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B and Charm Mixing and CP Violation 

➢ Introduction
➢ CKM Matrix and CPV in the Standard Model
➢ Mixing in B and D systems
➢ CP Violation in B and Charm decays
➢ Overall CKM fit status
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Central questions in Flavor Physics

 Does the SM explain all flavor changing interactions?
 If does not: at what level we can see deviations? New 

Physics effects?

 The goal is to over constrain the SM description of 
flavor by many redundant measurements

 Requirements for success:

Experimental and theoretical precisionExperimental and theoretical precision
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Why B and Charm Physics?

In the B meson system large 
variety of interesting processes:
Top quark loops neither GIM 
   nor CKM suppressed:
 Large mixing 
 Large CP violating effects 

possible
Many of them have a clean 

theoretical interpretation
 In other cases hadronic physics 

effects can be understood in a 
model independent way (mb>>ΛQCD)

Charm: mc<<mb: hadronic 
interactions effects important 
(and not always easy to calculate)
BUT:
 Charm is unique probe of up-
type quark sector (down quarks 
in the loops)

 SM contributions in charm 
sector (CPV, mixing) small 
(large GIM suppressions, FCNC) 
-> sensitive to new physics/non 
SM sources of CPV

 Measurements of absolute 
rates (semi)-leptonic decays 
provide information to test 
QCD calculations needed in B
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Why B and Charm Physics?

In the B meson system large 
variety of interesting processes:
Top quark loops neither GIM 
   nor CKM suppressed:
 Large mixing 
 Large CP violating effects 

possible
Many of them have a clean 

theoretical interpretation
 In other cases hadronic physics 

effects can be understood in a 
model independent way (mb>>ΛQCD)

Charm: mc<<mb: hadronic 
interactions effects important 
(and not always easy to calculate)
BUT:
 Charm is unique probe of up-
type quark sector (down quarks 
in the loops)

 SM contributions in charm 
sector (CPV, mixing) small 
(large GIM suppressions, FCNC) 
-> sensitive to new physics/non 
SM sources of CPV

 Measurements of absolute 
rates (semi)-leptonic decays 
provide information to test 
QCD calculations needed in B

In both cases New Physics (NP) can 
negate SM predictions on many 
observables that are experimentally 
measurable
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CKM Matrix
 In the SM SU(2)xU(1) quarks and leptons are assigned to be 

left-handed doublets and right-handed singlet
 Quark mass eigenstates are not the same as the weak 

egeienstates, the matrix relating these bases defined for 6 
quarks and parameterized by Kobayashi and Maskawa by 
generalization of 4 quark case described by the Cabibbo angle

 By convention, the matrix is often expressed in terms of a 3x3 
unitary matrix, V, operating on the charge -1/3 quark 
eigenstates (d,s,b):

d
'

s '

b '=
Vud Vus Vub

Vcd Vcs Vcb

V td V ts V tb



VCKM


d
s
b 

Elements depend on 4 real parameters (3 angles and 1 CPV phase)
VCKM is the only source of CPV in the SM
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VCKM: Wolfenstein parametrization

The CKM Matrix is hierarchical

Vud, Vcs, Vtb ~ 1
Vus, Vcd ~ λ
Vcb, Vts ~ λ 2

Vub, Vtd ~ λ 3

 = |Vus| = sin(θ c) ~ 0.22
It is convenient to exhibit the hierarchical structure by 
expansion in powers of 

VCKM=
1− 1

2
λ2 λ Aλ3ρ−iη 

−λ 1− 1

2
λ2 Aλ2

Aλ31−ρ−iη  −Aλ2 1
Oλ4



Present uncertainties: 
~0.5%, A~4%, ~14%, ~4% 

A,  ~ O(1)
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Unitarity Triangles (UT)

 A simple and vivid summary of the CKM mechanism
  VCKM is unitary:  VV†=V†V=1
  The orthogonality of columns (or rows) provides 6   

triangle equations in the complex plane:
* * * 0ud ub cd cb td tbV V V V V V  

⇒

Example: first and third column:

CPV in SM ∝ Triangle Area
Angles and sides are directly measurable
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More on UT

Measurements usually summarized by plotting their constraints in the ρ-η plane 


1− 1

2
λ2 λ Aλ3ρ−iη 

−λ 1− 1

2
λ2 Aλ2

Aλ31−ρ−iη −Aλ2 1
Oλ4



∑VidVis* = 0 (K system)

