Program

- Accelerators and detectors
- QCD Measurements
- b and c quark properties
- top properties
- new physics searches

Colliders and Detectors

Contents

Introduction
Collider history
Recent Collider
Detectors for collider physics

Why Colliders

Particles with high mass and low production cross section had/have to be experimentally discovered to verify the validity of the Standard Model

Colliders have been and are a very powerful tool.

Colliders vs. fixed target: Rate

Fixed target:
Beam with n_{1} particles per second
Target of length I with density particles n_{2} per m^{3}
For each single particle the number of interaction in the target:

$$
N=\sigma_{\mathrm{int}} \cdot n_{2} \cdot 1
$$

where $\sigma_{\text {in }}$ is the interaction cross section.
If the target is larger than the beam, the rate R

$$
R=d N / d t=\sigma_{i n t} \cdot n_{1} \cdot n_{2} \cdot l
$$

$$
R=\sigma_{i n t} \cdot L
$$

$L=n_{1} \cdot n_{2} \cdot l$ is the luminosity $\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]$
The luminosity depends only on target and beam

Colliders vs. fixed target: Rate (2)

Colliders

Two beams with n_{1} and n_{2} particles per area

$$
\begin{aligned}
& \frac{d n_{1}}{d s}=\frac{n_{1}}{2 \pi \sigma_{x} \sigma_{y}} e^{-\left(x^{2} / 2 \sigma_{x}^{2}+y^{2} / 2 \sigma_{y}^{2}\right)} \\
& \frac{d n_{2}}{d s}=\frac{n_{2}}{2 \pi \sigma_{x} \sigma_{y}} e^{-\left(x^{2} / 2 \sigma_{x}^{2}+y^{2} / 2 \sigma_{y}^{2}\right)}
\end{aligned}
$$

Gaussian distribution normalized to number of particles

Number of particles n_{1} in an area dxdy $d n_{1}|x, y|=\frac{n_{1}}{2 \pi \sigma_{x} \sigma_{y}} e^{-\left(x^{2} / 2 \sigma_{x}^{2}+y^{2} / 2 \sigma_{0}^{2}\right)} \cdot d x d y$
The probability of interaction of a particle in beam 1 in (x, y) is the number of particles of beam 2 in the area $\sigma_{\text {in }}$

$$
p(x, y)=\mathrm{dn}_{2}(x, y)=\frac{n_{2}}{2 \pi \sigma_{x} \sigma_{y}} e^{-\left(x^{2}\left|2 \sigma_{x}^{2}+y^{2}\right| 2 \sigma_{y}^{2}\right)} \cdot \sigma_{\text {int }}
$$

Colliders vs. Fixed Target: Rate(3)

Total number of interaction per bunch per crossing $\mathrm{N}_{\text {int }}$:

$$
\begin{aligned}
& N_{\text {int }}=\int d n_{l}(x, y) p(x, y)=\sigma_{\text {int }} \frac{n_{1} n_{2}}{4 \pi^{2} \sigma_{x}^{2} \sigma_{y}^{2}} \int e^{-\left(\frac{x^{2}}{\sigma_{x}^{2}}+\frac{y^{2}}{\sigma_{y}^{2}}\right)} d x d y \\
& =\sigma_{\text {int }} \frac{n_{1} n_{2}}{4 \pi^{2} \sigma_{x}^{2} \sigma_{y}^{2}}\left(\int_{-\infty}^{+\infty} d x \cdot e^{-x^{2} \sigma_{x}^{2+\infty}} \int_{-\infty}^{\infty} d y \cdot e^{-y^{2} \sigma_{y}^{2}}=\sigma_{\text {int }} \frac{n_{1} n_{2}}{4 \pi \sigma_{x} \sigma_{y}}\right. \\
& \int_{-\infty}^{+\infty} d x e^{-\frac{x^{2}}{\sigma_{x}^{2}}}=\sqrt{\pi} \sigma \frac{1}{\sqrt{2 \pi} \sigma \sqrt{2}} \int d x e^{-\frac{x^{2}}{2 \mid \sigma \sqrt{2})^{2}}}=\sqrt{\pi} \cdot \sigma
\end{aligned}
$$

