BPH Analyses Prioritisation Proposal 17/10/2017 Mario & Martino

Analyses Prioritisation

- Run2 statistics offers different opportunities depending on the specific analysis (statistical/systematic errors, competitiveness wrt other collaborations results, manpower limitation)
 - Define a prioritised list of topics according to physics impact, competitor's results, time scale, trigger rate consumption
 - Exercise useful towards the definition of the future trigger paths and rate allocation:
 - Some measurements, already limited by systematic uncertainties or not sensitive to CM energy, could be abandoned to save trigger rate.
 - Other measurements could be pursued parasitically using the same trigger path developed for other ones.

Analyses Prioritisation

- Homework from the different PAGS will be presented during the October 26th plenary meeting (20+10 minutes for each PAG)
 - Select ~10/12 topics (3/4 for each BPH subgroup)
 - Preliminary material has to be sent to the PC by next thursday October 19th
- In the following slides: Proposal of a list of analyses selected based on informations included in spreadsheets available since September:

https://docs.google.com/spreadsheets/d/1UK8GnIRreeShE9ySqEyQR1_p1AIDp_9CjAPFcsibYfM/edit#gid=0

• Some relevant informations still missing for some analyses: e.g. proposed trigger, extrapolation to the full Run2 statistics

Proposal for Critical Analyses

Analyses to be discussed in the October 26th meeting

Production:

Quarkonium cross sections and ratios, polarization studies (Quarkonium, ϕ , Λ_h), $\chi_h \to \Upsilon(nS)\gamma$

Spectroscopy & Properties:

Double quarkonia (including J/ $\psi\Upsilon$): cross sections and resonance searches, $\Upsilon\mu\mu$, $\Delta\Gamma_{_{\! q}}$ & $\Phi_{_{\! q}}$ with $B_{_{\! q}}\to J/\psi\phi$

Rare Decays:

 $B \rightarrow \mu\mu$, Z/W $\rightarrow V\gamma(I^{\dagger}I^{-})$ (cross PAG with SMP), $\tau \rightarrow 3\mu$, $B \rightarrow K^{*} \mu\mu$

Cross Subgroups:

B Λ resonances (Production & Spectroscopy), B \rightarrow TX (Rare & Properties)

Proposal for Nice-to-have Analyses

- Analyses to be listed in the October 26th meeting
- Production:

 f_d , f_s fragmentation functions, B and B_c cross sections, associated production of Z(W)J/ ψ (Y) (cross PAG with SMP)

Spectroscopy & Properties:

Y(4140) \rightarrow J/ψφ inclusive search and in B⁺ \rightarrow J/ψφK, X_b, B_s \rightarrow J/ψφ byproducts from flavor tagging studies: χ , g splitting, σ_{hh}

Production

Quarkonium cross sections and ratios:

- Propedeutic to the Polarization and Double quarkonia masurements. Main interest in high pT region: possible to manage the trigger rate. Complementary wrt LHCb due to different acceptance.
- Main systematics:
 - Possible improvements:
 - Could suffer from
- Trigger paths:
 - L1: L1_DoubleMu0er1p5_SQ_OS_dR_Max1p4, L1_DoubleMu4p5er2p0_SQ_OS_Mass7to18, L1_DoubleMu5_SQ_OS_Mass7to18, L1_DoubleMu8_SQ. In common with Polarization, B \rightarrow µµ, B \rightarrow K*µµ, Bs \rightarrow J/ψφ, T \rightarrow 3µ, $\chi_{_{\! D}}$ \rightarrow Yγ
 - HLT: HLT_Dimuon10_PsiPrime_Barrel_Seagulls, HLT_Dimuon20_Jpsi_Barrel_Seagulls, HLT_Dimuon10_Upsilon_Barrel_Seagulls, HLT_Dimuon14_Phi_Barrel_Seagulls. In common with Polarization, $\chi_h \to \Upsilon \gamma$.
 - Rate:

Quarkonium cross sections and ratios:

- Competitivity: different phase space wrt LHCb
 - Extrapolation using full Run2 statistics:
 - Assumptions:
- Manpower: Vienna, LIP, CERN, Torino, CINVESTAV

Polarization studies (Quarkonium, φ , Λ_{h}):

