
CDF Monte Carlo Production on LCG Grid via
LcgCAF portal

Gabriele Compostella University of Trento and INFN Padova,
Donatella Lucchesi University and INFN of Padova,

Simone Pagan Griso University and INFN of Padova,
Igor Sfiligoi Laboratori Nazionali di Frascati, Roma.

Abstract� The improvements of the luminosity of the Tevatron
Collider require large increases in computing requirements for
the CDF experiment which has to be able to increase propor-
tionally the amount of Monte Carlo data it produces. This is,
in turn, forcing the CDF Collaboration to move beyond the use
of dedicated resources and to exploit Grid resources. CDF has
been running a set of CDF Analysis Farm (CAFs), which are
submission portals to dedicated pools, and LcgCAF is basically
a reimplementation of the CAF model in order to access Grid
resources by using the LCG/EGEE Middleware components. By
mean of LcgCAF CDF users can submit analysis jobs with the
same mechanism adopted for the dedicated farms and at the
same time the Grid resources are accessed without any speci�c
software requirements for the sites. This is obtained using Parrot
for the experiment code distribution and Frontier for the run
condition database availability on the worker nodes. Currently
many sites in Italy and in Europe are accessed through this
portal in order to produce Monte Carlo data and in one year of
operations we expect about 100,000 Grid jobs submitted by the
CDF users. We review here the setup used to submit jobs and
retrieve the output, including the Grid components CDF-speci�c
con�guration. The batch and interactive monitor tools developed
to allow users to verify the jobs status during their lifetimes in the
Grid environment are described. We analyze the ef�ciency and
typical failure modes of the current Grid infrastructure reporting
the performances of different parts of the used system.

Index Terms� CDF, computing, Grid, WMS.

I. INTRODUCTION

The Collider Detector at Fermilab (CDF) [1] is an experi-
ment at the Tevatron collider where protons (�) and antiprotons
(��) collide at an energy in the center of mass of 1.96 TeV.

CDF is taking data with an upgraded detector since 2001
but the Tevatron is fully efficient since 2003. The current
instantaneous luminosity is greater than �������
	�� cm �� s �� ,
the highest luminosity reached by a hadronic collider as today.
This has provided the experiment with an integrated luminosity
of about 2 fb �� with the prospect of doubling it in the next
year.

Such integrated luminosity corresponds to ��� ��������� events
that have to be processed and made available to the collabo-
ration for physics analysis as quick as possible . The same
or even larger amount of Monte Carlo data are needed to
perform high precision physics measurements or to search for
new phenomena.

To be able to process, analyze and produce this large amount
of real and simulated data CDF evaluated a cpu need of about
3900 KspecInt2000 corresponding to about 9 THz in 2006

which becomes around � 8600 KspecInt2000 for an amount
of 20 THz in 2007 .

The CDF computing model, designed in 2000, was based
on one dedicated farm, called CAF [2], hosted at Fermilab
National Laboratory (FNAL) . This evolved in the dCAFs
(distributed CAFs) located at several CDF institutions around
the World. Instead of keeping this model and growing the
number of dedicated farms to cope with the increased cpu re-
quest, CDF decided to adapt the computing architecture to the
Grid structure. This has the advantage of exploiting the LHC
resources before it starts to take data with the addition also that
the support needed is reduced only to the maintenance of CDF
specific code, while farms and middleware are maintained by
the Grid employees.

For these reasons LcgCAF has been designed to access the
LCG sites.

II. CDF COMPUTING MODEL

The result of � �� interactions is passed to a three levels
trigger which, based on increasing number of information,
makes the final decision as to whether the event is interesting
enough to record it. Raw data is logged to tape via an
intermediate cache disk at an average of 60 MB/sec.

These events are then reconstructed to high level objects
like electrons, muons and jets using a dedicated farm and then
written to tape.

Raw and reconstructed data is catalogued using SAM [3],
which provides distributed data access as well as dataset and
files history.

The reconstructed data is analyzed by users running on
CAFs, the basic unit on which the computing model is based
upon.

Currently CDF has a three CAFs at FNAL, one dedicated to
raw data reconstruction and two open to users for data analysis,
these CAFs have also a “SAM station”, a computer system that
steers the data requests to the catalog, necessary to get files
from the tape robot and to store files to tape.