Given k packets in each bunch

$$
\begin{aligned}
& R=N_{\mathrm{int}} \cdot \mathrm{f} / \mathrm{k}=\sigma_{\mathrm{int}} \cdot L=\frac{n_{1}}{4} \\
& \Rightarrow \quad L=\frac{n_{1} n_{2} f}{4 \pi \sigma_{x} \sigma_{y} k}
\end{aligned}
$$

Colliders vs. Fixed Target: Rate

Assumptions:

- same C.M. Energy
- same interaction cross section (e.g. $\sigma_{\text {in }} \sim 1 \mu b=1 \cdot 10^{-24} \mathrm{~cm}^{2}$)

Fixed target

$$
\left.\xrightarrow[<1>]{ } \begin{array}{l}
n_{1}=\text { incident beam density }=10^{12} \text { particles } \mathrm{s}^{-1} \\
\rho=\text { target density }=1 \mathrm{gr} / \mathrm{cm}^{3} \\
\text { I }=\text { target thickeness }=1 \mathrm{~cm} \\
\sigma_{\text {int }}=1 \mu \mathrm{~b}
\end{array}\right\} \begin{aligned}
& \text { A }=\text { Avogadro number }=6 \times 10^{23} \\
& R=n_{1} \cdot n_{2} \cdot l \cdot \sigma_{i}=n_{1} \cdot \rho \cdot l \cdot A \cdot \sigma_{i}=6 \times 10^{5} \mathrm{~s}^{-1}
\end{aligned}
$$

Colliders vs. Fixed Target: Rate cont'd

Collider

$n_{1}=n_{2}=$ beam particles
$\begin{aligned} & \mathrm{i}_{1}=\mathrm{i}_{2}=50 \mathrm{~mA} \rightarrow \mathrm{n}_{1}=n_{2}=\mathrm{i}_{1,2} / \text { ef }=50 \cdot 10^{-3} /\left(1.6 \cdot 10^{-19} \cdot 10^{6}\right)= \\ & 3.1 \times 10^{11}\end{aligned}$
$F=$ transverse section of beams $=0.1 \times 0.01 \mathrm{~cm}^{2}$
$B=$ bunch number= 1
$f=$ revolution frequency $=10^{6} \mathrm{~s}^{-1}$

$$
R=\frac{n_{1} \cdot n_{2} \cdot f}{F} \cdot \sigma_{\mathrm{int}}=\frac{i_{1} \cdot i_{2}}{f \cdot e^{2} \cdot F} \cdot \sigma_{\mathrm{int}} \cong 100 s^{-1}
$$

Center of Mass Energy

Beam/target particles interaction:

Fixed target

$P_{2}=0$ in the lab. system

$$
E_{C M}^{2}=m_{1}^{2}+m_{2}^{2}+2 E_{1} \cdot m_{1}
$$

Collider

Collinear beams:

$$
E_{c M}^{2}=m_{1}^{2}+m_{2}^{2}+4 E_{1} E_{2}
$$

sCenter of Mass Energy cont'd

Luminosity

$$
L=\frac{n_{1} n_{2} f B}{4 \pi \sigma_{x} \sigma_{y}}=\frac{N^{2} f B}{A} \quad \begin{aligned}
& n_{1}=n_{2}=N, B=\text { number of bunches } \\
& A=\text { interaction area }
\end{aligned}
$$

Luminosity determination

- crossing angle:
often used to avoid unwanted collisions in machines with many bunches like LHC that has ~3000 closely spaced bunches. At LHC the crossi angle is $\sim 300 \mu \mathrm{rad}$. at ISR it was 18°

- transverse offset: beams do not collide head-on, but with a small transverse offset

Luminosity - ?

$$
\sigma=\sqrt{\beta(s) \cdot \epsilon}
$$

- hourglass effect in the basic model, beam particle densities are assumed uncorrelated in the transverse and longitudinal plane with the transverse beam size constant. In the real machine the beam size is minimal at the interaction point and increases with the distance.

