B and Charm Mixing and CP Violation

- Introduction
- CKM Matrix and CPV in the Standard Model
- Mixing in B and D systems
- CP Violation in B and Charm decays
- Overall CKM fit status

Central questions in Flavor Physics

- Does the SM explain all flavor changing interactions?
- If does not: at what level we can see deviations? New Physics effects?
 - The goal is to over constrain the SM description of flavor by many redundant measurements
 - Requirements for success:

Experimental and theoretical precision

Why B and Charm Physics?

In the B meson system large variety of interesting processes:

- Top quark loops neither GIM nor CKM suppressed:
 - Large mixing
 - Large CP violating effects possible
- Many of them have a clean theoretical interpretation
- In other cases hadronic physics effects can be understood in a model independent way ($m_b >> \Lambda_{QCD}$)

Charm: m_c<<m_b: hadronic interactions effects important (and not always easy to calculate) BUT:

- Charm is unique probe of uptype quark sector (down quarks in the loops)
- SM contributions in charm sector (CPV, mixing) small (large GIM suppressions, FCNC) -> sensitive to new physics/non SM sources of CPV

 Measurements of absolute rates (semi)-leptonic decays provide information to test October Control Contro

Why B and Charm Physics?

In the B meson system large variety of interesting processes:

- Top quark loops neither GIM nor CKM suppressed:
 - Large mixing
 - Large CP violating effects possible
- Many of them have a clean theoretical interpretation
- In other cases hadronic physics effects can be understood in a model independent way (m_b>>A_{QCD})

In both cases New Physics (NP) can negate SM predictions on many observables that are experimentally measurable Charm: m_c<<m_b: hadronic interactions effects important (and not always easy to calculate) BUT:

- Charm is unique probe of uptype quark sector (down quarks in the loops)
- SM contributions in charm sector (CPV, mixing) small (large GIM suppressions, FCNC)
 -> sensitive to new physics/non SM sources of CPV
- Measurements of absolute rates (semi)-leptonic decays provide information to test QCD calculations needed in B 4

CKM Matrix

- In the SM SU(2)xU(1) quarks and leptons are assigned to be left-handed doublets and right-handed singlet
- Quark mass eigenstates are not the same as the weak egeienstates, the matrix relating these bases defined for 6 quarks and parameterized by Kobayashi and Maskawa by generalization of 4 quark case described by the Cabibbo angle
- By convention, the matrix is often expressed in terms of a 3x3 unitary matrix, V, operating on the charge -1/3 quark eigenstates (d,s,b):

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \underbrace{ \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix} }_{V_{CKM}}$$

Elements depend on 4 real parameters (3 angles and 1 CPV phase) V_{CKM} is the only source of CPV in the SM

V_{CKM} : Wolfenstein parametrization

It is convenient to exhibit the hierarchical structure by expansion in powers of λ

$$V_{CKM} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

Present uncertainties:
 $\lambda \sim 0.5\%, A \sim 4\%, \rho \sim 14\%, \eta \sim 4\%$

Unitarity Triangles (UT)

- A simple and vivid summary of the CKM mechanism ■ V_{CKM} is unitary: VV⁺=V⁺V=1
- The orthogonality of columns (or rows) provides 6 triangle equations in the complex plane:

More on UT

There are 6 UT triangles Columns and rows relations give similar results

•All triangles have the same area: $\propto A\lambda$ $^6\eta$

 $\begin{vmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{vmatrix} + O(\lambda^4)$

$$\Sigma V_{id} V_{is}^* = 0$$
 (K system)

$$\Sigma V_{is} V_{ib}^* = 0$$
 (Bs system)

 $\Sigma V_{id} V_{ib}^* = 0$ (Bd system)

•The " $V_{id}V_{ib}$ *" triangle is "special": all sides $O(\lambda^3) \rightarrow \text{large angles} \rightarrow \text{large CPV}$ in the B system Measurements usually summarized by plotting their constraints in the ρ - η plane

Constraints in the (p,n) plane

2 sides ; 3 angles \Rightarrow aim : to over-constrain this unitarity triangle precision test of the Standard Model

CP Violation in B Decays

Time evolution and mixing of two flavor eigenstates governed by Schrödinger equation:

$$i\frac{d}{dt} \begin{pmatrix} |B(t)\rangle \\ |\bar{B}(t)\rangle \end{pmatrix} = \begin{pmatrix} M - \frac{i}{2} \Gamma \end{pmatrix} \begin{pmatrix} |B(t)\rangle \\ |\bar{B}(t)\rangle \end{pmatrix}$$