∑VisVib* = 0 (Bs system)

∑VidVib* = 0 (Bd system)
•All triangles have the same area: ∝ Aλ 6η
•The “VidVib*” triangle is “special”: all sides O(λ 3)  large angles large CPV in the B system

α=arg−
V td V tb

¿

Vud Vub
¿

=tan−1 ηη2ρ  ρ−1  
β=arg −

Vcd Vcb
¿

V td V tb
¿

=tan−1 η1−ρ 
γ=arg−

Vud Vub
¿

Vcd Vcb
¿

=tan−1 ηρ 
βS=arg −

V ts V tb
¿

Vcs Vcb
¿

=λη2Oλ4


There are 6 UT triangles
Columns and rows relations 
give similar results

ρ=ρ 1−λ2

2
η=η1−λ2

2
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Constraints in the (ρ,η) plane
2 sides ; 3 angles ⇒ aim : to over-constrain this unitarity triangle 
precision test of the Standard Model 
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CP Violation in B Decays
Time evolution  and mixing of two flavor eigenstates governed by 
Schrödinger equation:

i d
dt ∣B t  〉

∣B t 〉 =M−
i
2

Γ ∣B t  〉
∣B t  〉 

M,Γ  are 2x2 time independent, Hermitian matrices; CPT 
invariance implies M11=M22 and Γ 11=Γ 22, off-diagonals elements 
due to box diagrams dominated by top quarks are the source of 
mixing

M12 describes B0↔B0 via off-shell 
states, e.g. the weak box diagram

Γ 12 describes B0↔f↔B0 via 
on-shell states
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The time evolution of the mass eigenstates is governed by:

Neutral meson Mixing
Mass eigenstates are eigenvectors of H:

0 0

0 0

H

L

B p B q B

B p B q B

 

 

NOTE: In general |BH> and |BL> are 
not orthogonal to each other∣p∣2∣q∣2=1

∣BH,L t 〉=e
−iMH, L

ΓH, L

2 ⋅t
∣BH,L t=0  〉

In the |Γ 12|<<|M12| limit, which holds for both Bd and Bs:
Δm=M H −M L=2 ∣M 12∣

ΔΓ =Γ L−Γ H =2 ∣Γ 12∣cos φ              φ=arg −M 12

Γ 12


q
p

=−
M2 12

* −iΓ 12
*

Δmi ΔΓ
2

=−e
−iφM [1 −

1
2

Im Γ 12

M 12
] M12=∣M12∣e

iφM
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Neutral meson Mixing in the SM

≅  1 SU(3) Flavor breaking
theoretical uncertainties <5%
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B
s
 Mixing at CDF

Measurement Principle in a Perfect World

A=
N nomix−N mix

N nomixN mix =cos  Δms t 

Bs vs. Bd oscillation

B lifetime

Rather than fit for frequency
perform a ‘Fourier transform’

∆ ms 
[ps-1]

ℑ

A

P  t 
B

q 0 B
 − 

q0

=
1

2τ
e

−
t
τ  1± cos  Δmq t  
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Road Map to ∆ ms Measurement 

2. High resolution on 
proper decay length  

σ ct=
mB

p T

σ Lxy
⊕ ct σ p

T

pT
3. Tag B flavor at 

production time 

Opposite Side
fragmentation
particle: π , K…

π ,K
1. Final state
   reconstruction 
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Adding all realistic effects

Proper time resolution

σ ct=
mB

p T

σ Lxy
⊕ ct σ p

T

pT


Flavor tagging power
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Road Map to ∆ ms Measurement 

2. High resolution on 
proper decay length  

σ ct=
mB

p T

σ Lxy
⊕ ct σ p

T

pT
3. Tag B flavor at 

production time 

Opposite Side
fragmentation
particle: π , K…

π ,K
1. Final state
   reconstruction 
1. Final state
   reconstruction 
1. Final state
   reconstruction 
1. Final state
   reconstruction 
1. Final state
   reconstruction 

measure efficiency ε  and dilution D: ε D2 gives the 
“effective” number of events
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B
s
 data Sample

Bs→Dsπ
   Ds →π  →KK
   Ds →K*0K K*0 →Kπ
   Ds →3π
Bs→Ds3π
   Ds →π
   Ds →K*0K

Signal Bs→Dsπ  Ds →π  

Partially 
reconstructed 
B mesons

Combinatorial backgroundB0 →D-π
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Road Map to ∆ ms Measurement 