- non-Gaussian beam profiles

Integrated luminosity:
$L_{i}=\int_{0}^{T} L(t) d t \quad T=$ sensitive time, ie no dead time
Realistic model of the luminosity as function of time $L(t)=L_{0} \mathrm{e}^{-\frac{t}{\tau}}$

Optimization of Integrated Luminosity

In a data taking the goal is to optimize the integrated luminosity. Two phases:

- preparation phase with a time, t_{p}
- run period, t_{r}, free parameter; users decide how long the run is assuming $L(t)=L_{0} \mathrm{e}^{\tau} \quad\langle(\dagger)\rangle$ has to be maximized
$<\mathcal{L}\rangle=\frac{\int_{0}^{t_{r}} \mathcal{L}(t) d t}{t_{r}+t_{p}}=\mathcal{L}_{0} \cdot \tau \cdot \frac{1-e^{-t_{r} / \tau}}{t_{r}+t_{p}}$
it can be solved to obtain $t_{r} \approx \tau \cdot \ln \left(1+\sqrt{2 t_{p} / \tau}+t_{p} / \tau\right)$
Assuming LHC parameters $\dagger_{p} \sim 10 h, T \sim 15 h \rightarrow \dagger_{r} \sim 15 h$

A bit of History

1961 AdA, Frascati Italy 1964 VEPP 2 Novosibirsk, URSS
1965 ACO, Orsay, France
1969 ADONE, Frascati
1970 ISR, CERN Swiss
1971 CEA, Cambridge, USA
1972 SPEAR Stanford USA 8 GeV
1974 DORIS, Amburg, Germany
1975 VEPP-2M Novosibirsk, URSS
1978 PETRA Amburgo Germany 45 GeV
1979 CESR Cornell USA
1980 PEP Stanford USA
1981 Sp-parS CERN Swiss 630 GeV
1982 TEVATRON Fermilab USA 2TeV
1989 SLC, Stanford USA 90 GeV
1989 BEPC, Bejin china
proton-proton
electron-proton
proton-antiproton

Hadron Colliders

ISR: p-p and first p-pbar

$$
\begin{aligned}
& \sqrt{s}=63 \mathrm{GeV}(1970-1980)(\mathrm{DC}) \\
& \sqrt{s}=630 \mathrm{GeV}(1980-1991) \\
& \sqrt{s}=1.960 \mathrm{TeV}(1978-2011) \\
& \sqrt{s}=14 \mathrm{TeV}(1998-)
\end{aligned}
$$

SpS: p-pbar
Tevatron: p-pbar
LHC: p-p
ISR(Intersecting Storage Rings)
1971: first

Fig. 2.1. Schematic view of the PS and ISR rings.

ISR: First Publication

Received May $8^{\text {th }} 1971$
 CERN ISR BT/74 11

europenn orcanization for muclear researce
by
The ISR Staff, CERM

Geneva - 11th March, 1971

Fig. 3

Hadron Colliders: ISR

Standard Model just at the begin, most phenomenology
π, k, p production cross sections on protons seem constant with E Most important results:
$>$ measurement of $\sigma(\mathrm{pp})$, increasing with energy. Later it was determined that all the hadronic cross sections increase at energy of IRS

3. Total cross sections on protons. Only momentum dependent errors are shown [4.2].

Hadron Colliders: ISR

Standard Model just at the begin, most phenomenology
π, k, p production cross sections on protons seem constant with E Most important results:
$>$ measurement of $\sigma(\mathrm{pp})$, increasing with energy
$>$ determination of $\mathrm{d} \sigma / \mathrm{d} \dagger$ (quadri-momentum). I \dagger follows optical-diffractive model

