Fisica Moderna-Relativitá (18/9/2018)

Un fotone γ urta un protone p^+ inizialmente in quiete in un sistema di riferimento inerziale S dando luogo in soglia alla reazione

$$\gamma + p^+ \longrightarrow \phi^0 + p^+. \tag{1}$$

Il ϕ^0 prodotto entra in una regione ove é presente un campo elettromagnetico costante e uniforme con \vec{E} ortogonale a \vec{B} , $\vec{E} \times \vec{B}$ lungo la linea di volo del ϕ^0 e $E = 3 \cdot 10^9$ V/m, $B = 5 \cdot 10^9$ V/m. In tale regione ϕ^0 decade con la reazione

$$\phi^0 \longrightarrow \pi^+ + \pi^-$$
 (2)

in un piano perpendicolare a \vec{B} , emettendo i pioni lungo la sua linea di volo in S.

I pioni prodotti dopo un tempo \bar{t} in S si scontrano frontalmente, sempre rimanendo nella regione con campo elettromagnetico, dando luogo alla reazione

$$\pi^+ + \pi^- \longrightarrow \mu^+ + \mu^-.$$
 (3)

Assumendo le masse date in in unitá di GeV/c² da $m_p=1,\,m_\phi=1,\,m_\pi=0.15,$ $m_\mu=0.1,\,$ si calcolino:

- 1) la velocitá del ϕ^0 in S,
- 2) il tempo \bar{t} ,
- 3) la distanza d in S tra il punto di produzione e di annichilazione dei pioni.
- 4) Sapendo che l'energia del μ^+ all'istante della produzione é data da $\mathcal{E}_{\mu}^+=0.5$ GeV, si determini la componente del suo momento lungo la direzione del ϕ^0 in S.