Around the world in several sites where CDF has rep-
resentatives there are other dCAFs (distributed CAFs) used
mainly for Monte Carlo data production, since data access
over the network is not efficient. The only exception is CNAF,
in Bologna, where some datasets are replicated so that data
analysis can be done also there.

Third IEEE International Conference on e-Science and Grid Computing

0-7695-3064-8/07 $25.00 © 2007 IEEE
DOI 10.1109/e-Science.2007.39

11

Third IEEE International Conference on e-Science and Grid Computing

0-7695-3064-8/07 $25.00 © 2007 IEEE
DOI 10.1109/e-Science.2007.39

11

Fig. 1. The CAF architecture. Several daemons run on the head node while
the job wrapper executes the users job on the worker nodes.

A. CAF overview

The CAF idea is that users develop and debug their analysis
jobs on their desktops, where they have access to the CDF code
while user authentication is performed using Kerberos [4].
Each job is then submitted to CAF via a software custom
legacy interface and executed in multiple parametric copies in
order to parallelize it. If the submission is successful a job
ID is returned to the users for monitoring. The output of the
job can be sent to any user-specified location. Figure 1 shows
the portal: the head node, where several daemons run, and the
local farm worker nodes where the job wrapper acts. Three
classes of daemons run on the portal: submitter, monitor and
mailer.

The submitter accepts the user tarball and stores it on local
disk. It submits each job segment to the batch system after
having created the submission files necessary for the specific
batch system.

The monitor has two components: an interactive monitoring
and a classical batch monitoring. The former is very impor-
tant and somehow unique to CAF, is not common on other
experiment-dedicated farm especially on Grid since it allows
the users to interact directly with the job to check its status.
Each user can look at the list of his/her jobs running, pending
or completed and at the status of the machine running a
specific job. Users have also the possibility to display the
content of the directory on the worker node where the job
is running and to look at the error and log files of these jobs
to standard output. Moreover, users can interact with the job
holding the execution, releasing it, and killing it while running.
Rarely used but possible also is the job interactive debug.
The web-based monitor displays on a web page some useful
information for all the jobs of all users on the selected farm
and keeps an history record up to 2 years.

The mailer collects each segments status and when the job
is finished sends an email to the user-specified email address
communicating the job summary.

The job wrapper (CafExe) runs on the worker nodes,
unpacks the user tarball and forks the initial job command.
It also performs some monitoring tasks such as the creation
of a job summary file. When the job finishes the CafExe tars
up the working directory with logs and errors files and any
other leftover and copies it to a user-specified location.

III. CAF EVOLUTION TOWARD GRID

The CAF success is mainly due to the fact of having
separated the user interface from the CAF portal itself. Since
the 2002 when the first CAF was deployed the portal has

interfaced to different batch systems without the users having
noticed it. The first CAF used FBSNG [5], then a big step
forward was done implementing Condor [6], [7] batch system.
Condor allows to manage dedicated pools and also access Grid
resources. As discussed in the introduction, CDF cpu needs
increase year per year and dedicated farms are not anymore
sufficient to satisfy the experiment’s requirements. Moreover,
even if CDF could have the possibility of having large dedi-
cated farms, this is not convenient in terms of manpower, while
moving to a distributed environment allows the experiment to
exploit resources supported by the Grid community. The first
approach to the Grid was done via the glide-in mechanism.
The Grid worker nodes are dynamically added to a condor pool
keeping all the advanced features of the Condor batch system
and building up a so-called GlideCAF [8]. This farm has
served and is serving CDF in an excellent way with very high
performances in terms of efficiency and reliability. But CDF
has to move toward a more distributed computing model in
order to exploit the Grid resources and starting from what was
already in use two projects were pursued: LcgCAF [9], a portal
based on gLite Workload Management System (WMS) [10]
and NAMCAF [11]. NAMCAF is based on GlideCAF having
solved the issue of the communication over WAN by using
Generic Connection Brokering (GCB) [12], a tool which
allows cross-firewall communication. This paper is focused on
LcgCAF and NAMCAF will be described in a future work.