M, Γ are 2x2 time independent. Hermitian matrices; CPT invariance implies $M_{11}=M_{22}$ and $\Gamma_{11}=\Gamma_{22}$, off-diagonals elements due to box diagrams dominated by top quarks are the source of mixing

Neutral meson Mixing

Mass eigenstates are eigenvectors of H:

$$|B_{H}\rangle = p|B^{\cdot}\rangle + q|\overline{B}^{\cdot}\rangle |p|^{2} + |q|^{2} = 1$$

$$|B_{L}\rangle = p|B^{\cdot}\rangle - q|\overline{B}^{\cdot}\rangle |p|^{2} + |q|^{2} = 1$$

NOTE: In general $|B_{H}\rangle$ and $|B_{L}\rangle$ are not orthogonal to each other

The time evolution of the mass eigenstates is governed by:

$$|B_{H,L}(t)\rangle = e^{-\left(iM_{H,L} + \frac{\Gamma_{H,L}}{2}\right) \cdot t} |B_{H,L}(t=0)\rangle$$

In the $|\Gamma_{12}| << |M_{12}|$ limit, which holds for both B_d and B_s :
 $\Delta m = M_H - M_L = {}^{\mathsf{r}} |M_{\mathsf{v}\mathsf{v}}|$
 $\Delta \Gamma = \Gamma_L - \Gamma_H = {}^{\mathsf{r}} |\Gamma_{\mathsf{v}\mathsf{v}}| \cos \varphi \qquad \varphi = \arg \left(-\frac{M_{\mathsf{v}\mathsf{v}}}{\Gamma_{\mathsf{v}\mathsf{v}}}\right)$
 $\frac{q}{p} = -\frac{{}^{\mathsf{r}} M_{\mathsf{v}\mathsf{v}}^* - i\Gamma_{\mathsf{v}\mathsf{v}}^*}{\Delta m + i \Delta \Gamma_{\mathsf{v}\mathsf{v}}} = -e^{-i\varphi} \left[{}^{\mathsf{v}} - \frac{{}^{\mathsf{v}}}{\mathsf{v}} \operatorname{Im}\left(\frac{\Gamma_{\mathsf{v}\mathsf{v}}}{M_{\mathsf{v}\mathsf{v}}}\right)\right]$
Donatella Lucchesi

Neutral meson Mixing in the SM

$$\Delta m_{q} = \frac{G_{F}^{2}}{6\pi^{2}} |V_{tb}|^{2} |V_{tq}|^{2} M_{W}^{2} M_{B_{q}^{0}} f_{B_{q}^{0}}^{2} B_{B_{q}^{0}} \eta_{B_{q}^{0}} S\left(\frac{M_{t}^{2}}{M_{W}^{2}}\right)$$

$$\xrightarrow{\text{non perturbative}}_{\text{QCD}}$$

$$\frac{\Delta m_{d}}{\Delta m_{s}} = \frac{|V_{td}|^{2}}{|V_{ts}|^{2}} \frac{M_{B_{d}^{0}}}{M_{B_{s}^{0}}} \left(\frac{f_{B_{d}^{0}}^{2} B_{B_{d}^{0}}}{f_{B_{s}^{0}}^{2} B_{B_{s}^{0}}}\right)$$

$$\cong 1 \qquad SU(3) \text{ Flavor breaking} \text{ theoretical uncertainties <5\%}$$

B Mixing at CDF

Measurement Principle in a Perfect World $P(t)_{B_{q^{0}} \to B_{q^{0}}} = \frac{1}{2\tau} e^{-\frac{t}{\tau}} (1 \pm \cos(\Delta m_{q} t)) \qquad A = \frac{N^{nomix} - N^{mix}}{N^{nomix} + N^{mix}} = \cos(\Delta m_{s} t)$

Rather than fit for frequency perform a 'Fourier transform'

DS⁻¹

Road Map to Δm_s Measurement

Adding all realistic effects

Road Map to Δm_s Measurement

B_. data Sample

Road Map to Δm_s Measurement

Proper decay time reconstruction

- > Fully reconstructed events $ct = L_{xy}^{B}M^{B}/P_{t}^{B}$
- > Semileptonic decay ct = $L_{xy}^{ID}M^{B}/P_{t}^{ID} \cdot K = \langle P_{t}^{ID}/P_{t}^{B} \cdot L_{xy}^{B}/L_{xy}^{ID} \rangle$ It is needed to:
- Measure the lifetime to establish the time scale

