Fisica Moderna-Relativitá (27/6/2016)

Un K^+ e un K^- di uguale momento $p=1.5~{\rm GeV/c}$ si urtano ad un angolo di $\pi/2$ nel laboratorio dando luogo alla reazione:

$$K^+K^- \longrightarrow \pi^+ + \pi^-$$
.

Il π^+ viene prodotto in condizioni di energia minima per tale reazione lungo l'asse x di un sistema di rifermento cartesiano solidale al laboratorio. Dopo un intervallo del suo tempo proprio pari a $\tau_1=10^{-9}$ s il π^+ entra ortogonalmente nella regione x>0 ove é presente un campo magnetico ortogonale all'asse x di modulo $B=10^8$ V/m e dopo un ultriore intervallo di tempo proprio τ_2 esce dalla regione col campo magnetico e decade secondo la reazione

$$\pi^* \longrightarrow \mu^+ + \nu^0$$
,

ove il μ viene emesso in condizioni di angolo massimo rispetto alla direzione di volo del π all'istante del decadimento.

Assumendo che il valore delle masse sia dato in unitá di GeV/c² da: $m_K=0.5, m_\pi=0.14, m_\mu=0.11, m_\nu=0$, si determinino:

- 1) l'energia del π^+ nel laboratorio all'istante del decadimento,
- 2) la distanza massima lungo l'asse x dal punto di produzione a cui giunge il π^+ nel laboratorio
 - 3) l'intervallo di tempo proprio τ_2
 - 4) l'angolo di emissione del μ rispetto all'asse x.