IV. LCGCAF

LcgCAF is a total rewrite of the CDF CAF software
to have a portal responsible for accepting, submitting and
monitoring the CDF users jobs during their lifetime in the
Grid environment. Since CDF has to cope with the Grid
infrastructure and middleware as it is only its fundamental
elements are exploited to access the resources. Moreover, CDF
unlike the LHC experiments, does not require to have any
support nor for middleware nor for hardware but that the site
is VOMS compliant.

The general LcgCAF architecture, shown in figure 2 is based
on a submission point which is basically a head node. This is
a Grid User Interface (UI) where the major part of the services
responsible for accepting, submitting and monitoring the users
job are running. The users can submit a job from any desktop
with access to the standard CAF legacy submit mechanisms.

The Grid authentication is done via a cron job running on
the head node that every day translates Kerberos V ticket
of each user into a valid Grid proxy by contacting the
Kerberos Certification Authority (CA). The lifetime of this
proxy depends on LcgCAF settings and on VOMS config-
uration parameters. Currently Grid proxy allows the job to
survive for a maximum of one week, evaluated to be enough
for a long Monte Carlo job to complete. After the users
are authenticated, the CAF clients connect to the submitter
daemon which then delegates the job to the gLite Workload
Management System [10], the gLite facility to submit jobs
to the resources matching users requirements. A this point the
Resource Broker, one of the elements of the WMS, dispatches
jobs to the Grid Computing Element (CE), the interface to the

1212

Fig. 2. General LcgCAF architecture. The user job goes from the portal
to the Grid submission point and then to Grid sites where they run. The job
output is collected on CDF Storage Element and then shipped to Fermilab.

local resource manger. When user jobs finish on a Grid site,
their output is stored on a CDF Storage Element (SE) or copied
to a user defined location.

A. Job submission and execution

As for the CAF, LcgCAF portal hosts many daemons and
in particular those that are responsible for the job submission,
monitoring and user notification. The structure is the same
already seen for the CAF but with different functionalities.
Figure 3 shows the LcgCAF with the three major classes of
daemons and then the path to the Grid site submission.

Fig. 3. LcgCAF submission and execution cartoon.The portal with the
necessary daemons and the job wrapper running on worker nodes.

The submitter is the service responsible for accepting the
incoming submission requests, reading the submission param-
eters from CAF client and creating the proper Job Description
Language files (JDL). The submitter retrieves and stores the
user tarball in a defined disk location which can be accessed
via a Web server. User tarball are then pulled from the Web
server once jobs are running on working nodes. The job
parallelization, done in the standard CAF by splitting the job
in several segments, is reproduced in Grid using different sub-
mission mechanisms implemented in the JDL file at creation
time: DAG (Direct Acyclic Graph), and single submission.
The actual version of the code uses the single submission
which is good enough for Monte Carlo production. If LcgCAF
will be used also for data analysis a DAG submission will be
implemented. The job is not directly submitted to the Grid,
but enqueued in a submission queue, since the current version
of the WMS for Grid submission takes a too long time. When

the job is enqueued a job ID is returned to the user and
later matched to the Grid job ID for monitoring purposes.
Another service on the head node looks for jobs on the
submission queue and submits them to the gLite WMS. This,
then, performs the real job submission to the most convenient
CEs, where the most convenient CEs mean those with the
shorter time response. Studies of other ranking methods are
in progress in order to optimize the Grid resources available
and the experiments requests.

The InputSandbox, one of the functionalities of the Grid
submission used to bring files to worker node, is exploited to
transfer the job wrapper (CafExe) and monitoring daemon.

Once each job reaches the worker node, CafExe, the job
wrapper, is executed. It retrieves the user tarball from the
head node web server via HTTP protocol and prepares the
environment for the user job. The job wrapper forks the
job in the form of a user script and the monitoring process
which keep track of the process running on that worker node
(see section IV-B for the detailed description). When the job
finishes CafExe packs the working directory into an output
tarball and copies it to the user specified location.

When all the parallel segments forming the user job are
completed (or failed after retrials) an email is sent to the email
address specified by the user at submission time. The mailer
daemon queries CDF Information System (see section IV-
B) and collects useful information like segments succeeded
and failed, reason of failure (codified), cpu and real time
processing. This tool demonstrated to be very useful for users
recovery and bookkeeping.

