Single Top and Associate Vector Boson Production

<u>Outline :</u>

Single top cross section measurement

Heavy di-boson cross section

> WZ

> ZZ

Single Top Cross Section: Introduction

Single Top Cross Section: Why Interesting?

Production of single top quarks:

- Test of SM prediction
- $\sigma_{\text{single top}} \sim |V_{tb}|^2 \rightarrow \text{measurement of } V_{tb}$ single top W^+ t-channel Test of b-quark structure function th b (DGLAP evolution) Search for non-SM contributions (W' or H⁺) q^{\prime} Technical motivation - WH, H → bb (Same final state, $\sigma_{_{WH}} \approx 0.1 \sigma_{_{single top}}$)

Single Top: Event Topology

Single Top Cross background process

Require at least one jet with a secondary vertex

Donatella Lucchesi

Single Top: background estimation

Diboson-, Z+jets- and top pair production: Determined with MC

 $N_{pred} = \sigma_{theo} \cdot \epsilon_{evt} \cdot \int \mathcal{L} dt$

$q \rightarrow q' q q q' q q$

 $z < l \\ l \\ b \\ b$

Mistags (W+LF jets) and QCD:

Determined from data

W+HF jets:

W+jets normalization from data, HF-fraction from ALPGEN MC (calibrated in W+1jet events with b-tag)

Single Top: events selection

- 1 Lepton (e or μ) High p_τ lepton triggers, MET+jets trigger (ME, BDT analyses) p_τ > 20 GeV/c², |η|< 2.0

- Missing E_τ(MET)
 MET > 25 GeV
- 2 or 3 jets (hadron level)
 E_τ > 20 GeV, |η|< 2.8
- At least one b-tagged jet secondary vertex tag
- Z-veto and QCD-veto

[
		W+2jets	W+3jets		
	s-channel	42 ± 6	14 ± 2		
	t-channel	62 ± 9	18 ± 3		
	Total pred.	103 ± 15	22 ± 5		
Donatella Lucchesi					

Single Top: Analysis Strategy

Donatella Lucchesi

Single Top: Decision Tree example

Idea: Effective extension of a cut-based analysis

- Use many input variables (20)
- Non-discriminating variables are automatically ignored, but don't degrade the performance
- Optimize series of binary cuts with training sample
- Calculate for each leaf purity p = s/(s+b)
- Sort events by output purity
- Create series of "boosted" trees by reweighting based on value of misclassification

Single Top: Cross Section measurement

Single Top: Results

Boosted decision tree $\sigma_{s+t} = 1.9^{+0.8}_{-0.7}$ pb

SM prediction: $\sigma_{_{s+t}} \approx 2.9 \pm 0.4 \text{ pb}$

Analyses are consistent with each other

Single Top: Significance

Cross Section:

- Bayesian treatment (flat prior in σ_{s+t})
- Binned Likelihood fit including all rate and shape systematic uncertainties

Significance definition

- Perform Pseudo-experiments (PE) with and without single top
 - × fluctuate systematic rate and shape in PE
 - × binned likelihood fit for each PE
- > -2ln(Q), Q=L(SM σ_{s+t})/L(σ_{s+t} =0)

Probability for data to come only from background

Significance: Definition of p-value

p-value defined via likelihood ratio is the most powerful criteria to distinguish among two hypothesis

Single Top Combined Cross Section

Combine ME, NN, LF discriminants as inputs to a neural net (NEAT)

Neuro-Evolution of Augmenting Topologies: designed to optimize the discovery significance

Single Top Cross Section Results

Combined search:

Cross section: $\sigma_{s+t} = 2.2^{+0.7}_{-0.7}$ pb Exp. p-value: 5.1 σ Obs.: 3.7 σ

Wait for more data!

Heavy di-boson Production: Introduction

- ▶ (QCD) production : PDF's, (NLO/LO) k-factors, diboson-p_T spectrum.
- (EWK) production : Triple Gauge Couplings predicted by SU(2)_L & U(1)_Y.
- Measuring the production cross sections and kinematics provide a verification of all these production model ingredients.

Heavy di-boson Production: Introduction

Heavy diboson production as a signature of new physics :

- Indeed, heavy diboson production is intimately related to Higgs searches:
 - ► WW production is a (quasi-) irreducible background to H→WW
 - WZ and ZZ production are critical backgrounds to WH & ZH assoc. prod.
 - Technically many of the techniques developed for diboson measurements have applications in Higgs searches.
 - Heavy diboson measurements provide a "standard-candle" for the measurement of very small cross sections.

Heavy di-boson Production: Analysis

Decay modes used:

Heavy di-boson Production: Techniques

- E_T : Measure neutrinos with transverse momentum balance
 - "Missing Transverse Energy"
 - EM and hadronic components measured in calorimeters
 - Corrected for muons

Heavy di-boson Production: Techniques

Powerful handle to separate leptons from boson decay from the products of hadronic processes Boosted Cone: $\Delta R \equiv \sqrt{\Delta \phi^2 + \Delta \eta^2}$

Real Leptons from Boson Decay

 Electrons from converted photons from diboson decays also isolated Fake or *Real* Leptons in Jet

 Real leptons in jets from flavor decay (π, K, D, B,...) and photon conversions

Cut: non-lepton related energy <10% of the lepton energy in the cone

Donatella Lucchesi

Heavy di-boson Production: WZ search

WZ->łłłv

Events Selection:

3 high Pt leptons: one pair of same flavor.
 Opposite sign lepton must be consistent with Z mass
 MET

Main Backgrounds:

Z+Jets, Z+γ and tt

Use Monte Carlo to simulate:

WZ, ZZ, $Z\gamma$ and tt

Use a combination of data and Monte Carlo to measure Z+Jets

Heavy di-boson Production: WZ search

Heavy di-boson Production: WZ result

Source	Expected \pm Stat \pm Syst \pm Lumi
Z+jets	$39.35 \pm 1.88 \pm 7.17 \pm 0.00$
ZZ	$0.75 \pm 0.01 \pm 0.09 \pm 0.04$
$Z\gamma$	$385.31 \pm 1.12 \pm 126.35 \pm 23.12$
$t\bar{t}$	$0.05 \pm 0.01 \pm 0.01 \pm 0.00$
WZ	$0.75 \pm 0.01 \pm 0.09 \pm 0.05$
Total	$426.21 \pm 2.19 \pm 126.73 \pm 23.21$
Observed	375

 $4.3^{+1.3}_{-1.0}(stat.) \pm 0.4(syst. + lumi.)pb$ $4.3^{+1.3}_{-1.0}(stat.) \pm 0.2(syst.) \pm 0.3(lumi.)pb$

Heavy di-boson Production: ZZ search

- Two viable modes
- $ZZ \rightarrow 4$ leptons
 - Very clean
 - Very small BR: (2 × 0.033)² = 0.0044
- $ZZ \rightarrow II \nu \nu$
 - 6 times larger BR:
 - $2\times0.2\times(2\times0.033)=0.026$
 - Several significant backgrounds WW, WZ, Drell-Yan
 - Use Matrix Elements to discriminate signal and background
- The strategy is to combine this into one result

Heavy di-boson Production: ZZ search

Events Selection: $Z \rightarrow lll$

- 4 high Pt leptons 1 lepton pair: 76<Mee<106 GeV 1 lepton pair: 40<Mee<140 GeV

Main Backgrounds:

Z+Jets:

two jets misidentified as leptons

Z+γ

 γ and jets misidentified as leptons

fakes like trackless electrons

Use Monte Carlo to simulate:

ZZ and $Z\gamma$ Use a combination of data and MC to measure Z+Jets Donatella Lucchesi

Z->llw

- 2 high Pt leptons
- MET significance >2.5 GeV^{1/2}
- Njet<2 to cut tt
- MET not along leptons

WW

W+jets

WZ

Heavy di-boson Production: ZZ->{{{}}

Three candidates out of five pass the mass cuts

	Candidates without	Candidates with
Category	a trackless electron	a trackless electron
ZZ	$1.990 \pm 0.013 \pm 0.210$	$0.278 \pm 0.005 \pm 0.029$
$Z+\mathrm{jets}$	$0.014^{+0.010}_{-0.007}\pm0.003$	$0.082^{+0.089}_{-0.060}\pm0.016$
Total	$2.004^{+0.016}_{-0.015}\pm 0.210$	$0.360^{+0.089}_{-0.060}\pm0.033$
Observed	2	1

Heavy di-boson Production: ZZ->{{w

Signal and background expectations

ZZ Fit Region									
Category	WW	WZ	ZZ	$t\overline{t}$	DY	$W\gamma$	$W{+}\mathrm{jets}$	Total	Data
ee	43.7	4.8	5.4	2.7	8.7	24.8	19.3	109 ± 10	118
$e \mu$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 ± 0	0
$\mid \mu \mid \mu$	33.7	3.7	4.4	2.4	7.0	0.0	2.7	54 ± 5	45
e trk	35.3	2.3	2.2	2.4	3.8	5.9	9.9	62 ± 5	69
μ trk	19.2	1.5	1.5	1.4	1.5	1.1	5.2	$31~\pm~3$	44
Total	131.8	12.3	13.5	9.0	21.1	31.7	37.1	$256\ \pm 21$	276

Fit to extract the p-value and the cross section

Heavy di-boson: ZZ->{{{+ZZ->{{w

Combine the two modes:

Test Statistic = Likelihood Ratio

- ZZ floating = test hypothesis (value → cross-section)
- ZZ fixed to zero = null hypothesis

$$ts = (-2 \ln \mathcal{L}_{ZZ \ free}) - (-2 \ln \mathcal{L}_{ZZ \ fixed})$$

10 million pseudo experiments (bin statistics & systematics varied) p-value = $\frac{\# \text{ of background experiments with larger } ts \text{ than data}}{\# \text{ pseudo-experiments generated}}$

Heavy di-boson: ZZ->{{{+ZZ->{{w

Probability of Observing a Signal

Sign	ificance $II \nu \nu$	4 lepto	n combined
2σ	0.55	5 0.82	0.87
3σ	0.33	3 0.67	0.75
5σ	0.06	6 0.34	0.50

Combined Results

		ΙΙνν	4 lepton	Combined
Significance	P-Value	0.12	1.1×10^{-5}	$5.1 imes 10^{-6}$
	Significance	1.2 σ	4.2 σ	4.4 σ
Measured Cross-Section	1.4 ^{+0.7} (<i>stat</i> .+	syst.) pl	b (NLO predic	tion is 1.4 pb)

Event Display: Z->4leptons

Event Display: Z->2lepton+w

Summary