Road Map to Δm_s Measurement

ε D² gives the "effective" number of events

Events Tagging

<u>Opposite Side</u>

- Use data to calibrate taggers and to evaluate D
- Fit semileptonic and hadronic B_d sample to measure: D, Δm_d
 - -lepton (electron or muon) $Q_{J}^{\ell} = \sum_{i} q^{i} p_{T}^{i} / \sum_{i} p_{T}^{i}$
 - Secondary Vertex
 - $Q_{\rm SV} = \sum_i (q^i p_L^i)^{0.6} / \sum_i (p_L^i)^{0.6}$
 - Event Charge

 $Q_{\rm EV} = \sum_i q^i p_T^i / \sum_i p_T^i$

Tune Monte Carlo to reproduce B^{0} , B^{-} distributions then apply to B_{s}

Amplitude scan notation

- A is introduced: $P(t)_{B_{q^0} \rightarrow B_{q^0}} = \frac{1}{2\tau} e^{-\frac{t}{\tau}} (1 \pm A\cos(\Delta m_q t))$ A=1 when $\Delta m_s^{\text{measured}} = \Delta m_s^{q_s^0} m_s^{q_s^0}$
- In the figure:

B^o mixing in hadronic decay

- Points: A±σ (A) from Likelihood fit for different Δ m
- Yellow band: A±1.645σ (A)
- Dashed line: 1.645σ (A) vs. Δ m
- Δ m excluded at 95% C.L. if A±1.645σ (A)<1
- Measured sensitivity:
 - 1.645σ (A)=1

Choice of procedure

Before un-blinding: p-value probability that observed effect is due background fluctuation. No search window.

Amplitude Scan

Likelihood Profile & significance

Measurement of Δm_s

17.00 < Δ m_s <17.91 ps⁻¹ at 90% C.L. 16.94 < Δ m_s <17.97 ps⁻¹ at 95% C.L.

Mixing in Charm decays

domi

top -

		Δ M/ Γ	$\Delta \Gamma / \Gamma$
	Kº Bº	0.474	0.997 <0.01
nated by	B _s D ⁰	27 < few%	0.15 < few%
> large	D	- 10 W /0	

dominated by strange-> suppressed

Goal of the search for D^o mixing is not to constraint the CKM parameters but rather to probe NP

D Mixing

X mixing: channel for NP

Y (long-range) mixing: SM background

$$R_{mix} = \frac{1}{2} \left(x^2 + y^2 \right)$$

NP will enhance x but not y NP in loops implies x >> y, but long range effects complicate predictions

D Mixing measurements at Babar

D Mixing: Decay time distribution

Allows for a strong phase difference $\delta_{K\pi}$ between CF and DCS direct decay

 $x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi}, \quad y' = -x \sin \delta_{K\pi} + y \cos \delta_{K\pi}$

This phase may differ between decay modes Time-integrated mixing rate R_M defined by $R_M = \frac{x^2 + y^2}{2}$

D Mixing: event reconstruction

D Mixing: WS $m_{k\pi}$ and Δm fit

The $m_{K\pi}$, Δm fit determines the WS b.r. $R_{WS} = N_{WS}/N_{RS}$

BABAR (384 fb⁻¹): $R_{WS} = (0.353 \pm 0.008 \pm 0.004)\%$ (PRL 98, 211802 (2007)) BELLE (400 fb⁻¹): $R_{WS} = (0.377 \pm 0.008 \pm 0.005)\%$ (PRL 96, 151801 (2006))

D Mixing: decay time fit

D Mixing measurements summary

CP Violation

Inside the SM there are three types of CP violation:
CPV in the mixing |p/q| ≠ 1 ≈10⁻³ in SM
CPV in the direct decay |A/A|≠1

CPV in interference between mixing and decay

CP Violation in mixing

CP violation can occur in the interference between the on-shell and off-shell amplitudes, it results from the mass egienstates being different from the CP egienstates

$$\frac{q/p}{B^{\circ}} \xrightarrow{f} \left[\stackrel{2}{\neq} \right] \xrightarrow{q/p} \xrightarrow{f} \left[\stackrel{2}{Prob(B^{\circ} \rightarrow B^{\circ}) \neq Prob(B^{\circ} \rightarrow B^{\circ}) \Leftrightarrow |q/p| \neq 1} \right]$$

