Exercises for Advanced Quantum Field Theory (2018/19)

Problem 1. Let $T^a \equiv (T^a)^{ij}$, $a = 1, \dots, N^2 - 1$, $i, j = 1, \dots, N$, be an antihermitian basis for the fundamental representation R of the Lie algebra of SU(N), with

$$[T^{a}, T^{b}] = f^{abc}T^{c}, \quad tr(T^{a}T^{b}) = -\frac{\delta^{ab}}{2}, \quad tr(f^{a}f^{b}) = -N\delta^{ab}, \quad tr(f^{a}f^{b}f^{c}) = \frac{N}{2}f^{abc}.$$

a) Show that the completely symmetric tensor

$$d^{abc} \equiv i \, tr(T^{(a}T^{b}T^{c)}) \tag{1}$$

- which can be defined for an arbitrary Lie group G and for any representation - is an *invariant* real tensor.

b) Noting that the $N \times N$ matrices

$$i\left(T^{(a}T^{b)} + \frac{\delta^{ab}}{2N}\mathbf{1}\right)$$

are antihermitian and traceless, and that the T^a form a basis for such matrices, prove the identity

$$T^{a}T^{b} = \frac{1}{2}f^{abc}T^{c} - \frac{\delta^{ab}}{2N}\mathbf{1} + 2id^{abc}T^{c}.$$
 (2)

Verify this relation explicitly for SU(2).

c) Using (2) verify that the *Casimir* invariant of the fundamental representation, defined by $T^aT^a = -C_R \mathbf{1}$, is $C_R = (N^2 - 1)/2N$.

d) Suppose that C^{ijmn} is an *invariant* tensor, where the indices *i* and *j* transform in the fundamental representation R, while *m* and *n* transform in the conjugate representation \overline{R} . Prove that one has

$$C^{ijmn} = a\,\delta^{im}\delta^{jn} + b\,\delta^{in}\delta^{jm},\tag{3}$$

where a and b are constants. *Hint*: analyze the multiple product $R \times R \times \overline{R} \times \overline{R}$ using that $R \times \overline{R} = 1 + adj$ - where adj denotes the adjoint representation - and remember that the product $R_1 \times R_2$ contains a (unique) singlet only if $R_1 = \overline{R}_2$.

e) Show that one has the relation between invariant tensors

$$(T^a)^{im}(T^a)^{jn} = \frac{1}{2} \left(\frac{1}{N} \,\delta^{im} \delta^{jn} - \delta^{in} \delta^{jm} \right). \tag{4}$$

Problem 2. Le $\varphi \equiv \varphi^i$ be complex scalar fields transforming in the fundamental representation R of SU(N).

a) Show that there is only one independent quartic (particle number preserving) polynomial invariant under SU(N), *i.e.* a polynomial of the kind $\varphi^{\dagger}\varphi^{\dagger}\varphi\varphi$. Explain why the result suggested by the decomposition $(R \times \overline{R}) \times (R \times \overline{R}) = (1+adj) \times (1+adj) = 1+1+\cdots$,

i.e. two singlets, is not correct.

b) Show that the polynomials

$$(\varphi^{\dagger}\varphi)(\varphi^{\dagger}\varphi), \quad (\varphi^{\dagger}T^{a}\varphi)(\varphi^{\dagger}T^{a}\varphi), \quad (\varphi^{\dagger}T^{a}T^{b}\varphi)(\varphi^{\dagger}T^{a}T^{b}\varphi), \tag{5}$$

corresponding respectively to the invariant tensors $\delta^{im}\delta^{jn}$, $(T^a)^{im}(T^a)^{jn}$ and $(T^aT^b)^{im}(T^aT^b)^{jn}$ contracting $\varphi^{\dagger i}\varphi^m\varphi^{\dagger j}\varphi^n$, are SU(N)-invariant.

c) Are the three polynomials in (5) linearly independent? If not find the relations between them.

Problem 3. Let $\varphi \equiv \varphi^a$, $a = 1, \dots, 8$, be complex scalar fields transforming in the adjoint representation 8 of SU(3).

a) Using that $8 \times 8 = (1 + 8 + 27)_S + (8 + 10 + \overline{10})_A$, see *e.g.* [Slansky, Phys. Rep.], determine the number of independent invariant quartic interactions of the kind $\varphi^{\dagger}\varphi^{\dagger}\varphi\varphi$, as in Problem 2.

b) Write three independent invariant quartic interaction terms.

