B Physics at CDF

Donatella Lucchesi INFN and University of Padova

Outline:

- The new detector and trigger
- Charm physics, what a surprise!
- b-meson and b-barion new measurements:
 - > masses
 - lifetimes
- Towards the future:
 - > B_s mixing

Branching Ratio measurements

CP Violation
 Rare B_s decay

October 28, 2003

October 28, 2003

TeV Luminosity (current situation)

Trigger Overview

October 28, 2003

<u>Level 1</u> synchronous streams: >Calorimeter ><u>eXtremely Fast Tracker</u> >Muons

<u>Level 2 asynchronous systems:</u> Calorimeter Clustering <u>Silicon Vertex Tracker</u> <u>Shower Maximum</u>

<u>Level 3:</u> ≻Offline-like

The charm physics at CDF

di-muons trigger

October 28, 2003

Hunting for new states: X(3872)

- Belle observes a new state $B \rightarrow XK \rightarrow J/\psi \pi^+\pi^-K$ final state of narrow width.
- Tevatron: this state produced directly, or via *B* decays.
- CDF observes this state at the same mass.
- o Belle reports that $M(\pi \pi)$ distribution suggests a ρ resonance.
- CDF sees a preference for M(π π) > 500MeV ⇒ needs to be finalized!

Mass: 3685.63 ± 0.08 (stat) MeV/c2

Run II

5000

Number of Candidates/ 5 MeV/c

CDF Preliminary

6059 ± 145 ψ(2S)

October 28, 2003

Donatella Lucchesi

10

~220 pb ⁻¹

Mass Measurements

Test of Heavy Quark Effective Theory (HQET)

- radiative corrections in expansions $\alpha_s(m_b)$ (perturbation theory)
- non-perturbative corrections with an expansion in powers of $\Lambda_{\text{QCD}}/\text{m}_{\text{b}}$

 Competitive measurements for B⁰ and B[±] M(B⁰) = 5280.30±0.92±0.96 MeV M(B[±]) = 5279.32±0.68±0.94 MeV

October 28, 2003

Donatella Lucchesi

Mass Measurements

o World best measurements for B_s and Λ_b M(B_s) = 5365.50±1.29±0.94 MeV M(Λ_b) = 5620.4±1.6±1.2 MeV

To explain the large experimental differences hard spectator effects necessary, soft interactions contributes \leq 2%

October 28, 2003

New results: B⁰_s Lifetimes

October 28, 2003

Donatella Lucchesi

Lifetimes Summary

	CDF	World average
B⁺	1.63 ± 0.05 ± 0.04 ps	1.671 ± 0.018 ps
B ⁰ d	1.51 ± 0.06 ± 0.02 ps	1.542 ± 0.016 ps
B ⁰ s	1.33 ± 0.14 ± 0.02 ps	1.461 ± 0.057 ps
$\Lambda_{\rm b}$	1.25 ± 0.26 ± 0.10 ps	1.233 ± 0.077 ps

Lepton + displaced SVT measurement in progress high statistics sample

Measurements of polarization states in ${\rm B}^{\rm O}{}_{\rm s}$ decay and of $\Delta\Gamma_{\rm s}/\Gamma_{\rm s}~\rightarrow$ in progress

Future 2 fb⁻¹: $\sigma(\Delta\Gamma_s/\Gamma_s)$ few % (B_s \rightarrow J/ ψ , B_s \rightarrow D_s π , B_s \rightarrow D_sIv)

October 28, 2003

Test of the CP violation within the Standard Model: $sin2\beta = 0.658\pm0.054$ (CKM fit excluding $sin2\beta$ and ϵ_{K}) $sin2\beta = 0.734\pm0.055$ (direct measurement)

$$\Delta m_s$$
 predictions:
 $\Delta m_s = 20.9^{+3.9}_{-4.3} \text{ ps}^{-1}$

October 28, 2003

Donatella Lucchesi

October 28, 2003

Towards B_s Mixing

- B_s or B_s at the time of production?
 - Initial state flavor tagging
 - Tagging "dilution": D=1-2w
 - Tagging power proportional to: εD^2
- B_s or $\overline{B_s}$ at the time of decay?
 - Final state flavor tagging
 - Can tell from decay products (e.g. $B_c \rightarrow D_c^- \pi^+$)

D=1(°°

D=0

, Typical power (one tag): εD² ~(1%) at Tevatron

(10%) at PEPII/KEKB

- **Yields**
 - Need lots of decays (because flavor tagging imperfect)
- Proper decay time

$$ct = \frac{L_{xy}}{(\beta\gamma)} = \frac{L_{xy}m_B}{p_T}$$

$$mcertainty \qquad \sigma_{ct} = \frac{m_B}{p_T}\sigma_{L_{xy}} \oplus ct\left(\frac{\sigma_{p_T}}{p_T}\right)$$

$$mcertainty \qquad \sigma_{ct} = \frac{m_B}{p_T}\sigma_{L_{xy}} \oplus ct\left(\frac{\sigma_{p_T}}{p_T}\right)$$

