BPH Analyses Prioritisation Proposal 17/10/2017 Mario & Martino ## **Analyses Prioritisation** - Run2 statistics offers different opportunities depending on the specific analysis (statistical/systematic errors, competitiveness wrt other collaborations results, manpower limitation) - Define a prioritised list of topics according to physics impact, competitor's results, time scale, trigger rate consumption - Exercise useful towards the definition of the future trigger paths and rate allocation: - Some measurements, already limited by systematic uncertainties or not sensitive to CM energy, could be abandoned to save trigger rate. - Other measurements could be pursued parasitically using the same trigger path developed for other ones. ## **Analyses Prioritisation** - Homework from the different PAGS will be presented during the October 26th plenary meeting (20+10 minutes for each PAG) - Select ~10/12 topics (3/4 for each BPH subgroup) - Preliminary material has to be sent to the PC by next thursday October 19th - In the following slides: Proposal of a list of analyses selected based on informations included in spreadsheets available since September: https://docs.google.com/spreadsheets/d/1UK8GnIRreeShE9ySqEyQR1_p1AIDp_9CjAPFcsibYfM/edit#gid=0 • Some relevant informations still missing for some analyses: e.g. proposed trigger, extrapolation to the full Run2 statistics ### Proposal for Critical Analyses Analyses to be discussed in the October 26th meeting #### Production: Quarkonium cross sections and ratios, polarization studies (Quarkonium, ϕ , Λ_h), $\chi_h \to \Upsilon(nS)\gamma$ #### Spectroscopy & Properties: Double quarkonia (including J/ $\psi\Upsilon$): cross sections and resonance searches, $\Upsilon\mu\mu$, $\Delta\Gamma_{_{\! q}}$ & $\Phi_{_{\! q}}$ with $B_{_{\! q}}\to J/\psi\phi$ #### Rare Decays: $B \rightarrow \mu\mu$, Z/W $\rightarrow V\gamma(I^{\dagger}I^{-})$ (cross PAG with SMP), $\tau \rightarrow 3\mu$, $B \rightarrow K^{*} \mu\mu$ #### Cross Subgroups: B Λ resonances (Production & Spectroscopy), B \rightarrow TX (Rare & Properties) ## Proposal for Nice-to-have Analyses - Analyses to be listed in the October 26th meeting - Production: f_d , f_s fragmentation functions, B and B_c cross sections, associated production of Z(W)J/ ψ (Y) (cross PAG with SMP) Spectroscopy & Properties: Y(4140) \rightarrow J/ψφ inclusive search and in B⁺ \rightarrow J/ψφK, X_b, B_s \rightarrow J/ψφ byproducts from flavor tagging studies: χ , g splitting, σ_{hh} ## Production #### Quarkonium cross sections and ratios: - Propedeutic to the Polarization and Double quarkonia masurements. Main interest in high pT region: possible to manage the trigger rate. Complementary wrt LHCb due to different acceptance. - Main systematics: - Possible improvements: - Could suffer from - Trigger paths: - L1: L1_DoubleMu0er1p5_SQ_OS_dR_Max1p4, L1_DoubleMu4p5er2p0_SQ_OS_Mass7to18, L1_DoubleMu5_SQ_OS_Mass7to18, L1_DoubleMu8_SQ. In common with Polarization, B \rightarrow µµ, B \rightarrow K*µµ, Bs \rightarrow J/ψφ, T \rightarrow 3µ, $\chi_{_{\! D}}$ \rightarrow Yγ - HLT: HLT_Dimuon10_PsiPrime_Barrel_Seagulls, HLT_Dimuon20_Jpsi_Barrel_Seagulls, HLT_Dimuon10_Upsilon_Barrel_Seagulls, HLT_Dimuon14_Phi_Barrel_Seagulls. In common with Polarization, $\chi_h \to \Upsilon \gamma$. - Rate: #### Quarkonium cross sections and ratios: - Competitivity: different phase space wrt LHCb - Extrapolation using full Run2 statistics: - Assumptions: - Manpower: Vienna, LIP, CERN, Torino, CINVESTAV #### Polarization studies (Quarkonium, φ , Λ_{h}): - Understand P, S wave polarization dependence with pT to investigate