Problem 4. Consider the Lagrangian of scalar QCD with gauge group SU(N)

$$\mathcal{L} = -\frac{1}{4} F^{a\mu\nu} F^a{}_{\mu\nu} + (D_\mu \varphi)^{\dagger} D^\mu \varphi - m^2 \varphi^{\dagger} \varphi - P(\varphi, \varphi^{\dagger}) \equiv -\frac{1}{4} F^{a\mu\nu} F^a{}_{\mu\nu} + \mathcal{L}_{\varphi}, \quad (6)$$

where P is an invariant quartic polynomial and the scalars transform in a generic irreducible representation Θ^a of SU(N):

$$D_{\mu}\varphi = (\partial_{\mu} - gA_{\mu})\varphi, \quad A_{\mu} = A^{a}_{\mu}\Theta^{a}.$$

a) Determine the covariantly conserved color currents $J^{a\mu}$ and the conserved Nöther color currents $j^{a\mu}$.

b) Writing the renormalized scalar Lagrangian as

$$\mathcal{L}_{\varphi}^{ren} = Z_{\varphi}(\partial_{\mu}\varphi^{\dagger}\partial^{\mu}\varphi - (m^{2} + \delta m^{2})\varphi^{\dagger}\varphi) + gZ_{1\varphi}(\varphi^{\dagger}A^{\mu}\partial_{\mu}\varphi - \partial_{\mu}\varphi^{\dagger}A^{\mu}\varphi) -g^{2}Z_{2\varphi}\varphi^{\dagger}A^{\mu}A_{\mu}\varphi - \widetilde{P}(\varphi,\varphi^{\dagger}),$$
(7)

derive the Slavnov-Taylor identities for Z_{φ} , $Z_{1\varphi}$ and $Z_{2\varphi}$, analogous to $Z_3/Z_1 = Z_{\Psi}/Z_{1\Psi}$ etc.

c) Draw all one-loop Feynman diagrams that contribute to the renormalization of the four-gluon correlation function $\langle AAA \rangle$.

d) Assuming that the scalars transform in the fundamental representation R of SU(N), discuss the relation between $\tilde{P}(\varphi, \varphi^{\dagger})$ and $P(\varphi, \varphi^{\dagger})$. In particular, how many independent coupling constants appear in these polynomials, if you want the theory to be strictly renormalizable?

e) Draw all one-loop Feynman diagrams contributing to the renormalization of the quartic scalar correlation function $\langle \varphi^{\dagger} \varphi^{\dagger} \varphi \varphi \rangle$. Determine the group-theoretical structure of their divergent parts and check explicitly if they are consistent with the answer to question d).

Problem 5. Consider a gauge theory invariant under a generic gauge group G, with N_f fermions and N_s complex scalars transforming respectively in the representations T^a and

 Θ^a of the Lie algebra of G, whose dynamics is governed by the Lagrangian

$$\mathcal{L}_{fs} = -\frac{1}{4} F^{a\mu\nu} F^{a}{}_{\mu\nu} + \overline{\Psi} (i\gamma^{\mu} D_{\mu} - M) \Psi + (D_{\mu}\varphi)^{\dagger} D^{\mu}\varphi - m^{2}\varphi^{\dagger}\varphi - P(\varphi,\varphi^{\dagger}), \quad (8)$$

where

$$D_{\mu}\varphi = (\partial_{\mu} - gA^{a}_{\mu}\Theta^{a})\varphi, \quad D_{\mu}\Psi = (\partial_{\mu} - gA^{a}_{\mu}T^{a})\Psi, \quad P(\varphi,\varphi^{\dagger}) = \frac{1}{4}C_{IJMN}\varphi^{\dagger I}\varphi^{J}\varphi^{\dagger M}\varphi^{N}.$$

In $P(\varphi, \varphi^{\dagger})$ the indices I, J etc. label the representation associated with Θ^a , the quantities C_{IJMN} are constants with suitable symmetry properties, and a sum over the N_s scalars is understood.

a) Write down the Feynman rules of the theory.