October 28, 200

<u>Strategy</u>: use data for calibration (*e.g.* $B^{\pm} \rightarrow J/\psi K^{\pm}$, $B^{\pm} \rightarrow D^{0} \pi^{\pm}$, $B \rightarrow l^{+}X$) "know" the answer, can measure right sign and wrong sign tags

October 28, 2003

$\mathcal{B}^{2}=(2.4\pm1.2)\% \quad (\mathsf{B}^{\pm}\to\mathsf{J}/\psi\mathsf{K}^{\pm}) \mathcal{E}D^{2}=(1.9\pm0.9)\% \quad (\mathsf{B}^{\pm}\to\mathsf{D}^{0}\pi^{\pm})$ $\mathcal{B}^{*}/\mathcal{B}^{0}/\mathcal{B}_{s} \text{ correlations are different} \Rightarrow \text{need optimization}$

for B_s i.e. kaon tagging

Flavor tagging: Same side

October 28, 2003

Donatella Lucchesi

Flavor tagging: Opposite Side

Lepton tagging: $\varepsilon D^2 = (0.7 \pm 0.1)\%$ (I + SVT)

October 28, 2003

Donatella Lucchesi

$B_s \rightarrow D_s \pi D_s \rightarrow \phi \pi$ Yield

Big effort in a full detector and trigger simulation optimization "à la LEP" to measure the efficiencies

$B_s \rightarrow D_s \pi D_s \rightarrow \phi \pi$ Yield result

New Result!

$$\frac{f_{s}}{f_{d}} \frac{Br(B_{s} \rightarrow D_{s}^{-}\pi^{+})}{Br(B_{d} \rightarrow D^{-}\pi^{+})} = 0.35 \pm 0.05(stat.) \pm 0.09(Br.) \pm 0.04(syst.)$$

$$\frac{\text{Br}(\text{B}_{s} \rightarrow \text{D}_{s}^{-}\pi^{+})}{\text{Br}(\text{B}_{d} \rightarrow \text{D}^{-}\pi^{+})}$$
 = 1.4 ± 0.2(stat.) ± 0.2(syst.) ± 0.4(Br.) ± 0.2(Pr.)

October 28, 2003

Donatella Lucchesi

B_s Mixing sensitivity

> From data, now have some knowledge of the pieces that go into measuring Δm_s

S = # signal events tagging power = εD^2

S/B = signal/background

 σ_t = proper time resolution

- Yields
- Flavor tagging
- Signal-to-noise
- Proper time resolution

> The sensitivity formula:

Significance =
$$\sqrt{\frac{S\varepsilon D^2}{2}}e^{-\frac{(\Delta m_s \sigma_t)^2}{2}}\sqrt{\frac{S}{S+B}}$$

Significance (in number of standard deviations) is "average significance"

October 28, 2003

Donatella Lucchesi

B_s Mixing sensitivity: hadronic decays

Ingredients:

- σ_t= 67 (45) fs
- εD² = 4% (11%)
- S/B = 2:1 (2:1)
- S= 1600/fb⁻¹ (8000) (only $B_s \rightarrow D_s \pi D_s \rightarrow \phi \pi$) used (f_s/f_d)^{CDF}=0.427 (f_s/f_d)^{PDG}=0.232 missing reconstruction efficiencies

 2σ sensitivity for Δm_s =15ps⁻¹ with ~0.5fb⁻¹ of data

This is not the end of the story, we can improve...

October 28, 2003

B_s Mixing sensitivity: hadronic decays cont'd

...but let's be conservative

- σ_t = 50 fs \rightarrow (event-by-event vertex + L00)
- $\varepsilon D^2 = 5\% \rightarrow (kaon tagging)$
- S/B = 2:1 \rightarrow (unchanged)
- S= 2000/fb⁻¹ \rightarrow (add 3π , improve trigger efficiency)

5 σ sensitivity for Δm_s =18ps⁻¹ with ~1.7fb⁻¹ of data 5 σ sensitivity for Δm_s =24ps⁻¹ with ~3.2fb⁻¹ of data

 Δm_s =24ps ¹ "covers" the expected region based upon indirect fits.