production processes. φ results interesting due to lighter mass wrt other states. Complementary wrt LHCb due to different acceptance. - Main systematics: Angular distribution bias of unknown origin in 8 TeV data; φ meson: trigger, id, BKG modelling, reconstruction and fit - Possible improvements: new framework to cope with unknown angular distribution bias. Move from absolute to reative measurements. - Could suffer from - Trigger paths: - HLT: HLT_Dimuon10_PsiPrime_Barrel_Seagulls, HLT_Dimuon20_Jpsi_Barrel_Seagulls, HLT_Dimuon10_Upsilon_Barrel_Seagulls, HLT_Dimuon14_Phi_Barrel_Seagulls. In common with Quarkonium cross sections, $\chi_h \to \Upsilon \gamma$ - Rate: #### Polarization studies (Quarkonium, φ , Λ_h): - Competitivity: different phase space wrt LHCb - Extrapolation using full Run2 statistics: - Assumption: - Manpower: Vienna, LIP, CERN, Torino, CINVESTAV #### $\chi_b \to \Upsilon(nS)\gamma$ - Possibility to distinguish $\chi_{_{b1}}$ from $\chi_{_{b2}}$ due to very good photon energy resolution from conversions (LHCb cannot do that!): https://cds.cern.ch/record/2276459/files/DP2017_029.pdf Analysis propedeutic to $X_{_{D}}$ searches. - Main systematics: signal modelling, efficiency determination - Possible improvements: study shapes to improve signal modelling, increase MC statistics, explore higher pT regions. - Could suffer from - Trigger paths: - L1: L1_DoubleMu0er1p5_SQ_OS_dR_Max1p4, L1_DoubleMu4p5er2p0_SQ_OS_Mass7to18, L1_DoubleMu8_SQ, L1_DoubleMu4_SQ_OS_dR_Max1p2. In common with Quarkonium cross sections and pol., B \rightarrow µµ, B \rightarrow K*µµ, Bs \rightarrow J/ψ ϕ , τ \rightarrow 3µ. - HLT: HLT_Dimuon10_Upsilon_Barrel_Seagulls, HLT_Dimuon12_Upsilon_eta1p5. In common with Quarkonium cross sections and pol. - Rate: $$\chi_{b} \rightarrow \Upsilon(nS)\gamma$$ - Competitivity: very good due to the excellent mass resolution. LHCb cannot separate the different states, so they are affected by additional systematics on the assumptions. - Extrapolation using full Run2 statistics: reduction of statistical error by a factor ~2. Probably dominated by systematics with L~300 fb⁻¹ - Assumptions: - Manpower: Torino, Cinvestav ## Spectroscopy & Properties #### Double quarkonia (including J/ψΥ): - Provides insight into underlying production mechanism (perturbative & nonperturbative). Investigate Double Parton Scattering interaction. Useful informations for Heavy Ion studies. 2015/16 sample could be enough to measure DPS constribution for J/ψJ/ψ. Possible resonant YY and J/ψY production, and Y(1S)Y(2S) (full Run2 statistics needed). - Main systematics: - Possible improvements: - Could suffer from - Trigger paths: - L1: L1_TripleMu_5_3p5_2p5_DoubleMu_5_2p5_OS_Mass_5to17, L1_TripleMu_5SQ_3SQ_0OQ_DoubleMu_5_3_SQ_OS_Mass_Max9. In common with B \rightarrow K*µµ, Bs \rightarrow J/ψφ, Yµµ. - HLT: HLT_Dimuon0_Jpsi3p5_Muon2, HLT_Trimuon5_3p5_2_Upsilon_Muon. In common with $\Upsilon\mu\mu,$ Bs \to J/ $\psi\phi.$ - Rate: #### Double quarkonia (including J/ψΥ): - Competitivity: High pT reach, expertise, use of J/ψμ trigger wrt ATLAS single J/ψ one that needs prescaling. - Extrapolation using full Run2 statistics: - Assumption: - Manpower: J/ψJ/ψ: Tennessee, IHEP; ΥΥ: Iowa, Fermilab #### Υμμ: - Very hot analysis going to be finalized on Run1 data. Theory paper on possible tetraquark discovery https://arxiv.org/abs/1709.09605. Two new trigger paths already included in HLT train n.4 - Main systematics: - Possible improvements: open muon trigger paths - · Could suffer from - Trigger paths: - L1: L1_TripleMu_5_3p5_2p5_DoubleMu_5_2p5_OS_Mass_5to17. In common with Double