For B° mesons $\Gamma_{\ _{12}}$ is very small mixing dominated by Δ m=2M_{_{12}}

- o Do not expect much interference: need 2 amplitudes of comparable size
- o Little chance of seeing CP violation in $B^{\circ}\overline{B^{\circ}}$ mixing...
- o Calculation of Γ_{12} has large hadronic uncertainties: Asymmetry $\propto \text{Im}(\Gamma_{12}/M_{12})\sim O(10^{-2+3})$ for B mesons
- o But an interesting place to look for NP effects

CPV in $B^{0}-\overline{B}^{0}$ Mixing: inclusive dilepton events

$$B^{0}\overline{B}^{0} \xrightarrow{B^{0}\overline{B}^{0}} \pi |^{+}|^{-}X \xrightarrow{P(\overline{B}^{0} + B^{0})} B^{0}\overline{B}^{0} \pi |^{+}|^{+}X \xrightarrow{P(\overline{B}^{0} + B^{0})} B^{0}\overline{B}^{0} \pi |^{+}|^{+}X \xrightarrow{P(\overline{B}^{0} + B^{0})} B^{0}\overline{B}^{0} \pi |^{-}|^{-}X \xrightarrow{P(\overline{B}^{0} + \overline{B}^{0})} B^{0}\overline{B}^{0} \pi |^{-}|^{+}X \xrightarrow{P(\overline{B}^{0} + \overline{B}^{0})} B^{0}\overline{B}^{0} \pi |^{-}|^{+}X \xrightarrow{P(\overline{B}^{0} + \overline{B}^{0})} B^{0}\overline{B}^{0} \pi |^{-}|^{+}X \xrightarrow{P(\overline{B}^{0} + \overline{B}^{0})} B^{0}\overline{B}^{0}\overline{B}^{0} \pi |^{-}|^{+}X \xrightarrow{P(\overline{B}^{0} + \overline{B}^{0})} B^{0}\overline{B}^{0}\overline{B}^{0}\overline{B}^{0} \pi |^{-}|^{+}X \xrightarrow{P(\overline{B}^{0} + \overline{B}^{0})} B^{0}\overline{B}^{0}\overline{B}^{0}\overline{B}^{0} \pi |^{-}|^{+}X \xrightarrow{P(\overline{B}^{0} + \overline{B}^{0})} B^{0}\overline{B}^{0}\overline{B}^{0}\overline{B}^{0}\overline{B}^{0} \pi |^{-}|^{+}X \xrightarrow{P(\overline{B}^{0} + \overline{B}^{0})} B^{0}\overline{B}^{0}\overline{B$$

CP Violation in the decay

Occurs when $|A/\overline{A}| \neq 1$, where \overline{A} is the amplitude for \overline{B} decays into a state \overline{f} and A is the amplitude of B decays into the CP conjugate state f

Decay amplitudes can, in general, receive many contributions:

$$A_{f} = \langle f | H | B \rangle = \sum_{k} A_{k} e^{i\delta_{k}} e^{i\varphi_{k}} \qquad \bar{A}_{\bar{f}} = \langle \bar{f} | H | \bar{B} \rangle = \sum_{k} A_{k} e^{i\delta_{k}} e^{-i\varphi_{k}}$$

- ϕ_k : "weak phases" complex parameters in Lagrangian (in V_{CKM} in the SM)
- δ_k : "strong phases" on-shell intermediate states rescattering, absorbitive parts

CP Violation in the decay cont'd

Requires at least two different decays amplitudes with different strong and weak phases

 $\mathsf{Prob}(\mathsf{B}^{0} \to \mathsf{f}) \neq \mathsf{Prob}(\mathsf{B}^{0} \to \mathsf{f}) \Rightarrow |\mathsf{A}/\mathsf{A}| \neq 1$

- Typical examples are direct CPV in charged mesons and baryon decays
- Can also occur in neutral B decays in conjunction with CPV in mixing not beneficial because source of hadronic uncertainties in the calculations of A_k and δ_k

CPV in the decay cont'd

Direct CP Asymmetries in B° ->K⁺ π^{-}

Direct A_{CP} in Charm Decays

Direct (Δ C=1) CPV is a powerful probe to search for non-CKM sources of CP Violation

Consider as an example CS D⁰ decays (D⁰-> π ⁺ π ⁻, D⁰->K⁺K⁻,...)