October 28, 2003

Donatella Lucchesi

October 28, 2003

Following the Fleischer idea: PLB 459 (1999), 306 Separate A_{CP} components into $B^0 \rightarrow \pi\pi$ (*sin* $2\alpha_{eff}$) and $B_s \rightarrow kk$ (*sin* 2γ) (U-spin symmetry assumed)

$$A_{CP}(B^0) = A_{CP}^{dir} \cos \Delta m_d t + A_{CP}^{mix} \sin \Delta m_d t$$

 $A_{CP}(B_s) = A_{CP}^{dir} \cos \Delta m_s t + A_{CP}^{mix} \sin \Delta m_s t$
Large but unknown

October 28, 2003

Donatella Lucchesi

October 28, 2003

Donatella Lucchesi

$B \rightarrow hh$: Sample separation

 $\frac{\text{Br}(\text{B}_{s} \rightarrow \text{kk})}{\text{Br}(\text{B}_{d} \rightarrow \text{K}\pi)} = 2.71 \pm 1.15 \text{ includes error on } f_{s}/f_{d}$ $\frac{\text{Self-tagged } \text{B}_{d}^{0} \rightarrow \text{K}^{+}\pi^{-:}}{\text{time integrated } A_{CP}:}$ $A_{CP}(\text{B}_{d} \rightarrow \text{K}\pi) = 0.02 \pm 0.15(\text{stat}) \pm 0.02(\text{sys})$ $\frac{\text{October } 28,2003}{\text{Donatella Lucchesi}} \qquad 37$

$B \rightarrow hh$: The future

$B_s \rightarrow \mu^+ \mu^-$ Search

FCNC are forbidden at tree level in the Standard Model The expected BR ${\sim}10^{-9}$

Many SUSY Models predicts a large enhancement in the branching ratio (~10⁻⁶). The rate is proportional to $tan(\beta)^6$. If decay is observed soon \Rightarrow new physics If decay is not seen \Rightarrow put a tight constraint on $tan(\beta)$ and rule out some SUSY models

THIS IS A WIN-WIN SITUATION

October 28, 2003

Donatella Lucchesi

$B_s \rightarrow \mu^+ \mu^-$: Results

 It was a blind analysis
 Figure of merit for optimization: expected 95% CL upper limit on the branching ratio
 1 event observed in the search window with an expected background of 0.54 ± 0.2 events

(background is dominated by non-resonance fakes) entries / 0.020 GeV CDF Run II Preliminary 113 pb⁻¹ $B^0_{s(d)} \rightarrow \mu^+ \mu^-$ B_d search window B_s search window search windov $\sim 3\sigma$ mass windows (es) 5.6 4.8 5 52 5.4 5.8 M_{µµ} / GeV

 ✓ The limit on the branching ratio: (based on 113pb-1 of data)
 Br(B_s→μμ) < 9.5×10-7 @ 90% CL
 Br(B_s→μμ) < 1.2×10-6 @ 95% CL

Factor 2 better than published limit !!

October 28, 2003

$B_s \rightarrow \mu^+ \mu^-$: Projections

Theorists are very interested in the experimental progress of this analysis.

October 28, 2003

Donatella Lucchesi

Conclusion

- New measurements of lifetimes, masses, Branching Ratio and rare decays for b-hadron New results for the winter conferences
- First measurements on charm physics (new and unexpected, we have to understand our capabilities)
- B_s mixing and CP violation are high precision measurements => we need time, statistics and students!

"Anyone who keeps the ability to see beauty never grows old" (F. Kafka)

October 28, 2003

Donatella Lucchesi

Backup slides

October 28, 2003

Donatella Lucchesi

October 28, 2003

TOF performance

October 28, 2003

Donatella Lucchesi

Towards B_s Mixing: Flavor tagging cont'd

> Opposite side tagging: identify the flavor of the other B

search for a lepton or kaon coming from B decay

b

reconstruct the "other b" charge

Same side tagging: infer the production B flavor from particle charge produced "close" to the B:

- fragmentation tracks
- B^{**} production and $B^{**} \rightarrow B^0 \pi$

October 28, 2003

Donatella Lucchesi

 \overline{u} π^{*} \overline{d} π^{*} \overline{d} B_{d}^{μ} \overline{d} π^{*} \overline{u} π^{*}

u

$B_s \Delta \Gamma / \Gamma$ the future

CDF 2fb⁻¹: 4,000 $B_s \rightarrow J/\psi \phi$ $\sigma(\Delta\Gamma/\Gamma)=0.05 \text{ if } CP_{even}=0.77$ $\sigma(\Delta\Gamma/\Gamma)=0.08 \text{ if } CP_{even}=0.5$ 75,000 $B_s \rightarrow D_s \pi$ measure 1/ Γ 2,500 $B_s \rightarrow D_s^* D_s^- CP$ even combined with 1/ Γ $\sigma(\Delta\Gamma/\Gamma)=0.06$

More precise measurements at future experiments

October 28, 2003

Donatella Lucchesi

CP violation: introduction

 $A(\overline{B}\rightarrow\overline{f})=e^{+i\varphi_1}|A_1|e^{i\delta_1}+e^{+i\varphi_2}|A_2|e^{i\delta_2}$