B. Monitor

CDF users always had the possibility of monitoring their
jobs status using command line and Web monitoring as
described in section II-A. In LcgCAF this is achieved in a
naive way, for the moment, by collecting information from
WMS and worker nodes as schematically shown in figure 4.

Fig. 4. LcgCAF monitors architecture. Job information are collected from
WMS and worker nodes and stored in CDF Information System. An example
of the interactive monitoring is shown on the right while on the left a screen
snapshot of the WEB monitoring page is displayed.

The interactive monitor (CafMon) provides a way to view
the status and log files of running jobs based on users queries
as for the CAF. But the query mechanism is changed, now
it is based on the WNCollector, part of the LcgCAF code.

1313

It has a server, WNCollDaemon, running on the head node
and a client WNColl.py executed on worker nodes and active
during all the job lifetime. The client periodically collects
several information related to user, working directory, cpu and
memory usage, errors and logs of the job and passes them on to
the CDF Information System (CDF-IS), a file-based database
on the head node, where they are stored.

These information are then retrieved on demand by the
users. Implemented commands are only a subset of those
available on CAF the most used: CafMon jobs gives the list
of the jobs and segments submitted by the user ,CafMon dir
shows the working directory contents of the specified segment,
CafMon ps and CafMon top are equivalent to running ps and
top commands respectively on the worker node, CafMon tail
mimics the tail command on a given file.

When user sends a request, the information system is
accessed and the user gets the cached information as shown on
the right of figure 4. In this way the interactive monitoring has
a delay among the current status of the job and what is shown
which can be tuned depending on the number of jobs on the
system to avoid an overload on the head node. CafMon kill is
the only command to allow users to interact with the job for
killing it and it is implemented using glite-wms-job-cancel.

The Web monitoring is implemented using other tools
developed for LcgCAF. Another service hosted on the head
node, data collector, is delegated to collect job information
inspecting the Logging and Bookkeeping of the WMS for
the job status, the WNCollector cache for worker nodes
information and the log files of the CafExe for CDF framework
specific status. All these information are cached in the CDF
Information System, easy and fast to access by other LcgCAF
components. These information are translated in XML format
by the xml monitor which reads the CDF-IS and communicates
the updates to the Web server node. On the left of figure 4 is
shown an example of the Web based monitor, where for each
user a summary of each job and segment is displayed.

C. CDF Code distribution and CDF database access

In order to be executed a Monte Carlo job needs both CDF
code and Run Condition database where detector and trigger
configurations which change run by run are stored. Both must
be available to worker nodes at runtime and since this can
not be expected to be granted in all the Grid sites, alternative
solutions are needed.

The Run Condition database contains physics information
such as detector geometry, trigger configurations, calibrations
and luminosity tables necessary for Monte Carlo production
which has to reproduce as much as possible the data. These
information are kept in a Oracle database at Fermilab and
access to this database, even if in read-only, is one of the
most critical points due to the limited number of allowed
simultaneous connections. In order to satisfy queries from all
the remote sites around the World, a FroNTier client on the
local site translates users requests into Web requests that are
then transformed to database queries from the local FroNTier
server at FNAL that returns data to the client. With the use
of Squid Proxy caching layers deployed near the servers, as

well as close to the clients, the load on the central database
is significantly reduced and CDF has a scalable deployment
model [13].

The CDF software was designed to be executed in dedicated
environment with an easy access to a large set of executables,
shared libraries and configuration files. In a general distributed
computing model the assumption that this is available on each
worker node does not hold anymore and the fastest way to
reproduce the CDF filesystem around the World goes through
Parrot [14], a virtual filesystem for performing POSIX-like I/O
on remote data services. When the program to which Parrot
is attached attempts a system call, it is halted, and Parrot is
notified by the kernel. Parrot then interprets the arguments to
the system call, and then implements a remote call exploiting
standard protocols like HTTP, FTP, GridFTP, etc. In CDF,
Parrot (see figure 5) uses HTTP protocol in a such a way
that HTTP calls can be cached using the Squid Proxy, already
available close to big sites for database access. This is useful
because the CDF code server is hosted or at Fermilab or at
CNAF (Bologna) and Parrot retrieves the libraries from there
introducing a latency time which is reduced by factor �����
adding Squid.

Fig. 5. LcgCAF code distribution cartoon. Each site sees the CDF filesystem
as locally mounted.

