Search for new Physics at CDF

Outline:

- Introduction
- Search for new Physics
 - Model driven
 - Signature based
 - General searches

SUperSYmmetry

- Standard Model is theoretically incomplete
- SUSY: spin-based symmetry that relates Fermions to Bosons

Q|Boson> = Fermion

Q|Fermion> = Boson

Define R parity: (-1)^{3(B-L)+2s} R=1 SM particles R=-1 MSSM partners

If conserved, provides Dark Matter Candidate (Lightest Supersymmetric Particle)

Standard particles

Leptons

Quarks

 No SUSY particles found yet
 SUSY must be broken -> models depend on many parameters even in "minimal" models

SUSY particles

v.

gaugino/higgsino mixing

SQuarks

SLeptons

a

ĩ

Carriers

Search for New Physics

The breaking mechanism determines the phenomenology and the search strategies:

Model Driven,

- theory driven, optimize analysis to the searches
- explore large region of parameter space

<u>Signature Based:</u>

- search for unusual final states (not SM)
- optimize selections to minimize background
- interpret the results in term of several models <u>Global Searches</u>:
- maximize the parameter space coverage
- less sensitivity but can give hint on possible deviation from SM

Experimental Approach

- Lepton-only final states
- e/µ identification well understood
- τ id more complex
- Straightforward and efficient approach to search for anomalies
- ...+ MET and Photons
 - wealth of models and exotic process
 - detector effect are important, need to be understood
- ...+ Jets and Heavy Flavor
 - more complex signatures
 - Need to maintain high S/B

Model Driven Searches

Standard SuSy: mSUGRA

 mSUGRA: minimal supergravity grand unification model provides a good reference model (5 parameters)

- Squarks and

- Consider production with highest cross sections
 - Small masses (chargino/neutralinos) or $m_0 = 100 GeV, m_{1/2} = 300 GeV$ large couplings (squark/gluino)

$\widetilde{\chi}^{\circ}_{2}\widetilde{\chi}^{\pm}_{1}$ Production: Trileptons

Z+y, DY, di-bosons

$\widetilde{\chi}^{\circ}_{2}\widetilde{\chi}^{\pm}_{1}$ Production: Trileptons

Control regions in MET vs M_{ee} phase-space

Background validation done in the control region 76<M₁₁<106

Good agreement with SM background

Data compatible with SM Set limits in the mSUGRA model

Benchmark scenario: $A^0=0$, tan $\beta=3$, $\mu > 0$

 $\widetilde{\chi}^{\circ}_{2}\widetilde{\chi}^{\pm}_{1}$ mSUGRA limit

Use common scenario $tan(\beta)=3$, $A_0=0$, $\mu>0$ Limits depend on the relative masses: $m_{\chi^2} > m_{\Gamma}$ increases BR to e/μ $m_{\chi^2} \approx m_{\Gamma}$ reduces acceptance to lowest- p_T lepton Donatella Lucchesi

Search for squark and gluino

Process: $\widetilde{q}\widetilde{q} \rightarrow qq\chi_{1}^{0}\chi_{1}^{0}$ (m_q < m_g) $\widetilde{q}\widetilde{g} \rightarrow qqq\chi_{1}^{0}\chi_{1}^{0}\chi_{1}^{0}$ (m_q < m_g) $\widetilde{g}\widetilde{g} \rightarrow qqq\chi_{1}^{0}\chi_{1}^{0}\chi_{1}^{0}$ (m_q > m_g)

Final states with Jets+MET

- MET > 70 GeV
- At least two/three/four jets
 with ET > 25 GeV
- Δφ (MET-jet)> 0.7
 (first two/three leading jets)
- No reconstructed Z from tracks

Search for squark and gluino: Results

11

Signature Based Searches

Di-leptons searches:Starting Point

Search for resonances in ee/µµ above 150 GeV

- lepton id well under control
- Z peak used as reference
- clean events

Events/(10 GeV/o

10

 10^{2}

101

10

200

300

400

600

500

Donatella Lucchesı

Di-leptons searches:New Phyiscs searches

New Physics limits

- understand very well data spectrum in term of SM process
- calculate new signal acceptances and trigger efficiencies
- derive the number of expected new physics events
- if no events found in data calculate 95% CL cross section limit and set particle mass limit CDF Run II Preliminary

CDF Run II Preliminary

Di-leptons searches:New Phyiscs searches

New Physics limits

- understand very well data spectrum in term of SM process
- calculate new signal acceptances and trigger efficiencies
- derive the number of expected new physics events
- if no events found in data calculate 95% CL cross section limit and set particle mass limit CDF Run II Preliminary

CDF Run II Preliminary

Tau final states searches

$\Phi \rightarrow \tau \tau$ searches

In the Minimal Supersymmetric Standard Model at high tan(β) higgs neutral sector simplifies: A and h/H become degenerate = Φ Φ ->bb (90%), Φ -> $\tau^+\tau^-$ (10%). Φ -> $\tau^+\tau^-$ searched looking at visible mass:

Di-jets Final States:mass bumps

Selects events with two high P_{+} jets Look for bumps in M_{ii} cross section

Excited quarks

Dijet mass spectrum from QCD and excited guark production. Excited guark mass=300, 500, 700, 900, 1100 GeV/c^2 . Excited quark decaying to a quark-gluon pair simulated with Pythia

Di-jets Final States:mass bumps cont'd

New particles

Red:

limits on the Randall-Sundrum graviton and color-octet technirho

<u>Black</u>

limits on the excited quark, ⁵¹⁰¹ axigluon, flavor-universal coloron, ¹⁰² and E6 diquark

These limits are compared with theoretical predictions for these particles production.