 $A(B \to f) = e^{-i\varphi_1} |A_1| e^{i\delta_1} + e^{-i\varphi_2} |A_2| e^{i\delta_2},$

Where

 $|A_{1,2}|e^{i\delta_{1,2}}$ CP conserving strong amplitudes $\phi_{1,2}$ CP violating CKM phases

"Direct CP" violation:

$$\mathcal{A}_{\mathsf{CP}} \equiv \frac{\Gamma(B \to f) - \Gamma(\overline{B} \to \overline{f})}{\Gamma(B \to f) + \Gamma(\overline{B} \to \overline{f})} = \frac{|A(B \to f)|^2 - |A(\overline{B} \to \overline{f})|^2}{|A(B \to f)|^2 + |A(\overline{B} \to \overline{f})|^2}$$

 $=\frac{2|A_1||A_2|\sin(\delta_1-\delta_2)\sin(\varphi_1-\varphi_2)}{|A_1|^2+2|A_1||A_2|\cos(\delta_1-\delta_2)\cos(\varphi_1-\varphi_2)+|A_2|^2}$

CP violation due to interference

Need to measure $\varphi_1 - \varphi_2$ but hadronic uncertanties

October 28, 2003

CP violation: mixing induced

 $\Gamma(B_q^{(0)}(t) \to f) = \left[\left| g_{\mp}^{(q)}(t) \right|^2 + \left| \xi_f^{(q)} \right|^2 \left| g_{\pm}^{(q)}(t) \right|^2 - 2 \operatorname{Re} \left\{ \xi_f^{(q)} g_{\pm}^{(q)}(t) g_{\mp}^{(q)}(t)^* \right\} \right] \Gamma_f$ where:

$$g_{+}^{(q)}(t) g_{-}^{(q)}(t)^{*} = \frac{1}{4} \left[e^{-\Gamma_{\mathrm{L}}^{(q)}t} - e^{-\Gamma_{\mathrm{H}}^{(q)}t} - 2 i e^{-\Gamma_{q}t} \sin(\Delta M_{q}t) \right]$$
$$\left| g_{\mp}^{(q)}(t) \right|^{2} = \frac{1}{4} \left[e^{-\Gamma_{\mathrm{L}}^{(q)}t} + e^{-\Gamma_{\mathrm{H}}^{(q)}t} \mp 2 e^{-\Gamma_{q}t} \cos(\Delta M_{q}t) \right]$$

and Γ_{f} is the unevolved $\mathbb{B}_{q}^{0} \rightarrow f$ rate Rate for $(\overline{B}_{q}^{0}(t)) \rightarrow \overline{f}$ follows $\Gamma_{f} \rightarrow \Gamma_{\overline{f}}, \quad \xi_{f}^{(q)} \rightarrow \xi_{\overline{f}}^{(q)}$ $\xi_{f}^{(q)} = e^{-i\Theta_{M_{12}}^{(q)}} \frac{A(\overline{B_{q}^{0}} \rightarrow f)}{A(B_{q}^{0} \rightarrow f)} \qquad \qquad \xi_{\overline{f}}^{(q)} = e^{-i\Theta_{M_{12}}^{(q)}} \frac{A(\overline{B_{q}^{0}} \rightarrow \overline{f})}{A(B_{q}^{0} \rightarrow \overline{f})}$

$$\Theta_{M_{12}}^{(q)}$$
 Is the CP violating weak phase

October 28, 2003

Donatella Lucchesi

CP violation: mixing induced

If:
• f is CP eigenstate
• the amplitude for direct CP,
$$A_{CP}^{dir} = 0$$

• the amplitude due to $\Delta\Gamma$, $A_{CP}^{\Delta\Gamma} = 0$

$$a_{\mathsf{CP}}(t) \equiv \frac{\Gamma(B_q^0(t) \to f) - \Gamma(\overline{B_q^0(t) \to f})}{\Gamma(B_q^0(t) \to f) + \Gamma(\overline{B_q^0(t) \to f})} = \pm \sin\phi \,\sin(\Delta M_q t)$$

October 28, 2003

Donatella Lucchesi

Hunting for new states: X(3872) cont'd

- Fit with and without a Gaussian for the X(3872) yields a significance of more than 10σ.
- Note relatively large cross section (times branching fraction) compared to the ψ(2s).

October 28, 2003

New results: B^o Lifetimes

 $B^0 \rightarrow J/\psi K^*$ Control channel for $B_s \rightarrow J/\psi \phi$ $B^0 \rightarrow J/\psi Ks$ Control channel for $\Lambda \rightarrow J/\psi \Lambda$

T =1.51 ±0.06(*stat*) ±0.02(*syst*) ps

October 28, 2003

Donatella Lucchesi