Quarkonia. L1_DoubleMu5Upsilon_OS_DoubleEG3, L1_DoubleMu3_OS_DoubleEG7p5Upsilon, L1_TripleMu_5OQ_3p5OQ_2p5OQ_DoubleMu_5_2p5_OQ_OS_Mass_8to14, L1_TripleMu_5OQ_3p5OQ_2p5OQ_DoubleMu_5_2p5_OQ_OS_Mass_5to17 - HLT: HLT_Trimuon5_3p5_2_Upsilon_Muon, HLT_TrimuonOpen_5_3p5_2_Upsilon_Muon, HLT_DoubleMu5_Upsilon_DoubleEle3_CaloIdL_TrackId, HLT_DoubleMu3_DoubleEle7p5_CaloIdL_TrackIdL_Upsilon. In common with Double Quarkonia. - Rate: - Manpower: Iowa #### CPV with $B_s \rightarrow J/\psi \phi$ - Probe of possible new sources of CPV. Sensitivity improved by new flavor tagging algorithm & hopefully pixel detector - Main systematics: model bias, K pT reweighting, angular efficiencies - Possible improvements: Tagging power, time resolution, pT reweighting & model bias (MC stat), angular efficiency (MC stat, new techniques), additional not displaced trigger path improves ct resolution and efficiency (main systemtic for $\Delta\Gamma_{_{\rm S}}$) - Could suffer from trigger efficiency reduction due to the requirement of two additional tracks at the HLT level, tighter muon pT, pixel issues inefficiencies in standard tracking sequence (2017). - Trigger paths: - L1: L1_DoubleMu0er1p5_SQ_OS_dR_Max1p4, L1_DoubleMu4_SQ_OS_dR_Max1p2, L1_TripleMu_5SQ_3SQ_0OQ_DoubleMu_5_3_SQ_OS_Mass_Max9. In common with $B \to K^* \mu\mu$, $B \to \mu\mu$, $\tau \to 3\mu$, quarkonia cross section and polarization, double J/ ψ - HLT: HLT_DoubleMu4_JpsiTrkTrk_Displaced, HLT_Dimuon0_Jpsi3p5_Muon2. In common with Double Quarkonia. - Rate: #### CPV with $B_s \rightarrow J/\psi \phi$ - Competitivity wrt LHCb: L(R2)_{LHCb}~4 fb⁻¹ vs L(R2)_{CMS}~150 fb⁻¹ - Extrapolation using full Run2 statistics: $\delta\Phi_{stat}\sim(17-32)\pm(15-20)$ mrad vs LHCb $\delta\Phi_{stat}\sim30\pm6$ mrad - Assumption: $\epsilon_{trigger}$ (0.6/0.7) ϵ_{Run1} , Tag. Power: 1/1.5 wrt Run1, Time resolution: 70/45 fs - Manpower: Pisa, Padova ## Rare Decays #### $B \rightarrow \mu\mu$ - Flag CMS Analysis mandatory to be pursued in Run2. Analysis dominated by statistical errors. - Main systematics: fs/fu, displaced trigger for lifetime measurement, muon fake rate - Improvements: change normalization, new BDT-based μ identification, B \rightarrow hh control samples, measurement of effective lifetime - Could suffer from yields instability due to different trigger conditions through the Run2, Data/MC discrepancy in some variables related to muon displacement BR and lifetime measurements - Trigger paths: - L1: L1_DoubleMu0er1p5_SQ_OS_dR_Max1p4. In common with B \to K* $\mu\mu$, B $_s \to J/\psi\phi$, $\tau \to 3\mu$, quarkonia cross section and polarization - HLT: HLT_DoubleMu4_3_Bs + HLT_DoubleMu4_3_Jpsi_Displaced (normalization channel). - Rate: - Competitivity wrt LHCb: roughly equivalent - Extrapolation using full Run2 statistics: roughly equivalent to LHCb result - Manpower: PSI, TW, Niser #### $Z \to J/\psi X$ - Search for new Z decays (e.g. J/ψμμ going to be finalized), synergy with Standard Model PAG - Main systematics: - Possible improvements: - Could suffer from - Trigger paths: - L1: - HLT: - Rate: - Competitivity: roughly equivalent - Extrapolation using full Run2 statistics: - Assumption: - Manpower: #### $\tau \rightarrow 3\mu$ - Very important LFV channel. Strict time scale due to Belle II starting of data taking - Main systematics: muon misidentification, BKG, trigger efficiency - Possible improvements: - · Could suffer from - Trigger paths: - L1: L1_DoubleMu0er1p5_SQ_OS_dR_Max1p4, L1_DoubleMu4_SQ_OS_dR_Max1p2, L1_TripleMu_5SQ_3SQ_0OQ_DoubleMu_5_3_SQ_OS_Mass_Max9. In common with B \rightarrow K* $\mu\mu$, B \rightarrow $\mu\mu$, B \rightarrow $\mu\mu$, B \rightarrow J/ $\mu\phi$, $\chi_{\!