Higgs boson searches at Tevatron

- > On the way of the Higgs:
 - Di-bosons
 - Standard Model expectations
- Higgs searches introduction
- Low mass Higgs analysis
- Low mass Higgs combination
- High mass Higgs analysis
- Final Higgs searches combination
- Next step

On the way to the Higgs: Di-bosons

Diboson final states:

- Test Standard Model production predictions
- Look for anomalous coupling Wγ AAAA W Cross sections similar to Higgs hnn r mm z Zγ hnn Y ~~~~ W Z/γ CDF & DO published results on: ww kvvv W mm W WZ New DO measurement using 1fb⁻¹ hon z m z ΖZ

On the way to the Higgs: WW

On the way to the Higgs: WW

 $\sigma(p\bar{p} \to WW) = 12.1 \pm 0.9(\text{stat}) \, {}^{+1.6}_{-1.4}(\text{syst}) \, \text{[pb]}$

4

Combining the two channels DO (2.7 fb⁻¹) signal has 5.7 significance The cross section $\sigma(ZZ)=1.60\pm0.63(stat)^{+016}_{-0.17}(syst)$

Combining the two channels CDF signal has 4.4 σ significance The cross section $1.4^{+0.7}_{-0.6}(stat. + syst.)$ pb

Top Mass

Use up to 3.6 fb⁻¹ of data CDF and D0 combined: $M_{+}=173.1\pm0.6(stat)\pm1.1(syst)GeV/c^{2}$ Total uncertainty 1.3 GeV/c² ---> relative precision of 0.75%

6

W Boson Mass

Direct Higgs searches @Tevatron

9

Analysis Tools: Lepton Identification

- Identify the decay of W/Z
 - electrons: tracks matched to ECAL
 - muons: tracks matched to muon chambers
 - taus: tracks matched to calorimeter cluster
- Expand lepton coverage:
 interplay between sub-detectors
 to cover holes
 include forward detectors

Analysis Tools: Lepton Identification

- Identify the decay of W/Z
 - electrons: tracks matched to ECAL
 - muons: tracks matched to muon chambers
 - taus: tracks matched to calorimeter cluster
- Expand lepton coverage:
 interplay between sub-detectors to cover holes

include forward detectors

11

Analysis Tools: Lepton Identification

- Identify the decay of W/Z
 - electrons: tracks matched to ECAL
 - muons: tracks matched to muon chambers
 - taus: tracks matched to calorimeter cluster
- Expand lepton coverage:
 interplay between sub-detectors to cover holes
 include forward detectors
 - > Good Missing E_{τ} (MET) trigger :
 - select events with neutrinos and charged lepton that fail ID
 - remove events with fake MET

Analysis Tools: b-jet identification

Jet ≽ B-tagging:

- exploit long lifetime of
 b-hadrons
- Suppress light flavor background
 Improves S/B
- Various algorithms used by CDF/DO
 - Identify displaced vertex
 - Exploit multiple feature of b-jets
 - Probability that tracks come from primary vertex
 - b-tagging efficiency: 40-70%
- D-jet invariant mass

Analysis Tools: Multivariate techniques

- Maximize discriminating power using global kinematics of signal and background
 - Machine learning techniques: Neural Network and Boost Decision Tree (BDT)
 - For each event calculate the probability to come from signal from LO Matrix Element
- Multivariate techniques help to improve sensitivity
- > Used already in many many analysis

Reminder: Limit Plots

Low Mass Higgs searches

Low Mass: M_{μ} <135 GeV/c²

Low Mass Higgs searches

Decay channels

Look for as many final states as possible with H→bb, highest BR
 gg-> H→bb dominant production mode not available right now due to background.