b) Show that, in Lorenz-Feynman gauge with $\lambda = 1$, using dimensional regularization and relying on the minimal subtraction scheme, at one loop the gluon wave-function renormalizes according to

$$Z_3 = 1 + \frac{g^2}{(4\pi)^2 \varepsilon} \left(\frac{10}{3} C_{adj} - \frac{8}{3} N_f T_f - \frac{2}{3} N_s T_s \right),$$

where T_f and T_s are the *Dynkin* indices of the representations T^a and Θ^a respectively and C_{adj} is the *Casimir* invariant of the adjoint representation. *Hint*: use the known results of a theory without scalars.

c) Using the known results of a theory without scalars, derive the one-loop β -function

$$\beta(g) = -\frac{g^3}{(4\pi)^2} \left(\frac{11}{3} C_{adj} - \frac{4}{3} N_f T_f - \frac{1}{3} N_s T_s\right)$$

d) Derive the one-loop β -function $\beta(\alpha)$ for the strong coupling constant $\alpha = g^2/4\pi$. e) How many color-scalars N_s in the adjoint (or fundamental) representation of SU(3) could we add at most to the Standard Model, to keep QCD asymptotically free?

Problem 6. Consider the Lagrangian (8) of Problem 5, where $P(\varphi, \varphi^{\dagger})$ is the most general *G*-invariant quartic polynomial in the scalars, and take $N_f = N_s = 1$. a) Is \mathcal{L}_{fs} strictly renormalizable?

b) Suppose henceforth that the scalars are real and transform in the adjoint representation of G, i.e. $\varphi \equiv \varphi^a$ and $(\Theta^a)^{bc} = -f^{abc}$. Choose the G-invariant quartic polynomial

$$P(\varphi) = \frac{\alpha}{4} \left(\varphi^a \varphi^a\right)^2 + \frac{\beta}{4!} d^{abcd} \varphi^a \varphi^b \varphi^c \varphi^d, \qquad (9)$$

where α and β are coupling constants, and d^{abcd} is the *unique* independent completely symmetric invariant tensor with all indices in the adjoint representation¹. In this case, a

¹In every simple Lie algebra \mathcal{G} there is a one-to-one correspondence between *completely symmetric* algebraically independent *invariant* tensors with all indices in the adjoint representation, and algebraically independent Casimir operators: for a Lie algebra of rank r there exist precisely r of them. In particular every \mathcal{G} admits a *unique* quadratic Casimir operator, that for a compact \mathcal{G} is given by $\tau^a \tau^b \delta^{ab} = \tau^a \tau^a$. There exists a *unique* cubic Casimir operator $d^{abc} \tau^a \tau^b \tau^c$ for the algebras $A_r = su(r)$ (r > 2), see the definition (1), and none for the others; remember that $D_3 = so(6) = su(4)$. There exists a *unique* quartic Casimir operator $d^{abcd} \tau^a \tau^b \tau^c \tau^d$ for A_r (r > 2), B_r (r > 1), C_r (r > 1) and D_r (r > 2 and $r \neq 4$), there exist *two* of them for $D_4 = so(8)$, while none of them exist for the remaining ones, *i.e.* $A_1 = su(2)$, $A_2 = su(3)$, G_2 , F_4 , E_6 , E_7 and E_8 ; see *e.g.* T.v. Ritbergen *et. al.*, Int. J. Mod. Phys. **A4** (1999) 41, hep-th/9802376.

more natural normalization for the terms quadratic in the scalars of the Lagrangian (8) is

$$\frac{1}{2} \left(D_{\mu} \varphi^{a} D^{\mu} \varphi^{a} - m^{2} \varphi^{a} \varphi^{a} \right).$$

Consider the interaction terms

$$X = i\overline{\Psi}T^a\Psi\varphi^a, \qquad Y = \frac{1}{3!}\,d^{abc}\varphi^a\varphi^b\varphi^c,$$

where d^{abc} is the invariant tensor given in equation (1) of Problem 1. Suppose for simplicity that the product $R \times \overline{R} = 1 + adj + \cdots$ contains the adjoint representation just once, where R denotes the representation corresponding to T^a . Can (the Yukawa coupling) X and (the triple scalar interaction) Y appear as divergent one-loop counterterms? Can they appear at higher loops? Answer using symmetry arguments.

c) Consider the Lagrangians

$$\mathcal{L}_1 = \mathcal{L}_{fs} + \gamma X, \qquad \mathcal{L}_2 = \mathcal{L}_{fs} + \mu Y,$$

where γ and μ are coupling constants. Are the Lagrangians \mathcal{L}_1 and \mathcal{L}_2 strictly renormalizable? *Hint*: remember the concept of renormalizable and super-renormalizable interactions. If the answer is negative, draw some divergent one-loop or two-loop Feynman diagrams, whose renormalization requires the introduction of interaction terms not present respectively in \mathcal{L}_1 and \mathcal{L}_2 . *Hint:* it may be useful to deal first with Problem 7.

d) Specify the discussion of the questions above to the particular case G = SU(2).