- Understand P, S wave polarization dependence with pT to investigate production processes.
 φ results interesting due to lighter mass wrt other states. Complementary wrt LHCb due to different acceptance.
- Main systematics: Angular distribution bias of unknown origin in 8 TeV data;
 φ meson: trigger, id, BKG modelling, reconstruction and fit
 - Possible improvements: new framework to cope with unknown angular distribution bias.
 Move from absolute to reative measurements.
 - Could suffer from
- Trigger paths:

 - HLT: HLT_Dimuon10_PsiPrime_Barrel_Seagulls, HLT_Dimuon20_Jpsi_Barrel_Seagulls, HLT_Dimuon10_Upsilon_Barrel_Seagulls, HLT_Dimuon14_Phi_Barrel_Seagulls. In common with Quarkonium cross sections, $\chi_h \to \Upsilon \gamma$
 - Rate:

Polarization studies (Quarkonium, φ , Λ_h):

- Competitivity: different phase space wrt LHCb
 - Extrapolation using full Run2 statistics:
 - Assumption:
- Manpower: Vienna, LIP, CERN, Torino, CINVESTAV

$\chi_b \to \Upsilon(nS)\gamma$

- Possibility to distinguish $\chi_{_{b1}}$ from $\chi_{_{b2}}$ due to very good photon energy resolution from conversions (LHCb cannot do that!): https://cds.cern.ch/record/2276459/files/DP2017_029.pdf Analysis propedeutic to $X_{_{D}}$ searches.
- Main systematics: signal modelling, efficiency determination
 - Possible improvements: study shapes to improve signal modelling, increase MC statistics, explore higher pT regions.
 - Could suffer from
- Trigger paths:
 - L1: L1_DoubleMu0er1p5_SQ_OS_dR_Max1p4, L1_DoubleMu4p5er2p0_SQ_OS_Mass7to18, L1_DoubleMu8_SQ, L1_DoubleMu4_SQ_OS_dR_Max1p2. In common with Quarkonium cross sections and pol., B \rightarrow µµ, B \rightarrow K*µµ, Bs \rightarrow J/ψ ϕ , τ \rightarrow 3µ.
 - HLT: HLT_Dimuon10_Upsilon_Barrel_Seagulls, HLT_Dimuon12_Upsilon_eta1p5.
 In common with Quarkonium cross sections and pol.
 - Rate:

$$\chi_{b} \rightarrow \Upsilon(nS)\gamma$$

- Competitivity: very good due to the excellent mass resolution. LHCb cannot separate the
 different states, so they are affected by additional systematics on the assumptions.
 - Extrapolation using full Run2 statistics: reduction of statistical error by a factor ~2. Probably dominated by systematics with L~300 fb⁻¹
 - Assumptions:
- Manpower: Torino, Cinvestav

Spectroscopy & Properties

Double quarkonia (including J/ψΥ):

- Provides insight into underlying production mechanism (perturbative & nonperturbative).
 Investigate Double Parton Scattering interaction. Useful informations for Heavy Ion studies.
 2015/16 sample could be enough to measure DPS constribution for J/ψJ/ψ. Possible resonant YY and J/ψY production, and Y(1S)Y(2S) (full Run2 statistics needed).
- Main systematics:
 - Possible improvements:
 - Could suffer from
- Trigger paths:
 - L1: L1_TripleMu_5_3p5_2p5_DoubleMu_5_2p5_OS_Mass_5to17, L1_TripleMu_5SQ_3SQ_0OQ_DoubleMu_5_3_SQ_OS_Mass_Max9. In common with B \rightarrow K*µµ, Bs \rightarrow J/ψφ, Yµµ.
 - HLT: HLT_Dimuon0_Jpsi3p5_Muon2, HLT_Trimuon5_3p5_2_Upsilon_Muon. In common with $\Upsilon\mu\mu,$ Bs \to J/ $\psi\phi.$
 - Rate:

Double quarkonia (including J/ψΥ):

- Competitivity: High pT reach, expertise, use of J/ψμ trigger wrt ATLAS single J/ψ one that needs prescaling.
 - Extrapolation using full Run2 statistics:
 - Assumption:
- Manpower: J/ψJ/ψ: Tennessee, IHEP; ΥΥ: Iowa, Fermilab

Υμμ:

- Very hot analysis going to be finalized on Run1 data. Theory paper on possible tetraquark discovery https://arxiv.org/abs/1709.09605. Two new trigger paths already included in HLT train n.4
- Main systematics:
 - Possible improvements: open muon trigger paths
 - · Could suffer from
- Trigger paths:
 - L1: L1_TripleMu_5_3p5_2p5_DoubleMu_5_2p5_OS_Mass_5to17. In common with Double Quarkonia. L1_DoubleMu5Upsilon_OS_DoubleEG3, L1_DoubleMu3_OS_DoubleEG7p5Upsilon, L1_TripleMu_5OQ_3p5OQ_2p5OQ_DoubleMu_5_2p5_OQ_OS_Mass_8to14, L1_TripleMu_5OQ_3p5OQ_2p5OQ_DoubleMu_5_2p5_OQ_OS_Mass_5to17
 - HLT: HLT_Trimuon5_3p5_2_Upsilon_Muon, HLT_TrimuonOpen_5_3p5_2_Upsilon_Muon, HLT_DoubleMu5_Upsilon_DoubleEle3_CaloIdL_TrackId, HLT_DoubleMu3_DoubleEle7p5_CaloIdL_TrackIdL_Upsilon. In common with Double Quarkonia.
 - Rate:
- Manpower: Iowa

CPV with $B_s \rightarrow J/\psi \phi$

- Probe of possible new sources of CPV. Sensitivity improved by new flavor tagging algorithm
 & hopefully pixel detector
- Main systematics: model bias, K pT reweighting, angular efficiencies
 - Possible improvements: Tagging power, time resolution, pT reweighting & model bias (MC stat), angular efficiency (MC stat, new techniques), additional not displaced trigger path improves ct resolution and efficiency (main systemtic for $\Delta\Gamma_{_{\rm S}}$)
 - Could suffer from trigger efficiency reduction due to the requirement of two additional tracks at the HLT level, tighter muon pT, pixel issues inefficiencies in standard tracking sequence (2017).
- Trigger paths:
 - L1: L1_DoubleMu0er1p5_SQ_OS_dR_Max1p4, L1_DoubleMu4_SQ_OS_dR_Max1p2, L1_TripleMu_5SQ_3SQ_0OQ_DoubleMu_5_3_SQ_OS_Mass_Max9. In common with $B \to K^* \mu\mu$, $B \to \mu\mu$, $\tau \to 3\mu$, quarkonia cross section and polarization, double J/ ψ
 - HLT: HLT_DoubleMu4_JpsiTrkTrk_Displaced, HLT_Dimuon0_Jpsi3p5_Muon2. In common with Double Quarkonia.
 - Rate:

CPV with $B_s \rightarrow J/\psi \phi$

- Competitivity wrt LHCb: L(R2)_{LHCb}~4 fb⁻¹ vs L(R2)_{CMS}~150 fb⁻¹
 - Extrapolation using full Run2 statistics: $\delta\Phi_{stat}\sim(17-32)\pm(15-20)$ mrad vs LHCb $\delta\Phi_{stat}\sim30\pm6$ mrad
 - Assumption: $\epsilon_{trigger}$ (0.6/0.7) ϵ_{Run1} , Tag. Power: 1/1.5 wrt Run1, Time resolution: 70/45 fs
- Manpower: Pisa, Padova

Rare Decays

$B \rightarrow \mu\mu$

- Flag CMS Analysis mandatory to be pursued in Run2. Analysis dominated by statistical errors.
- Main systematics: fs/fu, displaced trigger for lifetime measurement, muon fake rate
 - Improvements: change normalization, new BDT-based μ identification, B \rightarrow hh control samples, measurement of effective lifetime
 - Could suffer from yields instability due to different trigger conditions through the Run2, Data/MC discrepancy in some variables related to muon displacement BR and lifetime measurements
- Trigger paths:
 - L1: L1_DoubleMu0er1p5_SQ_OS_dR_Max1p4. In common with B \to K* $\mu\mu$, B $_s \to J/\psi\phi$, $\tau \to 3\mu$, quarkonia cross section and polarization
 - HLT: HLT_DoubleMu4_3_Bs + HLT_DoubleMu4_3_Jpsi_Displaced (normalization channel).
 - Rate:
- Competitivity wrt LHCb: roughly equivalent
 - Extrapolation using full Run2 statistics: roughly equivalent to LHCb result
- Manpower: PSI, TW, Niser

$Z \to J/\psi X$

- Search for new Z decays (e.g. J/ψμμ going to be finalized), synergy with Standard Model PAG
- Main systematics:
 - Possible improvements:
 - Could suffer from
- Trigger paths:
 - L1:
 - HLT:
 - Rate:
- Competitivity: roughly equivalent
 - Extrapolation using full Run2 statistics:
 - Assumption:
- Manpower:

$\tau \rightarrow 3\mu$

- Very important LFV channel. Strict time scale due to Belle II starting of data taking
- Main systematics: muon misidentification, BKG, trigger efficiency
 - Possible improvements:
 - · Could suffer from
- Trigger paths:
 - L1: L1_DoubleMu0er1p5_SQ_OS_dR_Max1p4, L1_DoubleMu4_SQ_OS_dR_Max1p2, L1_TripleMu_5SQ_3SQ_0OQ_DoubleMu_5_3_SQ_OS_Mass_Max9. In common with B \rightarrow K* $\mu\mu$, B \rightarrow $\mu\mu$, B \rightarrow $\mu\mu$, B \rightarrow J/ $\mu\phi$, $\chi_{\!_D}$ \rightarrow Yy, Quarkonium cross sections and polarization
 - HLT: HLT_DoubleMu3_Trk_Tau3mu, HLT_Tau3Mu_Mu7_Mu1_TkMu1_IsoTau15_Charge1, HLT_Tau3Mu_Mu7_Mu1_TkMu1_IsoTau15, HLT_Tau3Mu_Mu7_Mu1_TkMu1_Tau15_Charge1, HLT_Tau3Mu_Mu7_Mu1_TkMu1_Tau15
 - Rate:

$B \rightarrow K^* \mu \mu$

- Flag CMS Analysis. Indirect search for NP. Limited by statistical errors. Sensitivity improved by statistics and hopefully new pixel detector performance
- Main systematics: fixed parameters from previous measurements
 - Possible improvements: global fit with all parameters free to float
 - Could suffer from trigger efficiency reduction due to the requirement of one additional track at the HLT level, tighter muon pT, pixel issues inefficiencies in standard tracking sequence (2017)
- Trigger paths:
 - L1: L1_DoubleMu0er1p5_SQ_OS_dR_Max1p4, L1_DoubleMu4_SQ_OS_dR_Max1p2. In common with B \rightarrow µµ, B $_s$ \rightarrow J/ψ ϕ , τ \rightarrow 3µ, quarkonia cross section and polarization, B Λ resonances.
 - HLT: HLT_DoubleMu4_LowMassNonResonantTrk_Displaced + HLT_DoubleMu4_JpsiTrk_Displaced, HLT_DoubleMu4_PsiPrimeTrk_Displaced (control/normalization channels). In common with BΛ resonances.
 - Rate:

$B \rightarrow K^* \mu \mu$

- Competitivity wrt LHCb: $L(R2)_{LHCb} \sim 4 \text{ fb}^{-1} \text{ vs } L(R2)_{CMS} \sim 150 \text{ fb}^{-1}$
 - Extrapolation using full Run2 statistics: larger CMS signal yield by a factor ~2/2.3 wrt LHCb (but worse S/N ratio and no PID)
 - Assumption: $\epsilon_{trigger} (0.6/0.7) \epsilon_{Run1}$
- Manpower: Milano, Padova

Cross Subgroups

BA resonances (Production & Spectroscopy)

- Search for new Xi_b^{**} states and beauty charmed baryon $Xi_{bc} \to B\Lambda$. Trigger paths to be defined.
- Main systematics:
 - Possible improvements:
 - Could suffer from
- Trigger paths:
 - L1: L1_DoubleMu0er1p5_SQ_OS_dR_Max1p4, L1_DoubleMu4_SQ_OS_dR_Max1p2. In common with B \rightarrow µµ, B \rightarrow K*µµ, B $_s$ \rightarrow J/ψφ, τ \rightarrow 3µ, quarkonia cross section and polarization.
 - HLT: HLT_DoubleMu4_JpsiTrk_Displaced. In common with B → K*μμ.
 - Rate:
- Competitivity
- Manpower: MEPhi

B → TX (Rare & Properties)

- B decays in tau lepton final states are important probes of New Physics (e.g. 2-Higgs Doublet Model) due to large H⁺-fermion coupling. Popular channels due to some tensions wrt Standard Model expectations (e.g. B → D* τv, marginally B → τv). Search for LFV decays or measurement of CKM matrix elements. Difficult analyses with uncertain outcome.
- Main systematics: BKG, normalization
 - Could suffer from difficult reconstruction of tau,
- Trigger paths:
 - L1: To be defined
 - HLT: To be defined
- Competitivity
 - Extrapolation using full Run2 statistics:
 - Assumption:
- Manpower: Milano