2. High resolution on 
proper decay length  

σ ct=
mB

p T

σ Lxy
⊕ ct σ p

T

pT
3. Tag B flavor at 

production time 

Opposite Side
fragmentation
particle: π , K…

π ,K
1. Final state
   reconstruction 
1. Final state
   reconstruction 
1. Final state
   reconstruction 
1. Final state
   reconstruction 
1. Final state
   reconstruction 
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Proper decay time reconstruction

 Semileptonic decay ct = Lxy
lDMB/Pt

lD⋅ K  
 Fully reconstructed events ct = Lxy

BMB/Pt
B

K=〈Pt
lD/Pt

B⋅ Lxy
B/Lxy

lD〉  It is needed to:
 Measure the lifetime to  establish the time scale
 Determine the time resolution

cτ (Bs)=1.538±0.040(stat) ps

Prompt Charm 
+ track sample
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Road Map to ∆ ms Measurement 

2. High resolution on 
proper decay length  

σ ct=
mB

p T

σ Lxy
⊕ ct σ p

T

pT
3. Tag B flavor at 

production time 

Opposite Side
fragmentation
particle: π , K…

π ,K 1. Final state
   reconstruction 
1. Final state
   reconstruction 
1. Final state
   reconstruction 
1. Final state
   reconstruction 
1. Final state
   reconstruction 

measure efficiency ε , dilution D 

ε D2 gives the “effective” number of events

Nright-Nwrong
Nright+Nwrong

D= = 2Pright-1
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Events Tagging

Opposite Side  
 Use data to calibrate 
  taggers and to evaluate D
 Fit semileptonic and hadronic 
   Bd sample to measure: D, ∆ md

-lepton (electron or muon)

- Secondary Vertex

   
- Event Charge

Same Side 

B0/B± likely 
to have π  
nearby

Tune Monte Carlo to 
reproduce B0,B- distributions 
then apply to Bs

B0
s likely to 

have K
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Amplitude scan notation

A is introduced: 

 A=1 when ∆ ms
measured = ∆ ms

true 

B0 mixing in hadronic decayIn the figure:
 Points: A±σ (A) from Likelihood
  fit for different ∆ m
 Yellow band: A±1.645σ (A)
 Dashed line: 1.645σ (A) vs. ∆ m 
 ∆ m excluded at 95% C.L.
   if A±1.645σ (A)<1
 Measured sensitivity:
   1.645σ (A)=1

P  t 
B

q 0 B
 − 

q0

=
1

2τ
e

−
t
τ  1± Acos  Δmq t  
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Choice of procedure

 Before un-blinding: p-value probability that observed effect 
 is due background fluctuation.  No search window.

p-value<1%?

make double sided confidence  
interval from ∆ (ln(L)), measure 
∆ ms

set 95% C.L. based
on Amplitude Scan

yes noln[L(A=1)/lnL(A=0)]

Probability of random 
tag fluctuation 
estimated 
on data (randomized 
tags) and checked 
with toy Monte Carlo
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Amplitude Scan

Sensitivity 
better
than the W.A.
20.1 ps-1

Rare case!!
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Likelihood Profile & significance

How often random tags 
produce a likelihood 
deep this dip?

Probability of fake: 
p-value=0.5% 

Measure ∆ ms  !!!
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 Measurement of ∆ ms

∆ ms =17.33+0.42
 ± 0.07 ps-1

-0.21

17.00 < ∆ ms <17.91 ps-1 at 90% C.L. 16.94 < ∆ ms <17.97 ps-1 at 95% C.L.
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Mixing in Charm decays

dominated by 
top -> large

 dominated by strange-> suppressed

Goal of the search for D0 mixing is not to constraint the 
CKM parameters but rather to probe NP 

         ∆ M/Γ         ∆ Γ /Γ
  
K0          0.474            0.997       

B0          0.77              <0.01
Bs            27                0.15
D0       < few%          < few%
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D Mixing

x=Δm
Γ

Rmix=
1
2

x2y2 

X mixing: channel for NP

Y (long-range) mixing: 
SM background

NP will enhance x but not y

y=ΔΓ
2Γ

NP in loops implies x >> y, but long 
range effects complicate predictions
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D Mixing measurements at Babar