Di-jets Final States:bb

Inclusive bb is hard due to QCD background Require a 3^d b-jets

Good compromise between signal and background rate

 M_{12} , inv. mass of 2 leading jets used to separate signal from background

Result:

Photon + MET

Photon+MET rare in Standard Model - sensitive to new high-energy invisible particles. Photons can be radiated by incoming parton or be produced in the decay chains of new particles. One model: Large Extra Dimensions.

Large Extra Dimensions (LED) by Arkani-Hamed, Dimopoulos, and Dvali (ADD): qq->yG, qq->qG,qq->qG,qq->qG

Photon + MET:Results

Leptoquarks searches

Leptoquarks are proposed as link among quarks and leptons, with fractionally-charged color-triplet bosons carrying both lepton and baryon quantum numbers. Leptoquarks appear in a wide range of theories, including SU(5) grand unification, superstrings, SU(4) Pati-Salam, and compositeness models.

1 st Generation	2 nd Generation	3 rd Generation	
LQ LQ→e⁻e⁺ qq	LQ <u>LQ</u> →µ⁺µ⁺q q	LQ LQ→τ⁺τ qq	Final states with:
LQ <mark>LQ</mark> →e [±] v _e q _i q _j	$LQ \ \overline{LQ} \rightarrow \mu^{\pm} \nu_{\mu} q_{i} q_{j}$	$LQ \ \overline{LQ} \rightarrow \tau^{\pm} \nu \ q_i q_j$	-jets -leptons
LQ LQ→v _e v _e qq	LQ LQ→v _µ v _µ qq	LQ LQ→v,v,qq	-neutrinos (MET)

Leptoquarks searches cont'd

- First generation: * di-electrons + jets * electron + MET + jets * MET + jets
- Second generation: * di-muons + jets * muon + MET + jets * MET + jets

Third generation: * di-taus + jets * tau + MET + jets * MET + jets Main background: W+jets, top, Z+jets

Main background: W+jets, top, Z+jets

Main background: W+jets, Z, QCD

Leptoquarks searches: Results

Non Standard SuSy Searches: $B_s - \mu\mu$

A second interesting class of models that predicts enhanced rates of Bs $\rightarrow \mu\mu$ decay are SO(10) symmetry breaking models

Sensitive to new physics:

SUSY particles show up in loops

(or direct decays if R_p violation)

Non Standard SuSy Searches: $B_s - \mu \mu$

Number of candidates B_{g} -> $\mu\mu$ normalized to the number of B^{+} -> $J/\psi K^{+}$

$B_{s} \rightarrow \mu \mu$ Results

$\mathcal{B}(B_s \rightarrow \mu \mu)$ and Cosmological Connection

Model Independent Searches

Model Independent Searches

Wide searches for deviation from Standard Model: Vista (model independent), Sleuth(quasi model indepent)

$ ext{CDF}$ Run II Preliminary (2.0 fb ⁻¹)				CDF Run II	CDF Run II Preliminary (2.0 fb^{-1})		
Final State	Data	Background	$\sigma \sigma_t$	SLEUTH Final	State \mathcal{P}		
$\mathrm{b}e^{\pm}p$	690	817.7 ± 9.2	-4.3 - 2.7				
γau^{\pm}	1371	1217.6 ± 13.3	+4.0 + 2.2	$\ell^+\ell'^+$	0.00055		
$\mu^{\pm} au^{\pm}$	63	35.2 ± 2.8	+3.7 + 1.7	$\ell^+\ell'^+ \not\!$	0.0021		
b2j p high- Σp_T	255	327.2 ± 8.9	-3.7 - 1.7		0.0049		
$2\mathbf{j}\tau^{\pm}$ low- Σp_T	574	670.3 ± 8.6	-3.6 - 1.5	$\ell + \ell + p$	0.0042		
$3j\tau^{\pm}$ low- Σp_T	148	199.8 ± 5.2	-3.5 - 1.4	$\ell^+\ell^-\ell'p$	0.0047		
$e^{\pm}p\!\!\!/ au^{\pm}$	36	17.2 ± 1.7	+3.5 + 1.4	$\ell^+ \tau^+ \phi$	0.0065		
$2j\tau^{\pm}\tau^{\mp}$	33	62.1 ± 4.3	-3.5 - 1.3	° ' P	010000		
$e^{\pm}\mathrm{j}$	741710	764832 ± 6447.2	-3.5 - 1.3		· · · · · ·		
$j2\tau^{\pm}$	105	150.8 ± 6.3	-3.4 - 1.2	Most discre	epant tinal states		

Most relevant searches

Model Independent Searches: Results