- Vcd*Vud VS Vcs*Vus → different weak phases
- Δ I = 1/2,3/2 VS Δ I = 1/2 \rightarrow different strong phases are likely
- $m_s < m_c \rightarrow$ long distance effects dominate
- Heavy exotic particles can run in the loop \rightarrow sensitive to N P

Direct A_{CP} in Charm Decays @CDF

$$A_{CP} = \frac{N_{D^0 \to \pi\pi(KK)}^{} / \varepsilon - N_{D^0 \to \pi\pi(KK)}^{} / \overline{\varepsilon}}{N_{D^0 \to \pi\pi(KK)}^{} / \varepsilon + N_{\overline{D}^0 \to \pi\pi(KK)}^{} / \overline{\varepsilon}}$$

- > D° Flavor identified using π_{s} charge in D*→D° π_{s} decays: Q(π_{s}) > 0 → D°
- > Main systematic effect: detector asymmetry for low-Pt tracks: $\epsilon \neq \epsilon$
 - Measure detector asymmetry vs Pt and correct the observed A_{CP} (CDF)
 - Only based on data
 - Residual systematic measured on independent decays

Direct A_{cp} in Charm Decays @CDF

CPV in interference between decay-mixing

If both B° and $\overline{B^{\circ}}$ can decay to same final state $|f\rangle$ which is a CP eigenstate, there's another interesting possibility

CP is violated either if $|\lambda| \neq 1$ due to CPV in mixing and/or decay, or if $|\lambda| = 1$, but $\text{Im}\lambda \neq 0$ due to CPV in interference In the case $|\lambda| = 1$ CP asymmetry measures phase differences in a theoretically clean way, if $|\overline{A}/A| = 1 \rightarrow A_{f_{CP}} = \text{Im }\lambda_{f_{CP}} \sin(\Delta m \cdot t)_{46}$

Golden Mode B^o->J/WK

- Theoretically clean way to measure β
- Clean experimental signature
- Branching fraction: O(10⁻⁴) "Large" compared to other CP modes Donatella Lucchesi

Penguins and sin2ß measurements

Tree: b→ccs: $A_T \sim V_{cb}V_{cs}^* \sim \lambda^2$ Penguin: $A_P \sim V_{tb}V_{ts}^*f(m_t) + V_{cb}V_{cs}^*f(m_c) + V_{ub}V_{us}^*f(m_u) \sim \lambda^2 + \lambda^2 + \lambda^4$ Rewriting P using unitarity: $V_{tb}V_{ts}^* + V_{cb}V_{cs}^* + V_{ub}V_{us}^* = 0$

$$A(B \to J/\psi K) = \underbrace{V_{cb} V_{cs}^* (T + P^c - P^t)}_{\sim \lambda^2: \text{ same for tree and penguins}} + \underbrace{V_{ub} V_{us}^* (P^u - P^t)}_{\text{ suppressed by } \lambda^2}$$

Leading penguin contribution has same weak phase as tree Extraction of sin(2 β) from J/ ψ K_s is "theoretically clean"

Steps to measure sin2ß

Signal Reconstruction

Two main kinematic variables for exclusively reconstructed B candidates:

- i) $\Delta E = E_B^{cms} \sqrt{s/2}$
 - •There are exactly 2 B mesons produced, nothing else
- A signal B candidate must carry half the CMS energy
 ii) M_{ES} = √s/4-p_B²

•Invariant mass, substituting the measured B energy with the better-known $\sqrt{s/2}$.

 $\sigma (\Delta E) \sim 10-40 \text{ MeV}$ Donatella Lucchesi $\sigma (M_{ES}) \sim 2.6 \text{ MeV}$

BaBar measured asymmetries

Overall Status of sin2ß

$B^{o} \rightarrow \pi + \pi / \rho + \rho = measurement of angle \alpha$

Access to α can be obtained from the interference of a $b \rightarrow u$ decay (γ) with and without B^oB^o mixing (β).