K charge tags the decay flavor


s
 charge tags

production flavor
Final state accessible

via DCS

MIXING and DCS
interference

➢p
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D Mixing: WS and RS
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D Mixing: Decay time distribution
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D Mixing:event reconstruction
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D Mixing: WS m
kπ
 and Δm fit
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D Mixing: decay time fit
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D Mixing measurements summary

Other measurements:
- other decay modes
- Belle
- CDF

http://www.slac.stanford.edu/xorg/hfag/

Combination
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CP Violation

Inside the SM there are three types of CP violation:
✔ CPV in the mixing
   |p/q| ≠ 1 ≈10-3 in SM
✔ CPV in the direct decay
   |A/A|≠1
✔ CPV in interference between mixing and decay 
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CP violation can occur in the interference between the on-shell 
and off-shell amplitudes,  it results from the mass egienstates 
being different from the CP egienstates

         

For B0 mesons Γ 12 is very small mixing dominated by ∆ m=2M12 
o Do not expect much interference: need 2 amplitudes of 

comparable size
o Little chance of seeing CP violation in B0B0 mixing…
o Calculation of Γ 12 has large hadronic uncertainties: 
    Asymmetry ∝ Im(Γ 12/M12)~O(10-2÷ 3) for B mesons
o But an interesting place to look for NP effects

CP Violation in mixing

≠fq/p

B0 B0

fq/p

B0 B0

2 2

Prob(B0→B0)≠ Prob(B0→B0) ⇔ |q/p|≠ 1
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X  l l

X  l l
X ﾮ l l

X ﾮ l l

BaBar using 23 millions BB pairs

CPV in B0-B0 Mixing:inclusive dilepton events

     
   

4

4

1

1
T CP

q pN t N t
A t

N t N t q p
 

 

  
  

   

As expected, no asymmetry has 
been observed…
AT /CP=0.5±1.2stat ±1.4 syst 

∣
q
p
∣=0.998±0.006stat ±0.007syst 

0 0B B  0 0P B B( ¢

 0 0P B BH s

0 0B B
0 0B B
0 0B B
0 0B B
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CP Violation in the decay

Decay amplitudes can, in general, receive many contributions: 

A f=〈f ∣H∣B 〉=∑
k

Ak e
iδk e

iφ
k           A f =〈f∣H∣B 〉=∑

k
Ak e

iδ
k e

−iφ
k

 φk: “weak phases” complex parameters in Lagrangian (in 
VCKM in the SM)

 δ k: “strong phases”  on-shell intermediate states 
rescattering, absorbitive parts

Occurs when |A/A|Occurs when |A/A|≠≠ 1, where A is the amplitude for B 1, where A is the amplitude for B 
decays into a state f and A is the amplitude of B decays into decays into a state f and A is the amplitude of B decays into 
the CP conjugate state f the CP conjugate state f 
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CP Violation in the decay cont'd
 Requires at least two different decays amplitudes with 

different strong and weak phases

≠
fA

B0

fA

B0

2 2

Prob(B0→f)≠ Prob(B0→f) ⇒ |A/A|≠ 1

 Typical examples are direct CPV in charged mesons and 
baryon decays

 Can also occur in neutral B decays in conjunction with 
CPV in mixing  not beneficial because source of 
hadronic uncertainties in the calculations of Ak and δ k
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CPV in the decay cont'd

δ 2 −δ 1

φ2 −φ 1

A2

A1

B0 → f

δ 2 −δ 1

−( φ 2 −φ 1)

A1

A2
B0 → f

1 1
1

iiA e e 

2 2
2

iiA e e 

0B f

1 1
1

iiA e e 

2 2
2

iiA e e 

0B f

   1 2 1 2

2 20 0
1 2 sin sinB f B f A A    � � �

To get unitarity triangle angle(s) (φ1 – φ 2) we need to know the 
non-CKM phase shift (δ 1 – δ 2). Due to long-distance QCD effects 
in generally not calculable, but it may be possible to measure it

CP

CP conserving phases

=
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Direct CP Asymmetries in B0->K+π-

Direct CPV in B decays observed for the first time at the 
B-factories in 2004 using B0->K+π-

ACP=
Γ  B0K− π −Γ B0Kπ− 
Γ  B0

K−πΓ B0
Kπ− 

=
1−∣Af /A f∣

2

1∣Af /A f∣
2

Self tagged decay B0->K+π- and B0->K-π+ 
B0→K+π -

B0→K-π +

both zero for 
signal
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Direct ACP in Charm Decays
Direct (∆ C=1) CPV is a powerful probe to search for 
non-CKM sources of CP Violation  
Consider as an example CS D0 decays (D0->π +π -, D0->K+K-,...)