Problem 7. Consider the Lagrangian \mathcal{L}_2 of Problem 6.

a) Are there *divergent* one-loop Feynman diagrams contributing to the correlation functions $\langle AA\varphi \rangle$ and $\langle AAA\varphi \rangle$?

b) Discuss the renormalizability, in the strict sense, of the theory associated with \mathcal{L}_2 in the light of the answer to the previous question.

Problem 8. Consider the Lagrangian (see Problems 5 and 6)

$$\mathcal{L}_{XY} = \mathcal{L}_{fs} + \gamma X + \mu Y.$$

a) Are there *divergent* one-loop Feynman diagrams contributing to the correlation functions $\langle AA\varphi \rangle$ and $\langle AAA\varphi \rangle$?

b) Discuss the renormalizability, in the strict sense, of the theory associated with \mathcal{L}_{XY} in the light of the answer to the previous question.

Problem 9. Consider the Lagrangian \mathcal{L}_{XY} of Problem 8.

a) Draw all one-loop Feynman diagrams that contribute to the renormalization of the correlation function $\langle \overline{\Psi}\Psi A \rangle$.

b) Introducing the renormalized minimal-interaction Lagrangian $\mathcal{L}^{ren} = -igZ_{1\Psi}\overline{\Psi}\gamma^{\mu}A_{\mu}\Psi$, compute the renormalization constant $Z_{1\Psi}$ at one-loop order. *Hint*: using the known result in the absence of scalars, one concludes that

$$Z_{1\Psi} = 1 - \frac{g^2}{(4\pi)^2 \varepsilon} \left(2C_{adj} + 2C_f \right) + O\left(\gamma^2\right),$$

where C_f is the *Casimir* invariant of the fermion representation.

c) Draw all one-loop Feynman diagrams contributing to the renormalization of the correlation function $\langle \varphi \varphi A \rangle$.

d) Draw all one-loop Feynman diagrams contributing to the renormalization of the correlation function $\langle \varphi \varphi A A \rangle$.

e) Introduce the renormalization constants $Z_{1\varphi}$ and $Z_{2\varphi}$ for the scalar interactions according to equation (7) of Problem 4. Show that they have the general one-loop structure

$$Z_{1\varphi} = 1 + \frac{1}{\varepsilon} \left(a_1 g^2 + b_1 \gamma^2 + c_1 \alpha + d_1 \beta \right), \qquad Z_{2\varphi} = 1 + \frac{1}{\varepsilon} \left(a_2 g^2 + b_2 \gamma^2 + c_2 \alpha + d_2 \beta \right),$$

where a_i, b_i, c_i and d_i are numerical constants.

f) Prove the equalities $b_1 = b_2$, $c_1 = c_2$, $d_1 = d_2$. *Hint*: use the Salvnov-Taylor identities derived in Problem 4, together with the fact that at one loop scalar fields do not contribute to the renormalization of the ghost Lagrangian $\partial_{\mu}\overline{C}^{a}D^{\mu}\overline{C}^{a}$.

Problem 10 (optional). Consider the gauge group G = SO(N) and denote the YM potentials by A_{μ}^{IJ} , where $A_{\mu}^{IJ} = -A_{\mu}^{JI}$ and $I, J = 1, \dots, N$. Choose the fermions in the fundamental (vector) representation of $SO(N), \Psi \equiv \Psi^{I}$, and denote the local SO(N)transformation parameters by $\Lambda^{IJ}(x) = -\Lambda^{JI}(x)$. For an infinitesimal transformation of the fermions one has thus

$$\delta \Psi^I = \Lambda^{IJ} \Psi^J. \tag{10}$$

a) Derive the expression δA^{IJ}_{μ} of the infinitesimal transformation of the YM potentials, using that the covariant derivative is given by

$$D_{\mu}\Psi^{I} = \partial_{\mu}\Psi^{I} - A_{\mu}^{IJ}\Psi^{J}.$$

b) Derive the form of the YM field-strength $F_{\mu\nu}^{IJ}$. c) In which way are the expressions $D_{\mu}\Psi^{I}$, δA_{μ}^{IJ} , $F_{\mu\nu}^{IJ}$ related to the corresponding expressions of the *conventional* construction of non-abelian gauge theories, where one introduces a Lie algebra-valued YM potential $A^{\mu} = T^a A^a_{\mu}$?