Assuming pure tree diagram:

$$P(B^{(-)}(t)) = e^{-t/\tau_{B}} |A|^{2} \frac{1+|\lambda|^{2}}{2} \left(\int_{+}^{(-)} C \cos(\Delta m_{d} t) \int_{-}^{(+)} S \sin(\Delta m_{d} t) \right)$$

$$\overline{B}^{0} \stackrel{b}{\overline{d}} \stackrel{W^{-}}{\xrightarrow{}} \stackrel{u}{\xrightarrow{}} \stackrel{u}{\xrightarrow{}} \stackrel{u}{\xrightarrow{}} \stackrel{u}{\xrightarrow{}} \stackrel{u}{\xrightarrow{}} \stackrel{u}{\xrightarrow{}} \stackrel{u}{\xrightarrow{}} \stackrel{u}{\xrightarrow{}} \stackrel{\pi^{-}}{\xrightarrow{}} \stackrel{\rho^{-}}{\xrightarrow{}} \stackrel{u}{\xrightarrow{}} \stackrel{\pi^{-}}{\xrightarrow{}} \stackrel{\rho^{-}}{\xrightarrow{}} \stackrel{u}{\xrightarrow{}} \stackrel{u}{\xrightarrow{}} \stackrel{\pi^{-}}{\xrightarrow{}} \stackrel{\rho^{-}}{\xrightarrow{}} \stackrel{u}{\xrightarrow{}} \stackrel{u}{\xrightarrow{} } \stackrel{u}{\xrightarrow{}} \stackrel{u}{\xrightarrow{}} \stackrel{u}{\xrightarrow{}} \stackrel{u}{\xrightarrow{}} \stackrel{u}{\xrightarrow{}} \stackrel{u}{$$

$B^{o} \rightarrow \pi^{+}\pi^{-}/\rho^{+}\rho^{-}$: measurement of angle α

But penguins may be of the same order of magnitude as trees:

 δ relative strong phase between T and P

 $C = \frac{1 - |\lambda|^2}{1 + |\lambda|^2} \approx 0$ $S = \sqrt{1 - C^2} \sin(2\alpha_{\text{eff}})$

 $\propto V_{tb}V_{td} \propto A\lambda^{3}$

To extract α from α_{eff} : use SU(2)-isospin

Isospin analysis to constraint α - α $_{\rm eff}$

The decays $B \rightarrow \pi^+\pi^-$, $\pi^+\pi^0$, $\pi^0\pi^0$ are related by isospin symmetry

- The isospin decomposition can be represented with two triangles (one for B⁰, one for B⁰)
 - Neglecting EW penguins (violate isospin), $B^+ \rightarrow \pi^+ \pi^0$ is pure tree diagram $A(B^+ \rightarrow \pi^+ \pi^0) = \tilde{A}(B^- \rightarrow \pi^- \pi^0)$
- Need to measure separate BF for B⁰/B⁰ and B⁺/B⁻
- \succ Triangle relations allow determination penguin-induced shift in lpha

CP Asymmetries in B-> π + π -

Using penguins to measure $\boldsymbol{\gamma}$

Promising way to measure γ at Tevatron

(R.Fleischer hep-ph/9903456):

Time dependent asymmetry in $B^{\circ} \rightarrow \pi^{+}\pi^{-}$ measures sin2(β + γ) up to ~30% penguin pollution

• Measure P/T ratio by simultaneous fit to the time dependent asymmetries in $B_s \rightarrow K^+K^-$

Using penguins to measure γ cont'd

$$A_{CP}(t) = A_{CP}^{dir} \times \cos \Delta Mt + A_{CP}^{mix} \times \sin \Delta Mt$$

$$A_{CP}^{dir}(\pi\pi) = -2d \sin \theta \sin \gamma + O(d^{2})$$

$$A_{CP}^{dir}(KK) = \frac{2\lambda^{2}}{d(1-\lambda^{2})} \sin \theta \sin \gamma + O((\lambda^{2}/d)^{2})$$

$$A_{CP}^{mix}(KK) = \frac{2\lambda^{2}}{d(1-\lambda^{2})} \cos \theta \sin \gamma + O((\lambda^{2}/d)^{2})$$

$$A_{CP}^{mix}(\pi\pi) = \sin 2(\beta + \gamma) + 2d \cos \theta \times [\cos \gamma \sin 2(\beta + \gamma) - \sin(2\beta + \gamma)] + O(d^{2})$$

Procedure:

- Measure time dependent ACP(dir, mix) in B o –> $\pi^{+}\pi^{-}$ and
 - $B_s \rightarrow K^+K^-$: 4 parameters
- Take sin(2 β) from J/ ψK_{s}
- Only 3 parameters to fit:
 d=P/T ~ 0.3, θ =strong phase of P/T ratio, γ

Putting all together: Overall Status

 $\rho = 0.155 \pm 0.022$

$$\eta = 0.342 \pm 0.014$$

http://www.utfit.org/