Features:
 Vcd*Vud  VS  Vcs*Vus  different weak phases
 ∆ I = 1/2,3/2 VS ∆ I = 1/2  different strong phases are likely
 ms < mc  long distance effects dominate 
 Heavy exotic particles can run in the loop  sensitive to N P

D0

π +

π -

c d

u

ū

W

ū

d-
W

g

u

d

π +

π -

D0

c
d,s,b

ū
ū

d-

Simple way to 
get a penguin

T P



Donatella Lucchesi 44

Direct ACP in Charm Decays @CDF

➢ D0 Flavor identified using π S charge in D*D0π s decays: 
    Q(π S) > 0  D0

➢ Main systematic effect: 
detector asymmetry for low-Pt tracks: ε  ≠  ε
✔ Measure detector asymmetry vs Pt and correct the observed 

ACP (CDF)
 Only based on data 
 Residual systematic measured on independent decays

ACP=
N

D0
ππ KK 

/ε−N
D0

ππ KK 
/ε

N
D0

ππ KK 
/εN

D0
ππ KK 

/ε
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Direct ACP in Charm Decays @CDF

ACP(D0      KK)  = 2.0 ±  1.2 (stat) ±  0.6 (syst) %

ACP(D0     π π ) = 1.0 ±  1.3 (stat) ±  0.6 (syst) %

16
22

0 
±

 2
00

 D
0 K

K 
si

gn
al

 e
ve

nt
s

  7
33

4 
±

  9
7 

 D
0 π

π
 s

ig
na

l e
ve

nt
s
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CPV in interference between decay-mixing

If both B0 and B0 can decay to same final state |f> which is a 
CP eigenstate, there’s another interesting possibility

λf
CP
=

q
p

A f
CP

A f
CP

=ηf CP

q
p

Af
CP

A f
CP

B0 fCP

B0

decay

de
caymixing

Introducing: η f=± 1: eigenvalue of fCP

We have:
A f

CP
=

Γ  B0
 t  f CP −Γ B0

 t f CP 
Γ  B0

 t  f CP Γ B0
 t f CP 

=−Cf CP
cosΔm⋅t Sf CP

sinΔm⋅t 

CP is violated either if |λ |≠ 1 due to CPV in mixing and/or decay, 
or if |λ |=1, but Imλ ≠ 0 due to CPV in interference 

In the case |λ |=1 CP asymmetry measures phase  differences in 
a theoretically clean way, if |A/A| = 1 A fCP

=Imλf
CP

sin Δm⋅t 

CP

CP

CP

2
f

f 2
f

1 |λ |

1 |λ |
C





CP

CP

CP

f
f 2

f

2 Imλ

1 |λ |
S 
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Golden Mode B0->J/ψKs

 Theoretically clean way to measure β
 Clean experimental signature
Branching fraction: O(10-4) “Large” compared to other CP 

modes

λ=−ηCP V tb
* V td

V tb V td
*  Vcs

* Vcb

Vcs Vcb
*  Vcd

* Vcs

Vcd Vcs
* =−e− iβ2

J/J/

KK00
SS

BB00

Imλ  = sin2β   
ACP t =C⋅cosm t −CP sin 2 sinm t 
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Penguins and sin2β measurements
b

d

d

W− c
c

s

0B J /ψ

K0 K0B0
b

d
W−

s

d

c

c
g

t ,c , u

J /ψ

Tree: bccs:  AT ~ VcbVcs
* ~ λ 2

Penguin:  AP ~ VtbVts
*f(mt) + VcbVcs

*f(mc) + VubVus
*f(mu) ~ λ 2 + λ 2 + λ 4 

Rewriting P using unitarity:  VtbVts
*+VcbVcs

*+VubVus
* = 0 

A B J /ψK = Vcb Vcs
* TPc−Pt 

~λ2: same for tree and penguins

Vub Vus
* Pu−P t 

suppressed  by λ2

Leading penguin contribution has same weak phase as tree
Extraction of sin(2β ) from J/KS is “theoretically clean”
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Steps to measure sin2β

