmetry arguments.
c) Consider the Lagrangians

L1 = Lfs + γX, L2 = Lfs + µY,

where γ and µ are coupling constants. Are the Lagrangians L1 and L2 strictly renor-
malizable? Hint: remember the concept of renormalizable and super-renormalizable in-
teractions. If the answer is negative, draw some divergent one-loop or two-loop Feynman
diagrams, whose renormalization requires the introduction of interaction terms not present
respectively in L1 and L2. Hint: it may be useful to deal first with Problem 7.
d) Specify the discussion of the questions above to the particular case G = SU(2).

Problem 7. Consider the Lagrangian L2 of Problem 6.
a) Are there divergent one-loop Feynman diagrams contributing to the correlation func-
tions 〈AAϕ〉 and 〈AAAϕ〉?
b) Discuss the renormalizability, in the strict sense, of the theory associated with L2 in
the light of the answer to the previous question.

Problem 8. Consider the Lagrangian (see Problems 5 and 6)

LXY = Lfs + γX + µY.

a) Are there divergent one-loop Feynman diagrams contributing to the correlation func-
tions 〈AAϕ〉 and 〈AAAϕ〉?
b) Discuss the renormalizability, in the strict sense, of the theory associated with LXY in
the light of the answer to the previous question.

Problem 9. Consider the Lagrangian LXY of Problem 8.
a) Draw all one-loop Feynman diagrams that contribute to the renormalization of the
correlation function 〈ΨΨA〉.
b) Introducing the renormalized minimal-interaction Lagrangian Lren = −igZ1ΨΨγµAµΨ,
compute the renormalization constant Z1Ψ at one-loop order. Hint: using the known result
in the absence of scalars, one concludes that

Z1Ψ = 1− g2

(4π)2ε
(2Cadj + 2Cf ) +O

(
γ2
)
,
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where Cf is the Casimir invariant of the fermion representation.
c) Draw all one-loop Feynman diagrams contributing to the renormalization of the corre-
lation function 〈ϕϕA〉.
d) Draw all one-loop Feynman diagrams contributing to the renormalization of the cor-
relation function 〈ϕϕAA〉.
e) Introduce the renormalization constants Z1ϕ and Z2ϕ for the scalar interactions accord-
ing to equation (7) of Problem 4. Show that they have the general one-loop structure

Z1ϕ = 1 +
1

ε

(
a1g

2 + b1γ
2 + c1α + d1β

)
, Z2ϕ = 1 +

1

ε

(
a2g

2 + b2γ
2 + c2α + d2β

)
,

where ai, bi, ci and di are numerical constants.
f) Prove the equalities b1 = b2, c1 = c2, d1 = d2. Hint: use the Salvnov-Taylor identities
derived in Problem 4, together with the fact that at one loop scalar fields do not contribute
to the renormalization of the ghost Lagrangian ∂µC

a
DµCa.

Problem 10 (optional). Consider the gauge group G = SO(N) and denote the YM
potentials by AIJµ , where AIJµ = −AJIµ and I, J = 1, · · · , N . Choose the fermions in the

fundamental (vector) representation of SO(N), Ψ ≡ ΨI , and denote the local SO(N)
transformation parameters by ΛIJ(x) = −ΛJI(x). For an infinitesimal transformation of
the fermions one has thus

δΨI = ΛIJΨJ . (10)

a) Derive the expression δAIJµ of the infinitesimal transformation of the YM potentials,
using that the covariant derivative is given by

DµΨI = ∂µΨI − AIJµ ΨJ .

b) Derive the form of the YM field-strength F IJ
µν .

c) In which way are the expressions DµΨI , δAIJµ , F IJ
µν related to the corresponding expres-

sions of the conventional construction of non-abelian gauge theories, where one introduces
a Lie algebra-valued YM potential Aµ = T aAaµ?

d) Add real scalar fields ϕI transforming in the fundamental representation, too, and
construct the most general renormalizable Lagrangian using the fields AIJµ , ΨI and ϕI . Is
a Yukawa coupling allowed? Hint: SO(N) is the euclidean version of the N -dimensional
Lorentz-group, and as the latter it has only two independent invariant tensors for vector
indices, i.e. δIJ and εI1···IN .
e) Consider the gauge group G = SO(10) with fermions in the “spinor” representation
16 of G, Ψ ≡ Ψi, i = 1, · · · , 16. If you want to couple these fermions to scalar fields via
a Yukawa coupling, which representations can you choose for the scalars? In particular,
would a scalar multiplet of the form ϕIJKM - completely antisymmetric in all four vector
indices - do the job? How many independent Yukawa couplings can you construct for
each chosen representation of the scalars? Hint: use the products of SO(10) irreducible
representation listed in Slansky.
f) Find the BRST-transformation δCIJ of the ghost field CIJ - replacing the transforma-
tion parameter ΛIJ - and verify that it is nihilpotent, i.e. δ2CIJ = 0.

Problem 11 (optional). Prove that an antisymmetric massless two-index potential Bµν

in four dimensions is physically equivalent to a scalar massless field ϕ, proceeding along
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the following lines based on the functional integral approach.
a) Start from the partition function (g is a coupling constant)

Z =

∫
DB eiI[B], I[B] =

1

2g2

∫
1

6
HαβγH

αβγ d4x, Hαβγ = 3∂[αBβγ],

and show that Z can be rewritten as (Fαβγ is a completely antisymmetric tensor)

Z =

∫
DF Dϕ eiI[F,ϕ], I[F, ϕ] =

∫ (
1

12g2
FαβγF

αβγ − 1

6
εαβγδ∂αϕFβγδ

)
d4x. (11)

Hint: use the functional integral identities∫
Dϕ e−i

∫
1
6
εαβγδ∂αϕFβγδ d

4x = δ
(
∂[αFβγδ]

)
=

1

det(∂)

∫
DB δ(Fαβγ − 3∂[αBβγ]),

generalizations of the finite-dimensional identities∫
eikx dk = 2πδ(x), δ(f(x)) =

∑
j

δ(x− xj)
|f ′(xj)|

.

b) Perform in (11) the gaussian functional integral over Fαβγ to get

Z =

∫
Dϕ eiI[ϕ], I[ϕ] =

g2

2

∫
∂µϕ∂

µϕd4x.

Give an interpretation of the occurrence of the inversion g2 ↔ 1/g2.
c) Generalize the above procedure to the duality between massless p-form potentials
Bµ1···µp and their dual (D− p− 2)-form potentials in D dimensions. What is the physical
meaning of the particular case p = 1, D = 4?
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