These data are collected with b-tag trigger designed and implemented by "us"

Trigger algorithms	$\epsilon(H \to bb)$	$\epsilon(\phi ightarrow bb)$	$\epsilon(Z \to bb)$
Vertex b-tag	13%	11%	4%
Muon b-tag	5%	6%	2%

Table 1: Trigger efficiencies for H, ϕ and Z decays

Useful for Z->bb, b-jet energy study

Low Mass Higgs searches cont'd

Look for VH and ZH associated production:

- Higgs decays in two high pT b-jets
- Leptonic decays of W/Z reduce QCD background and allow easy trigger strategy

Reconstruct also H->yy and H->TT with gluon-gluon fusion, associated production and Vector Boson Fusion

Low Mass Higgs: Strategy

Efficient trigger to keep most of potential Higgs candidates
 x high pt charged leptons: e µ to select W/Z
 x missing Et+jets to select HZ, Z->vv or HW W->lv (I not identified)

× lepton+track for TT modes

Increase signal yields
 increase lepton acceptance improving e/µ ID
 more efficient b-tag algorithms
 better understanding of calorimeter response

Look for a resonance in dijets mass
X large backgrounds with large uncertainties
X use multivariate techniques to separate signal from background

Low Mass Higgs: $ZH \rightarrow \ell^+ \ell^- b\bar{b}, \ \ell = e, \mu$ Signature: 2 high Pt leptons and 2+ b-jets Trigger Path: single lepton CDF: 2.7 fb⁻¹ DO: 3.1 - 4.2 fb⁻¹ Major backgrounds: Z + jets/heavy flavors, top, di-bosons Small $\sigma x BR \sim 1 \text{ event/fb}^{-1}$ Important to increase acceptance 🗕 Data Events 10⁵ Pre-tag Z+jets Events / Bin DØ Run II Preliminary (3.1 fb¹) 2200 Data Z+HF 2000 Top > ee+bb.cc 1800 10^{4} Diboson ∙uu+bb.cc ZH(m_=115 GeV) × 100 1600 Multijet 10³ 1400F 1200F 10² 1000 800 10 600 400 200 10⁻¹ 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200 M. [GeV] m_{bb} (GeV/c²)

20

Low Mass Higgs: $ZH \rightarrow \ell^+ \ell^- b\bar{b}, \ \ell = e, \mu$

Use multivariate techniques to improve S/B

Low Mass Higgs: $WH \rightarrow \ell v b \bar{b}, \ \ell = e, \mu$ Signature: 1 high Pt lepton large MET and 2+ b-jets Trigger path: single lepton CDF and D0 : 2.7 fb⁻¹

Major backgrounds: W+bb-jets, top, multijets

"Large" $\sigma x BR \sim 3-4 \text{ event/fb}^{-1}$

Low Mass Higgs: $WH \rightarrow \ell v b \bar{b}, \ \ell = e, \mu$

Multivariate techniques to improve S/B: DO: NN

Major backgrounds: QCD with fake MET,W/Z+bb-jets, top,diboson Background modeled using data

Multivariate techniques to improve S/B: DO: BDT on double tagged sample CDF: NN with separate training for 2 and 3 jets

Low Mass Higgs Combination

CDF Run II Preliminary, L=2.0-3.6 fb⁻¹

M_H=115 Expected limit 3.22 Observed limit 3.64

Low Mass Higgs Tevatron Combination

28

High Mass Higgs: $H \rightarrow WW$

Signal:

0 jets at LO (gg->H)

2 jets at LO (ZH/WH/VBF)

Separate in 0, 1, 2+ jets bin because of different backgrounds

LO: WW, Drell Yan, W+y

LO: WZ, ZZ, **†**†

High Mass Higgs:

0 jets: Good use of LO ME majority of signal gg fusion background from WW

1 jet: ME not so powerful extra signal: VH and VBF ~20%

2 jets: tt main background extra signal: VH and VBF ~60%

 $H \rightarrow WW$

CDF Run II Preliminary $\int \mathcal{L} = 3.6 \text{ fb}^{-F}$ $M_H = 160 \text{ GeV}/c^2$ $t\bar{t}$ DV 80 ± 18

$t\bar{t}$	1.35	\pm	0.21
DY	80	±	18
WW	318	±	35
WZ	14	±	1.9
ZZ	20.7	\pm	2.8
W+jets	113	\pm	27
$W\gamma$	92	\pm	25
Total Background	637	±	67
gg ightarrow H	9.5	±	1.4
Total Signal	9.5	\pm	1.4
Data		654	
		0	S 0 1-1-1