Difference of $p-p$ and $p-p$ cross section, at high energies goes to zero

Fig. 43 Measurements of the total cross-section difference, $\sigma_{T}(\mathrm{p} \overline{\mathrm{p}})-\sigma_{\mathrm{T}}(\mathrm{pp})$, vs. $\mathrm{p}_{1 \mathrm{ab}}$
G. Bellettini

Hadron Colliders: ISR

Standard Model just at the begin, most phenomenology
π, k, p production cross sections on protons seem constant with E Most important results:
$>$ measurement of $\sigma(\mathrm{pp})$, increasing with energy
$>$ determination of $\mathrm{d} \sigma / \mathrm{d} t$ (quadri-momentum).
It follows optical-diffractive model
$>$ first hint of jets: excess of secondary tracks at (high) transverse energy

G. Bellettini

Hadron Colliders: SpS (Super Proton Synchrotron)

1982 CERN was able to produce, accumulate, cool and accelerate pbar thanks to Simon Van der Meer p PRODUCTION

Fig. 5. General layout of the $\mathrm{p} \overline{\mathrm{p}}$ colliding scheme, from Ref. [9]. Protons ($100 \mathrm{GeV} / \mathrm{c}$) are periodically extracted in short bursts and produce $3.5 \mathrm{GeV} / \mathrm{c}$ antiprotons, which are accumulated and cooled in the small stacking ring. Then \dot{p} 's are reinjected in an RF bucket of the main ring and accelerated to top energy. They collide head on against a bunch filled with protons of equal energy and rotating in the opposite direction.

UA1 and UA2 Detectors

The detectors UA1 \& UA2
Underground Area 1,2: 35 meters underground

the UA2' calorimeters.

SpS Results

The Standard Model is a reality:

- jets identification
- measurements of hadronic cross section
- discovery of W and Z bosons

ISR just
under threshold for jets production

SpS Results: W discovery

First W candidate

Fig. 15b. The same as picture (a), except that now only particles with $\mathrm{Pr}_{\mathrm{T}}>1 \mathrm{GeV} / \mathrm{c}$ and

Showing all tracks
it is difficult to declare it is a W Cutting tracks with $\mathrm{E}<1 \mathrm{GeV}$ there is only the e

SpS Results: W \& Z discovery

338

Fondo atteso da non-W e da $\mathrm{W} \rightarrow \tau$ v

e+e-invariant: the Z^{0}

Fig. 3.9. (a) The distribution of $e^{\prime} e^{*}$ pairs, recognized as $Z^{*} \rightarrow e^{*} e^{+}$processes (UA1 [211). (b) The $e^{+} e^{-}$events, collected by UA2 [22].

Hadron Colliders: Tevatron

The first super-conducting syncroton Electric field to accelerate particles Magnetic field to drive and focus particles using dipoles and quadrupoles

Complex chain:

FERMILAB'S ACCELERATOR CHAIN

$\mathrm{p} \square \mathrm{D}^{2}$
 1.96 TeV

Booster

Tevatron:
p/anti-p beams up to 980 GeV , providing a center of mass energy of 1.96 TeV

Tevatron bunch structure

$2.6 \mu s$

The new hadron Colliders: LHC

1982 : First studies for the LHC project
1983 : ZO/W discovered at SPS proton antiproton collider (SppbarS)
1989 : Start of LEP operation (Z/W boson-factory)
1994 : Approval of the LHC by the CERN Council
1996 : Final decision to start the LHC construction
2000 : Last year of LEP operation above 100 GeV
2002 : LEP equipment removed
2003 : Start of LHC installation
2005 : Start of LHC hardware commissioning
2008 : Start of (short) beam commissioning Powering incident on 19th Sept.
2009 : Repair, re-commissioning and beam commissioning
2010 : LHC starts again after technical stop and first collisions at 7 TeV
2012 : Higgs discovery
2013 : First long shutdown
2015 : LHC back in bussines at 13 TeV

