Status of the B-+hh' Padova Analysis

U.Gasparini, S. Lacaprara, M. Margoni, P. Ronchese, F. Simonetto, M. Tosi BPH Meeting 02/27/2013

- · Analysis Strategy
- Very Preliminary Results
- Next Steps

•Motivation:

Estimate BKG from B \rightarrow hh' in the B \rightarrow µµ Analysis (not a BR measurement!)

- Use same normalization channel $B^+ \to K^+J/\Psi$
- Use different trigger samples:
 - -Muon with PT>12GeV, 2 Jets with PT>40, 20 GeV, 2 btagged Jets
 - -Displaced J/Ψ (muonia)

• Two different Strategies:

- → Fast: Start the B→hh' reconstruction from the secondary vertexes in Jets (any bias?)
- → Strong: Use all the tracks combinations (as in the µµ Analysis)

- •Goal: determine the number of hh' events in the $B \rightarrow \mu\mu$ sample from the extracted B — hh' signal in the Padova sample. How can we do it?
- •Recipe:
 - Exploit the N(B \rightarrow hh')/N(B⁺ \rightarrow K⁺J/ Ψ) ratio in the two different trigger samples
 - Take into account:
 - Different number of b events in the two samples
 - Difference in the efficiency for the $K^{\dagger}J/\Psi$ channel
 - Difference in the efficiency for the hh' channel
 - Misidentification $\omega(hh' \rightarrow \mu\mu)$ (from independent study)

B → µµ Analysis:

- → NB⁺ ≈ Nb^(muonia) * fu * BR(B⁺ → K⁺J/Ψ) * ε(B⁺)
- → Nhh' ≈ Nb^(μμ) * fd * BR(B → hh') * ϵ (μμ) * ω(hh → μμ)

Padova hh' Analysis:

- → NB⁺(PD)≈Nb(PD)*fu*BR(B⁺→ K⁺J/Ψ)* ε(B⁺)(PD)
- → Nhh'(PD)=Nb(PD)*fd*BR(B→hh')*ε(hh')(PD)
- Nhh': quantity to be determined, mostly B° → Kπ (expression to be slightly modified to include Bs → KK)
- →Nb^(muonia), Nb^(µµ), Nb(PD): Number of b's in the different trigger samples
- $\bullet \epsilon(B^+), \epsilon(B^+)$ (PD): Efficiency for the K^+J/Ψ normalization channel 4

•B → µµ Analysis:

- → NB⁺ = Nb^(muonia) * fu * BR(B⁺ → K⁺J/Ψ) * ε(B⁺)
- → Nhh' ≈ Nb^(μμ) * fd * BR(B → hh') * ϵ (μμ) * ω(hh → μμ)

Padova hh' Analysis:

- → NB⁺(PD)≈Nb(PD)*fu*BR(B⁺→K⁺J/Ψ)* ε(B⁺)(PD)
- → Nhh'(PD)=Nb(PD)*fd*BR(B→hh')*ε(hh')(PD)

$\mathbf{E}(\mu\mu)$, $\mathbf{E}(hh')$ (PD): Efficiency for the $\mu\mu$ and hh' channels

- $+\omega$ (hh'-\-\pu\\mu): Misidentification for the hh' channel
- •fu=NB⁺/Nb, fd=NB^o/Nb, in the following naively assume fd=fu and no b-hadron fraction difference between the two trigger samples (systematic uncertainty to be estimated).

 5

•By factorizing the corresponding quantities:

$$Nhh' = \frac{NB^{\dagger}}{CNB^{\dagger}(PD)} \frac{\epsilon B^{\dagger}(PD)}{\epsilon B^{\dagger}} \frac{\epsilon (\mu \mu) \omega (hh')}{\epsilon hh'(PD)} Nhh'(PD)$$

- First ratio accounts for normalization of the three different trigger samples, ($C \approx Nb^{(muonia)} / Nb^{(\mu\mu)}$ in the $B \longrightarrow \mu\mu$ Analysis)
- Second ratio accounts for possible bias in the reconstruction strategy (different trigger samples, Jet vs all tracks combinations)
- Third ratio accounts for different analyses goals (µµ or hh' selection)
 - → NB+, NB+(PD), Nhh'(PD) from counting
 - $\bullet \epsilon(B^+)$ (PD), $\epsilon(hh')$ (PD) from MC
 - $\bullet \epsilon(B^+), \epsilon(\mu\mu), C$ from the $B \longrightarrow \mu\mu$ Analysis
 - $\bullet \omega$ (hh') from the ongoing study by Mario & Jacopo

Very Preliminary Results

Jet Based Strategy:

- Tag a b-jet by means of a High PT
 μ (or a displaced J/Ψ)
- Reconstruct $B^+ \rightarrow K^+J/\Psi$ & $B \rightarrow hh'$ decays starting from secondary vertexes not associated to the Tagjet.

Results obtained using Single-Muon trigger

HLT_Mu12_eta2p1_DiCentral_40_20_DiBTagIP3D1stTrack

Displaced J/ Ψ trigger will be included in a few days.

"Jet Based Strategy" Results

•Normalization channel $B^+ \rightarrow K^+J/\Psi$

About 7500 J/Ψ in Probe jets out of which 3000 from secondary vertexes with 3 tracks

•Assuming the third track is a Kaon: $N(K^{+}J/\Psi)$ ~200

"Jet Based Strategy" Results

•Signal channel B → hh'

Look at the invariant mass of vertexes with 2 tracks (PT>3GeV) not identified as muons.

•Isolation cut applied on the Sum(PT) over a cone of $\Delta R < 0.3$

Invariant mass with the µ mass

hypothesis: Nhh'~50

"All Tracks Combi" Results

"All Tracks Combination" Strategy:

 \bullet Tag a b-jet by means of a High PT μ (or a displaced J/ $\Psi)$

Reconstruct $B^+ \rightarrow K^+ J/\Psi \& B \rightarrow hh'$ decays starting from the combinations of all the tracks with PT>4 GeV not belonging to

the Tagjet.

Number of tracks surviving PT cut seems reasonable to allow hh' reconstruction

"All Tracks Combi" Results

•Normalization channel $B^+ \rightarrow K^+J/\Psi$

J/Ψ from 2 muons combination

- Associate a third track (not a muon) with Kaon mass hypothesis
- •Caveat: trigger muon not correctly excluded yet

"All Tracks Combi" Results

•Signal channel B → hh'

- Combination of two tracks (not muons):
 - Leading: K-mass
 - Sub-leading: π mass
- •Clear D° signal, hint of B° signal...
- Results obtained using harder and harder selection cuts

Next Steps

- •Optimize Analysis Cuts to enhance hh' & K+J/Ψ statistics (isolation):
 - Few days
- Include the Muonia Displaced J/V trigger sample:
 - End of the week
- •Compute the analysis efficiency from simulation:
 - MC rootoples production finalized
 - End of next week
- "All tracks combination" Strategy:
 - Less advanced: use it for the final number or just as a cross check?
- •Feedback from the BPH Working Group welcome!