D. Output storage

LcgCAF allows the users to copy the output of their job
either to a Grid specific Storage Element or to a CDF dedicated
fileserver. Output transfers to a Grid SE are authenticated by
GSI using the Grid user proxy. The output copy to a CDF
dedicated fileserver must be authenticated using Kerberos V
mechanism and hence it is necessary to have a valid Kerberos
ticket also on the worker node. To accomplish that a new
service mechanism has been created, the KDispenser. This
service creates the user ticket on the head node and transfers
it to the worker node via GSI authenticated channel.

In case of intensive Monte Carlo production files are prelim-
inarily stored into a SE or a dedicated fileserver and then via
an automatic procedure these files are pulled from Fermilab
and copied to another dedicated fileserver from where they are
eventually catalogued and transferred to tape.

E. Re-submission Mechanism

Since the Grid Model is heavily distributed, different prob-
lems could occur during the submission or the execution of
the job: misconfiguration of CEs, lack of a necessary service
such VOMS server or Logging and Bookkeeping service or

1414

some temporary bugs in the system. The result is that the job
abort before it is properly delegated to a Local Batch Manager
or before the OutputSandbox is correctly copied back to the
WMS. In these cases the user job should be resubmitted.
To prevent user to manually resubmit Aborted jobs because
of Grid problems, LcgCAF uses “Job Shallow Resubmission
Mechanism”: when a job does not reach a worker node, ie
the CE fails to accept it, another CE is tried immediately. The
resubmission mechanism tries to resubmit a single segment
for a configurable number of retrials, three is the default for
LcgCAF and typically 2 resubmissions are enough to reach
������ of efficiency. If the segment aborts again after all the
resubmission tentatives, it is flagged as a Failed segment
and is not submitted again. The WMS has also the “Deep
Resubmission Mechanism” that can be used when a job fails
after it started running but this is more problematic to use and
it is not used yet.

V. LCGCAF USAGE AND PERFORMANCES

LcgCAF is in production since October 2006 and is used
by normal CDF users for Monte Carlo production or other
simulation jobs and by the official Monte Carlo production
groups for intensive Monte Carlo simulations. Using the web
based monitor it is possible to count the number of jobs
submitted and also to analyze the cpu usage. Figure 6 shows
the number of running segments as a function of time starting
from October 2006 up to mid-July 2007. The analysis of this
data shows that 42,000 jobs have run on LcgCAF with a
temporal structure which depends on international conferences
(users need more resources close to conferences) and Grid
infrastructure downtimes and middleware deployment.

Oct Nov Dec Jan Feb Mar Apr May Jun
 0.0

 1.0 k

 2.0 k

 3.0 k

N
r
.

o
f

s
e
c
t
i
o
n
s

All running sections

R
R
D
T
O
O
L

/

T
O
B
I

O
E
T
I
K
E
R

 Running Created on Sun Jul 15 01:01:23 2007

Fig. 6. Number of running jobs on LcgCAF in the period of time October
2006 - mid-July 2007, as monitored by the LcgCAF.

The Grid tool GridIce [15] allows to monitor CDF jobs on
Grid. Unfortunately this is not possible for the all European
sites since GridIce sensors are not installed everywhere yet
but can be done for the Italian ones. Figure 7 shows the usage
of Italian resources by all VOs in the last two months. CDF
is represented as two VOs: CDF and CDFCAF for technical
reasons. CDF appears to be one of the major users.

The performances of LcgCAF have been evaluated in two
different cases. The first one during a massive Monte Carlo
production where something of the order of 800 jobs and
1000 segments at the same time were running. The efficiency,
defined as the number of successful jobs divided by the total

Fig. 7. Usage of the Italian resources for each VO as monitored by the
GridIce in the the last two months.

number of the submitted jobs, is !��� . With one recovery done
by the user the efficiency is almost �����
 .

The second method uses GridIce information which con-
tains the job exit status. This is zero, i.e. successful jobs, in" !� of the cases, �� of jobs have been cancelled the users
and �
 have been cancelled by “root” due to local problem
on the sites. The remain #
 of faillures are due mainly to
gLite middleware misconfigurations and a very small fraction
to LcgCAF itself. The difference in the two efficiencies can be
due to several reasons. The Grid infrastructure and middleware
is more stable when only few “power users” are using them
for a short period of time and everybody knows that is in
usage. During the year there have been several downtimes for
infrastructures and middleware which are not well coordinated
yet. For a running experiment the performances must be
almost equal to those reached with dedicated farm and Grid
is approaching but has not reached them yet.