The new hadron Colliders: LHC CERN Accelerators
 (not to scale)

Start the protons out here

The new hadron Colliders: LHC

How particles interacts with matters

Particles interacts with matter depending on the type of particle and the energy.
We use the energy deposited by the particle to identify the it.
Charge Particle \rightarrow collision with atoms and atomic $e \rightarrow$ ionization and excitation of atoms
Neutral particle \rightarrow interaction with material \rightarrow charge particle production \rightarrow ionization and excitation of atoms

Summary of the energy loss mechanisms:

- multiple scattering
- Bethe-Block
- $e^{ \pm}$
- photons

Bethe-Block

The mean energy loss of a charged particle:

$$
-\frac{d E}{d x}=\rho 4 \pi N_{0} r_{e}^{2} m c^{2} \frac{Z}{A} z^{2} \frac{1}{\beta^{2}}\left[\frac{1}{2} \ln \frac{2 m c^{2} \beta^{2} \gamma^{2} T_{\max }}{I^{2}}-\beta^{2}-\frac{\delta(\gamma)}{2}\right]
$$

1. It depends on the charge of the incident particle (z^{2})
2. It depends on the average excitation potential of the material (I)
3. It goes as $1 / \beta^{2}$ for increasing β with a minimum around $\beta \gamma \sim 3 \div 4$ which is almost the same for all particles of the same charge, then grows again $\left(\log \left(\beta^{2} \gamma^{2}\right)\right.$ dominates) relativistic rise
4. The relativistic raise stops and it reachs a plateau (Fermi plateau)

Figure 26.3: Mean energy loss rate in liquid (bubble chamber) hydrogen, gascous helium, carbon, aluminum, iron, tin, and lead. Radiative effects, relevant for muons and pions, are not included. These become significant for muons in iron for $\beta \gamma \geq 1000$, and at lower momenta for muons in higher- Z absorbers. See Fig. 26.20.

Energy loss fluctuations

Thick absorber: many interactions \rightarrow the energy loss is distributed as a Gaussian.
Thin absorber: Landau distribution or/and Vavilov distribution

Cerenkov Effect

The Cerenkov radiation is emitted when a charged particle moves in a material medium faster than the speed of light in the same material, $\beta c=v>c / n$ where v is the speed of the particle and n is the index of refraction of the material.

The light is emitted at fixed angle

Cerenkov Effect

The number of photons emitted per unit length and unit wavelength:

$$
\begin{aligned}
& \frac{d^{2} N}{d x d \lambda}=\frac{2 \pi z^{2} \alpha}{\lambda^{2}}\left(1-\frac{1}{\beta^{2} n^{2}}\right)=\frac{2 \pi z^{2} \alpha}{\lambda^{2}} \sin ^{2} \theta_{C} \\
& \frac{d^{2} N}{d x d \lambda} \propto \frac{1}{\lambda^{2}} \quad \text { with } \lambda=\frac{c}{v}=\frac{h c}{E} \quad \frac{d^{2} N}{d x d E}=\text { const } .
\end{aligned}
$$

It decreases as function of wavelength

It is constant as function of E

Electrons energy loss

Electrons and positrons lose energy by collisions with material atoms described by the Bethe-Block formula (modified) and by Bremsstrahlung.

$$
(\mathrm{dE} / \mathrm{d} x)_{\mathrm{tot}}=(\mathrm{dE} / \mathrm{d} x)_{\mathrm{rad}}+(\mathrm{dE} / \mathrm{d} x)_{\mathrm{coll}}
$$

The critical energy E_{c} is defined $(d E / d x)_{\text {rad }}=(d E / d x)_{\text {coll }}$ $E_{c}=800(\mathrm{MeV}) /(Z+1.2)$
For high values of $\gamma\left(E>E_{c}\right)$ the dominant process is the Bremsstrahlung: $d E / d x=E / X_{0}$ from which: $E=E_{0} e^{-x / x_{0}}$ that defines the radiation length: after a legth $x=X_{0}$ the energy drops by $1 / e$