CDF Run II Preliminar	y ∫£	= 3	$.6 \text{ fb}^{-1}$
$M_H = 160 \text{ GeV}/c^2$			
tt	100	±	17
DY	33	±	11
WW	17.6	±	4.0
WZ	3.76	\pm	0.52
ZZ	1.62	\pm	0.22
W+jets	14.7	\pm	4.0
$W\gamma$	2.12	\pm	0.70
Total Background	173	±	23
$gg \rightarrow H$	1.75	±	0.30
WH	1.39	\pm	0.18
ZH	0.693	\pm	0.090
VBF	0.70	±	0.11
Total Signal	4.53	±	0.52
Data		169	

Apply selection cut:

- 2 opposite sign isolated leptons

High Mass Higgs: $H \rightarrow WW$

- di-lepton opening angle
- significant MET

Then use combinations of ME and NN depending on jet bin

High Mass Higgs: add other final states

Same sign leptons

Two lepton Pt>20 GeV No forward electrons Njets≥1 No MET cut

Add 5% sensitivity

CDF Run II Preliminary	ſĹ	$\int \mathcal{L} = 3.6~{ m fb}^{-1}$		
$M_H = 160 \ { m GeV}/c^2$				
tī	0.11	±	0.03	
DY	11.99	\pm	3.65	
WW	0.020	\pm	0.005	
WZ	6.82	\pm	0.93	
ZZ	1.44	\pm	0.20	
W+jets	22.45	\pm	6.73	
$W\gamma$	3.23	\pm	1.00	
Total Background	46.07	±	8.02	
WH	1.19	±	0.16	
ZH	0.19	\pm	0.02	
Total Signal	1.38	±	0.18	
Data		41		

33

High Mass Higgs: Systematics

Two classes

Rate Systematics:

 \checkmark affect only templates normalization, do not affect the shapes

- dominant theoretical cross section uncertainties, 10-30%
- > Shape systematics:
 - modify the shape of NN output
 - Found negligible up to now
 (PDF modeling, Energy scale, Pt scale)

High Mass Higgs Combination

Latest gg->H cross section (Florian and Grazzini)

- Latest PDF MSTW2008
- NNLL QCD

NLO b-quark treatment
 VH from hep-ph/0406152
 VBF from TEV4LHC

M _H =160	Expected	Observed
	limit	limit
0 jets	2.39	2.35
1 jet	2.89	2
2+ jets	3.71	6.34
SS +jet	7.22	6.6
Combined	1.52	1.37

High Mass Higgs: $H + X \rightarrow II + missing Et$

Analysis separated by lepton type: ee, µµ, eµ Apply minimal requirements then use NN

Sample composition input to NN

Channel	ee	еμ	μμ
Luminosity (fb ⁻¹)	4.2	4.2	3.0
Z	108	13	3987
Diboson	84	162	127
tt	40	82	13
W+jets	98	79	134
Multijets	2	1	64
Total Background	332	337	4325
Data	336	329	4084
Signal (M _H =165 GeV)	6.1	12.2	4.9

High Mass Higgs Combination

Use the same systematic of CDF, same inputs

Tevatron Combination

Not just a J2 factor, many systematics are correlated between CDF and D0 Tevatron Run II Preliminary, L=0.9-4.2 fb⁻¹

We exclude SM Higgs in a mass range 160-170 GeV at 95% CL

Future Prospects: Low Mass

Includes "standard analysis" improvements:

- extended b-tag "a la top"
- better background understanding more sophisticated analysis
- more sophisticated analysis
 techniques
 - It does not include new triggers: - more efficient MET
 - b-tag trigger

Efficiency respect to double tag events

Future Prospects: High Mass

Plan to include:

- new lepton triggers (by the summer)
- lower cut on MET (by summer)
- tri-leptons (summer)
- lepton isolation (next year)
- low di-lepton mass