The major contributors to the LcgCAF Grid resources are
GridKa and T1 at CNAF, these two are not displayed in
figure 8 where contributions of different Italian sites are
shown. The major part of the jobs are processed by 4 sites
out of 7 currently accessible by CDF. This is caused mainly
by the differences in cpu power of the sites.

Fig. 8. Contribution of different Italian sites to the resources used by CDF
as monitored by the GridIce in the the last two months.

VI. FUTURE IMPROVEMENTS

Two major upgrades are foreseen for LcgCAF, one related to
policies and queues management and the other one connected
to the interface with SAM, the CDF catalog.

Currently LcgCAF hasn’t a Policy Management Mechanism
yet because LCG Grid Environment itself does not have a

1515

policy mechanism deployed in production status. However,
the current LcgCAF implementation provides an easy queue
management system based on limits on job lifetimes: it is ba-
sically implemented by the CafExe wrapper without any Grid
mechanism support; CafExe is in charge of killing running
jobs when they run for more than a configurable time limit. At
the moment in LcgCAF are present four queues: in the long
queue job can be running on the worker node at maximum
for $%� hours, in the medium queue for �&� hours, in the short
for # hours and in the test queue at maximum for � hours.
LCG Project is going to implement a new component, called
GPBOX (Group and Policy BOX) [16], which allows or denies
users to access Computing and Storage Resources around
the Grid at submission time; a LcgCAF Policy Management
Mechanism will be implemented on the basis of this new Grid
service as soon as it will be in production status.

If CDF users want not only to produce Monte Carlo data
on the Grid but also to analyze data, an interface between
Grid tools and SAM is needed, since SAM can not become
a catalog supported by LCG middleware. The basic concept
of the integration is to apply SAM data handling policies
over the generic storage system managed by SRM (Storage
Resource Manager) protocol. The premise of the concept
is similarity between SAM managed disk storage and SRM
managed storage in terms of many supported operations like
transferring files, removing files, retrieving files metadata etc.
which allows a one-to-one mapping of several functions like
“copy” , “delete” ect. This project is currently in progress at
the Fermilab Computing division.

VII. CONCLUSION

The CDF computing model has been very successful in
giving the possibility to the whole CDF collaboration around
the World to analyze the data almost at the same time
as the collaborators in Fermilab. This was achieved thanks
to the CAF idea, a very flexible portal that kept the user
interface the same during the years with major changes in
the underlying structure. One example is LgcCAF, a portal to
LCG resources which has all the CAF characteristics adapted
to the gLite middleware. The porting of the CAF code to LCG
was relatively fast, after a year of work of an expert person
LcgCAF was ready with all the functionalities, but CDF started
to use it with a reasonable efficiency for a running experiment
only this year after the release of WMS Version 3.1. This portal
is now in production at CDF and performing quite well, but
it still needs to improve to run on data and to have policy
management mechanism. The major issues at the moment are
on the Grid side. The most important is the fact that the sites
are not stable, having not working or misconfigured worker
nodes cause failure of jobs that users have to recover by
hand. The other problem is the jobs matching to the sites,
the procedure used is based on the time the job has to wait in
queue and the Grid Information System evaluated that using
the information published by the sites and these are not so
timely updated.

ACKNOWLEDGMENT

The authors would like to thank Daniele Cesini and WMS
team for the continuous support together with all CNAF
personnel.

REFERENCES

[1] CDF Collaboration “The CDF II Thecnical Design report” FERMILAB-
Pub-96/390-E (1996)

[2] M. Casarsa, S. C. Hsu, E. Lipeles, M. Neubauer, S. Sarkar, I. Sfiligoi,
F. Wuerthwein, “The Cdf Analysis Farm,” AIP Conf. Proc. 794, 275
(2005).