Multiple Scattering

Elastic scattering of particle on nucleus material, the particle does not lose energy but changes direction (Coulomb scattering)

The average angle of scattering is zero in the multiple scattering but the dispersion can be calculated

$$
\begin{aligned}
& \left\langle\theta_{m s}^{2}\right\rangle=\frac{x}{X_{0}} \frac{4 \pi}{\alpha} \frac{m^{2}}{\beta^{2} p^{2}} \text { as function of energy } \quad \mathrm{X}_{0}=\text { radiation length } \\
& \theta_{m s}=\frac{E_{s}}{\beta c p} \sqrt{x X_{0}} \quad\left(E_{s}=\sqrt{\frac{4 \pi}{\alpha}} \cdot m c^{2} \approx 21 \mathrm{MeV}\right)
\end{aligned}
$$

If the particle goes through a "small" number of X_{0} more accurate:

$$
\theta_{m s}=\frac{19.2}{\beta c p}[\mathrm{MeV}] \sqrt{x / X_{0}}\left(1+0.038 \ln \left(x / X_{0}\right)\right)
$$

When the particle hits the nucleus electron \rightarrow small particle deviation Possible e extraction (delta rays)

Photons energy loss

Photons interact with matter via:

- photoelectric effect
- Compton effect Rayleigh
- pairs production

At high energy the pairs production dominates

Compton

Electromagnetic Showers

Combining what we have seen on $e^{ \pm}$and γ interaction we can understand how high energy em particles interact with matter forming showers

Electron shower in a cloud chamber with lead absorbers

Electromagnetic Showers

Simple Model

Assume only Bremsstrahlung and pairs production
After a distance \dagger (distance in radiation length) there will be $N(t)$ particles each with an average energy $E(t)$:

$$
N(t)=2^{t} \quad E(t) / \text { particle }=E_{0} \cdot 2^{-t}
$$

The process stops when $E(\dagger)<E_{c}$

$$
t_{\max }=\frac{\ln E_{0} I E_{c}}{\ln 2} \quad N_{\text {total }}=\sum_{t=0}^{t_{\text {max }}} 2^{t}=2^{\left(t_{\text {max }}+1\right)}-1 \approx 2 \frac{E_{0}}{E_{c}}
$$

For $\dagger>\dagger_{\text {max }}$ Compton and photoelectric effects dominate

Electromagnetic Showers

Longitudinal dimension:
$\frac{d E}{d t} \propto t^{\alpha} e^{-t}$
The shower maximum: $t_{\max }=\ln \frac{E_{0}}{E_{c}} \frac{1}{\ln 2}$
The 95% of the shower is in $t_{95 \%} \approx t_{\text {max }}+0.08 Z+9.6$

Transversal dimension:

The spread of the shower is due to the multiple scattering not to the emission angles of particles. The 95% of the shower is contained within a distance of about $2 \mathrm{R}_{\mathrm{M}}$:
$R_{M}=\frac{21 \mathrm{MeV}}{E_{c}} X_{0}\left[\mathrm{gr} / \mathrm{cm}^{2}\right] \quad$ Moliere Radius
Example: $E_{0}=100 \mathrm{GeV}$ in lead glass
$E_{c}=11.8 \mathrm{MeV} \rightarrow \dagger_{\max } \sim 13, \dagger_{95 \%} \sim 23$,
$X_{0} \sim 2 \mathrm{~cm}, R_{M}=1.8 \cdot X_{0} \sim 3.6 \mathrm{~cm}$