L1 trigger seeds

L1 menu	Unprescaled rate [1.5e34]	Post-DT rate [1.5e34]	Prescale value [column 1]											
				Quarkonium cross sections and polarization	Chi_b->Y(nS) gamma	Double quarkonia (including J/Psi Y)	Ymumu	CPV with Bs -> J/Psi Phi	Bmm	Z -> J/Psi X	tau->3Mu search	P5' angular analysis	B Lambda resonance search	B -> tauX
L1_DoubleMu0er1p5_SQ_OS_dR_Max1p4	3,286	3,032	1	x	x			x	X		X	X	x	
L1_DoubleMu4p5er2p0_SQ_OS_Mass7to18	1,752	1,618	1	X	X									
L1_DoubleMu5_SQ_OS_Mass7to18	1,275	1,178	1	X	X									
L1_DoubleMu8_SQ	1,080	996	1	X	X									
L1_DoubleMu4_SQ_OS_dR_Max1p2	3,506	3,237	1		X			X			X	X	X	
L1_TripleMu_5_3p5_2p5_DoubleMu_5_2p5_OS_Mass_5to17	1,313	1,213	1			X	x							
L1_TripleMu_5SQ_3SQ_0OQ_DoubleMu_5_3_SQ_OS_Mass_Max9	1,488	1,375	1			X		X			X			
L1_DoubleMu5Upsilon_OS_DoubleEG3	v4	v4					x							
L1_DoubleMu3_OS_DoubleEG7p5Upsilon	v4	v4					X							
L1_TripleMu_5OQ_3p5OQ_2p5OQ_DoubleMu_5_2p5_OQ_OS_Mass_8to14	v4	v4					X							
L1_TripleMu_5OQ_3p5OQ_2p5OQ_DoubleMu_5_2p5_OQ_OS_Mass_5to17	v4	v4					X							
SMP High pT triggers										X				

HLT trigger paths

HLT menu	Prescaled rate [@ 1.5e34]	average prescale											
			Quarkonium cross sections and polarization	Chi_b->Y(nS) gamma	Double quarkonia (including J/Psi Y)	Ymumu	CPV with Bs -> J/Psi Phi	Bmm	Z -> J/Psi X	tau->3Mu search	P5' angular analysis	B Lambda resonance search	B -> tauX
HLT_Dimuon10_PsiPrime_Barrel_Seagulls	4.7	1	x										
HLT_Dimuon20_Jpsi_Barrel_Seagulls	6.9	1	X										
HLT_Dimuon10_Upsilon_Barrel_Seagulls	7.3	1	X	x									
HLT_Dimuon14_Phi_Barrel_Seagulls	6.7	1	X										
HLT_Dimuon12_Upsilon_eta1p5	8.6	1		x									
HLT_Dimuon0_Jpsi3p5_Muon2	13.8	1			X		x						
HLT_Trimuon5_3p5_2_Upsilon_Muon	9.9	1			X	x							
HLT_TrimuonOpen_5_3p5_2_Upsilon_Muon	v4					x							
HLT_DoubleMu5_Upsilon_DoubleEle3_CaloldL_TrackIdL	v4					x							
HLT_DoubleMu3_DoubleEle7p5_CaloIdL_TrackIdL_Upsilon	v4					x							
HLT_DoubleMu4_JpsiTrkTrk_Displaced	10.9	1					x						
HLT_DoubleMu4_3_Bs	9.6	1						X					
HLT_DoubleMu4_3_Jpsi_Displaced	4.9	8						x					
SMP High pT triggers									x				
HLT_DoubleMu3_Trk_Tau3mu	18.6	1								X			
HLT_Tau3Mu_Mu7_Mu1_TkMu1_lsoTau15_Charge1	4.7	1								x			
HLT_Tau3Mu_Mu7_Mu1_TkMu1_IsoTau15	4.8	1								X			
HLT_Tau3Mu_Mu7_Mu1_TkMu1_Tau15_Charge1	0.7	20								x			
HLT_Tau3Mu_Mu7_Mu1_TkMu1_Tau15	0.7	20								X			
HLT_DoubleMu4_LowMassNonResonantTrk_Displaced	22.1	1									x		
HLT_DoubleMu4_JpsiTrk_Displaced	15.1	1									x	x	
HLT_DoubleMu4_PsiPrimeTrk_Displaced	1.2	1									X		