[3] I. Terekhov et al., “Distributed data access and resource management
in the D0 SAM system,” FERMILAB-CONF-01-101 Presented at 10th
IEEE Internat’l Symposium on High Performance Distributed Comput-
ing, San Francisco, CA, Aug 7-10, 2001 (2001).

[4] “Kerberos Web site” http://web.mit.edu/Kerberos/.
[5] “FBSNG Web site” Next Generation of FBS http://www-

isd.fnal.gov/fbsng/.
[6] D. Thain, T. Tannenbaum, M. Livny, “Distributed computing in prac-

tice: the Condor experience.”, Concurrency - Practice and Experience
17, 2-4, 323 (2005).

[7] I. Sfiligoi et al. “The Condor based CDF CAF.”, Presented CHEP04 ,
Interlaken Switzerland, Sept. 27-Oct. 1, 2004 , 390, (2004).

[8] S. Sarkar, I. Sfiligoi, et. al., “GlideCAF - A Late binding approach to
the Grid”, Presented at Computing in High Energy and Nuclear Physics,
Mumbay, India, Feb 13-17, 2006,147, (2006).

[9] LcgCAF F. Delli Paoli,A. Fella,D. Jeans, D. Lucchesi, et al., “LcgCAF
- The CDF portal to the gLite Middleware”, Presented at Computing
in High Energy and Nuclear Physics, Mumbay, India, Feb 13-17, 2006,
148, (2006).

[10] E. Laure et. al., “Programming the Grid with gLite”, EGEE-TR-2006-
001 (2006).

[11] S. C. Hsu, E. Lipeles, M. Neubauer, M. Norman, S. Sarkar, I. Sfiligoi,
F. Wuerthwein, “OSG-CAF - A single point of submission for CDF to
the Open Science Grid”, Presented at Computing in High Energy and
Nuclear Physics, Mumbay, India, Feb 13-17, 2006, 140, (2006).

[12] M. Sechang Son Livny “Cluster Computing and the Grid,”, Proceedings.
CCGrid 2003. 3rd IEEE/ACM International Symposium , 542- 549,
(2003).

[13] S. Kosyakov, et. al., “Frontier: High Performance Database Access
Using Standard Web Components”, Presented CHEP04, Interlaken
Switzerland, Sept. 27-Oct. 1, 2004 , 204, (2004).

[14] C. Moretti, I. Sfiligoi,D. Thain, “Transparently Distributing CDF Soft-
ware with Parrot”, Presented at Computing in High Energy and Nuclear
Physics, Mumbay, India, Feb 13-17, 2006,26, (2006).

[15] S. Andreozzi, C. Aiftimiei, G. Cuscela, N. De Bortoli, G. Donvito,
S. Fantinel, E. Fattibene, G. Misurelli, G.L. Rubini, A. Pierro, G. Tor-
tone. “GridICE: Requirements, Architecture and Experience of a Moni-
toring Tool for Grid Systems”, Presented at Computing in High Energy
and Nuclear Physics, Mumbay, India, Feb 13-17, 2006, 359, (2006).

[16] C. Aiftimiei, D. Andreotti, S. Andreozzi, S. Bagnasco, S. Belforte,
D. Bonacorsi, A. Caltroni, S. Campana, P. Capiluppi, A. Cavalli,
D. Cesini, V. Ciaschini, M. Corvo, F. Dellipaoli, A. De Salvo,
F. Donno, G. Donvito, A. Fanfani, S. Fantinel, T. Ferrari, A. Ferraro,
E. Ferro, L. Gaido, D. Galli, A. Ghiselli, F. Giacomini, C. Grandi,
A. Guarise, S. Lacaprara, D. Lucchesi, L. Luminari, E. Luppi,
G. Maggi, U. Marconi, M. Masera, A. Masoni, M. Mazzucato,
E. Molinari, L. Perini, F. Prelz, D. Rebatto, S. Resconi, E. Ronchieri,
G. Rubini, D. Salomoni, A. Sciab, M. Selmi, M. Sgaravatto, L.
Tomassetti, V. Vagnoni, M. Verlato, P. Veronesi, M. C. Vistoli; “
Prototyping production and analysis frameworks for LHC experiments
based on LCG/EGEE/INFN-Grid middleware”, Presented at Computing
in High Energy and Nuclear Physics, Mumbay, India, Feb 13-17, 2006,
334, (2006).

1616