August 24, 2015

Hadronic showers

High energy hadrons interact with matter via nuclear interactions
hadron p, n, π, K, \ldots

multiplicity $\propto \ln (E)$
$p_{t} \approx 0.35 \mathrm{GeV} / \mathrm{c}$

The products are: nucleus fragments + secondary particles

At high energy the cross section almost does not depend on the $E_{\text {in }}$ and in analogy to X_{n} we define the interaction length $\lambda_{1}=A\left(N_{A} \sigma_{\text {toata }}\right) \approx A^{k}$

The shower has the EM and hadronic component.
The longitudinal dimension:

$$
\begin{array}{ll}
t_{\max }\left(\lambda_{I}\right) \approx 0.2 \ln E[\mathrm{GeV}]+0.7 & \text { Iron: } \mathrm{a}=9.4 \\
t_{95}(\mathrm{~cm}) \approx a \ln E+b & \lambda_{\mathrm{a}}=16.7 \mathrm{~cm}
\end{array}
$$

Corso Dottorato 2015

$$
\begin{aligned}
& E=100 \mathrm{GeV} \\
& \rightarrow t_{95 \%} \approx 80 \mathrm{~cm}
\end{aligned}
$$

Detectors: Fundamental Principles

Detectors used at accelerator are complex devices.

Detector for each particles

CMS Detector

The Compact Muon Solenoid (CMS)

Jet Energy determination

Jet energy corrections are needed to scale the measured energy of the jet back to the energy of the final state particle level jet:

- non-linearity effects and energy loss in the un-instrumented regions
- multiple interactions
- underlying event
- out of cone

Low Pt: Dominated by MC/data uncertainties High Pt: Dominated by calorimeter simulation uncertainties

Neutrino Identification

Not enough material in collider detectors to have neutrino interactions. Neutrinos are identified via the transverse missing energy:

$$
\vec{E}_{t}=\sum_{\text {towers }} E_{i} \sin \left(\theta_{i}\right) \hat{n}_{i}
$$

Particle Identificarion

DIRC at Babar

RICH at LHCb

August 24, 2015
Co

kinematically identified

Hadron Collider: Trigger

The trigger selects events that are then written to permanent support (tape).

- The initial rate (many MHz) is reduced to few kHz .
- Usually it is structured in "levels".
- Each level must keep the selected events until the decision is taken.
- The first levels are synchronous, the system time correspond to the inter-bunch time.
- The last levels are asynchronous running non computer farm.

Hadron Collider: Trigger

Level " 0 ": Event rate: $10^{9} \mathrm{~Hz}$. Detector channels: $10^{7}-10^{8}$
DAQ is running constantly at 40 MHz . Data flow $\approx 10^{16} \mathrm{bit} / \mathrm{sec}$

Level-1 trigger: coarse selection of interesting candidate events within a few $\mu \mathrm{s}$. L1-rigger output rate $\approx 100 \mathrm{kHz}$ Implementation: specific hardware (ASICS, FPGA, DSP)

Level-2 trigger: refinement of selection criteria within $\approx 1 \mathrm{~ms}$. L2 output rate: $\approx 1 \mathrm{kHz}$
Implementation: fast processor farms.

Level-3 trigger: identification of the physical process. Writing data to storage medium.
L3- output rate: $10-100 \mathrm{~Hz}$ Event size: ≈ 1 Mbyte.
Implementation: fast processor farms.

Hadron Collider: Trigger

Atlas Level 1

Hadron Collider: HLT τ Trigger @CMS

Regional Tracking: Look only in Jet-track matching cone Conditional Tracking: Stop track as soon as: If $\mathrm{P}+<1 \mathrm{GeV}$ with high C.L.

Reject event if no "leading track found" (jet is not charged)

Regional Tracking: Look only inside Isolatio। Conditional Tracking: Stop track as soon as If $\mathrm{Pt}<1 \mathrm{GeV}$ with high C.L.

Reject event as soon as additional track found (jet is not isolated)
 Fast enough at low luminosity for full L1 rate; at high luminosity may need a moderate Calorimeter pre-selection factor to reduce rate

Ready for the Physics!