d) Add real scalar fields φ^{I} transforming in the fundamental representation, too, and construct the most general renormalizable Lagrangian using the fields A^{IJ}_{μ} , Ψ^{I} and φ^{I} . Is a Yukawa coupling allowed? Hint: SO(N) is the euclidean version of the N-dimensional Lorentz-group, and as the latter it has only two independent invariant tensors for vector indices, *i.e.* δ^{IJ} and $\varepsilon^{I_1 \cdots I_N}$.

e) Consider the gauge group G = SO(10) with fermions in the "spinor" representation 16 of $G, \Psi \equiv \Psi^i, i = 1, \dots, 16$. If you want to couple these fermions to scalar fields via a Yukawa coupling, which representations can you choose for the scalars? In particular, would a scalar multiplet of the form φ^{IJKM} - completely antisymmetric in all four vector indices - do the job? How many independent Yukawa couplings can you construct for each chosen representation of the scalars? *Hint*: use the products of SO(10) irreducible representation listed in *Slansky*.

f) Find the BRST-transformation δC^{IJ} of the ghost field C^{IJ} - replacing the transformation parameter Λ^{IJ} - and verify that it is nihilpotent, *i.e.* $\delta^2 C^{IJ} = 0$.

Problem 11 (optional). Prove that an antisymmetric massless two-index potential $B_{\mu\nu}$ in four dimensions is physically equivalent to a scalar massless field φ , proceeding along the following lines based on the functional integral approach.

a) Start from the partition function (g is a coupling constant)

$$Z = \int \mathcal{D}B \, e^{iI[B]}, \qquad I[B] = \frac{1}{2g^2} \int \frac{1}{6} \, H_{\alpha\beta\gamma} H^{\alpha\beta\gamma} \, d^4x, \qquad H_{\alpha\beta\gamma} = 3\partial_{[\alpha} B_{\beta\gamma]},$$

and show that Z can be rewritten as $(F^{\alpha\beta\gamma})$ is a completely antisymmetric tensor)

$$Z = \int \mathcal{D}F \,\mathcal{D}\varphi \,e^{iI[F,\varphi]}, \qquad I[F,\varphi] = \int \left(\frac{1}{12g^2} F_{\alpha\beta\gamma}F^{\alpha\beta\gamma} - \frac{1}{6} \,\varepsilon^{\alpha\beta\gamma\delta}\partial_{\alpha}\varphi \,F_{\beta\gamma\delta}\right) d^4x. \tag{11}$$

Hint: use the functional integral identities

$$\int \mathcal{D}\varphi \, e^{-i\int \frac{1}{6}\,\varepsilon^{\alpha\beta\gamma\delta}\partial_{\alpha}\varphi F_{\beta\gamma\delta}\,d^4x} = \delta\left(\partial_{[\alpha}F_{\beta\gamma\delta]}\right) = \frac{1}{\det(\partial)}\int \mathcal{D}B\,\delta(F_{\alpha\beta\gamma} - 3\partial_{[\alpha}B_{\beta\gamma]}),$$

generalizations of the finite-dimensional identities

$$\int e^{ikx} dk = 2\pi\delta(x), \qquad \delta(f(x)) = \sum_j \frac{\delta(x-x_j)}{|f'(x_j)|}.$$

b) Perform in (11) the gaussian functional integral over $F^{\alpha\beta\gamma}$ to get

$$Z = \int \mathcal{D}\varphi \, e^{iI[\varphi]}, \qquad I[\varphi] = \frac{g^2}{2} \int \partial_\mu \varphi \, \partial^\mu \varphi \, d^4x.$$

Give an interpretation of the occurrence of the inversion $g^2 \leftrightarrow 1/g^2$.

c) Generalize the above procedure to the duality between massless *p*-form potentials $B_{\mu_1\cdots\mu_p}$ and their dual (D-p-2)-form potentials in *D* dimensions. What is the physical meaning of the particular case p = 1, D = 4?