Δt≈ Δz
〈βγ〉c

+e
-e

Brec

z

Btag

z

Exclusive 
B Meson

 and vertex 
reconstruction-π

0
sK +π

+μ

-μ

Flavor tag and 
vertex 

reconstruction
e+ K-

Start the clock

Boost: =0.55

ee−Υ  S4 B B
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Signal Reconstruction

mES

E

sidebands

signal 
region

∆
Ε

 [
M

eV
]

mES [GeV/c2]

Two main kinematic variables for 
exclusively reconstructed B 
candidates:
i) ∆ E = EB

cms - √s/2
•There are exactly 2 B mesons 
   produced, nothing else
• A signal B candidate must      
  carry half the CMS energy

ii) MES = √s/4-pB
2 

•Invariant mass, substituting 
the measured  B energy with 
the better-known √s/2.

J/ψ Ks (π +π -)

σ (∆ E) ~ 10-40 MeV
σ (MES) ~ 2.6 MeV
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BaBar measured asymmetries
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Overall Status of sin2β
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B0π +π -/ρ +ρ -: measurement of angle α
Access to  can be obtained from the interference of a 
b →u decay () with and without B0B0 mixing ().

0B b

W 

u
d

d /  
d

u
/  

∝VubVud ∝ Aλ 3

C=0

S=sin(2α )

(
_

)







( )m
S 2

2

1








C

2

2

1

1

Assuming pure tree diagram: 

=
q
p
A
A
=e−2ie−2i

=e−2i
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B0+ -/+ -: measurement of angle 

b

d

W 

g
, ,t c u

0B u
d

u /  

/  

d
∝VtbVtd ∝ Aλ 3

















2
i

i

i
i

i

T Pe e
e

T P e e

 relative strong phase between T and P

 







 


 



2

2

2

1 si

1
0

1

n 2 effS C

C To extract from eff : use SU(2)-isospin

But penguins may be of the same order of magnitude as trees: 
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A B0 = A B−−0 

The decays B The decays B   are related by isospinare related by isospin symmetry symmetry
➢The isospin decomposition can be represented with two triangles 

(one for B0, one for B0)
 Neglecting EW penguins (violate isospin), B+  is pure tree 

diagram
➢ Need to measure separate BF for B0/B0 and B+/B-

➢ Triangle relations allow determination penguin-induced shift in 

Isospin analysis to constraint α -α eff

k =2α eff −α 
Problem: is too small for a isospin 
analysis and too large to set a useful eff 
limit…
Solution: use  
• larger BF, low penguin contamination
• VV final state, but dominated by 
   longitudinal polarization (~pure CP-even)
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CP Asymmetries in B->π+π-
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Using penguins to measure 

Dominant Sub-dominant

B0π +π −

BsK+K−
u-

b
W−

u

u
d
-

b d
W−

u,c,t

b su,c,t b
W−

u
s

W−

Promising way to measure  at Tevatron
  (R.Fleischer hep-ph/9903456):
 Time dependent asymmetry in B0 measures sin2() up to 

~30% penguin pollution
 Measure P/T ratio by simultaneous fit to the time dependent     
asymmetries in BsK+K−

Diagrams can be 
obtained 
and related via exchange 
d↔s (SU(3) U-spin)
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Using penguins to measure cont'd

Procedure:
• Measure time dependent ACP(dir, mix) in B0and 
   BsK+K-: 4 parameters 
• Take sin(2β ) from J/Ks 

• Only 3 parameters to fit: 
   d=P/T ~ 0.3,  θ =strong phase of P/T ratio, 

ACP  t =ACP
dir×cosΔMtACP

mix×sin ΔMt

ACP
dir

ππ =−2dsinθ  sinγOd2


ACP
dir KK =

2λ2

d 1−λ2 
sinθ sinγO  λ2 /d 2 

ACP
mixKK =

2λ2

d 1−λ2
cosθ sinγO λ2/d 2 

ACP
mix

ππ =sin2 βγ2dcosθ×[cosγsin2βγ −sin 2βγ  ]O d2
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Putting all together: Overall Status

ρ = 0.155 ± 0.022 

η = 0.342 ± 0.014

http://www.utfit.org/

http://www.utfit.org/
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