_D}$ \rightarrow Yy, Quarkonium cross sections and polarization - HLT: HLT_DoubleMu3_Trk_Tau3mu, HLT_Tau3Mu_Mu7_Mu1_TkMu1_IsoTau15_Charge1, HLT_Tau3Mu_Mu7_Mu1_TkMu1_IsoTau15, HLT_Tau3Mu_Mu7_Mu1_TkMu1_Tau15_Charge1, HLT_Tau3Mu_Mu7_Mu1_TkMu1_Tau15 - Rate: #### $B \rightarrow K^* \mu \mu$ - Flag CMS Analysis. Indirect search for NP. Limited by statistical errors. Sensitivity improved by statistics and hopefully new pixel detector performance - Main systematics: fixed parameters from previous measurements - Possible improvements: global fit with all parameters free to float - Could suffer from trigger efficiency reduction due to the requirement of one additional track at the HLT level, tighter muon pT, pixel issues inefficiencies in standard tracking sequence (2017) - Trigger paths: - L1: L1_DoubleMu0er1p5_SQ_OS_dR_Max1p4, L1_DoubleMu4_SQ_OS_dR_Max1p2. In common with B \rightarrow µµ, B $_s$ \rightarrow J/ψ ϕ , τ \rightarrow 3µ, quarkonia cross section and polarization, B Λ resonances. - HLT: HLT_DoubleMu4_LowMassNonResonantTrk_Displaced + HLT_DoubleMu4_JpsiTrk_Displaced, HLT_DoubleMu4_PsiPrimeTrk_Displaced (control/normalization channels). In common with BΛ resonances. - Rate: #### $B \rightarrow K^* \mu \mu$ - Competitivity wrt LHCb: $L(R2)_{LHCb} \sim 4 \text{ fb}^{-1} \text{ vs } L(R2)_{CMS} \sim 150 \text{ fb}^{-1}$ - Extrapolation using full Run2 statistics: larger CMS signal yield by a factor ~2/2.3 wrt LHCb (but worse S/N ratio and no PID) - Assumption: $\epsilon_{trigger} (0.6/0.7) \epsilon_{Run1}$ - Manpower: Milano, Padova ## Cross Subgroups #### BA resonances (Production & Spectroscopy) - Search for new Xi_b^{**} states and beauty charmed baryon $Xi_{bc} \to B\Lambda$. Trigger paths to be defined. - Main systematics: - Possible improvements: - Could suffer from - Trigger paths: - L1: L1_DoubleMu0er1p5_SQ_OS_dR_Max1p4, L1_DoubleMu4_SQ_OS_dR_Max1p2. In common with B \rightarrow µµ, B \rightarrow K*µµ, B $_s$ \rightarrow J/ψφ, τ \rightarrow 3µ, quarkonia cross section and polarization. - HLT: HLT_DoubleMu4_JpsiTrk_Displaced. In common with B → K*μμ. - Rate: - Competitivity - Manpower: MEPhi #### B → TX (Rare & Properties) - B decays in tau lepton final states are important probes of New Physics (e.g. 2-Higgs Doublet Model) due to large H⁺-fermion coupling. Popular channels due to some tensions wrt Standard Model expectations (e.g. B → D* τv, marginally B → τv). Search for LFV decays or measurement of CKM matrix elements. Difficult analyses with uncertain outcome. - Main systematics: BKG, normalization - Could suffer from difficult reconstruction of tau, - Trigger paths: - L1: To be defined - HLT: To be defined - Competitivity - Extrapolation using full Run2 statistics: - Assumption: - Manpower: Milano # L1 trigger seeds | L1 menu | Unprescaled rate [1.5e34] | Post-DT rate
[1.5e34] | Prescale value [column 1] | | | | | | | | | | | | |---|---------------------------|--------------------------|---------------------------|--|-----------------------|---|-------|-----------------------------|-----|--------------|--------------------|-------------------------|---------------------------------|-----------| | | | | | Quarkonium cross sections and polarization | Chi_b->Y(nS)
gamma | Double
quarkonia
(including
J/Psi Y) | Ymumu | CPV with
Bs -> J/Psi Phi | Bmm | Z -> J/Psi X | tau->3Mu
search | P5' angular
analysis | B Lambda
resonance
search | B -> tauX | | L1_DoubleMu0er1p5_SQ_OS_dR_Max1p4 | 3,286 | 3,032 | 1 | x | x | | | x | X | | X | X | x | | | L1_DoubleMu4p5er2p0_SQ_OS_Mass7to18 | 1,752 | 1,618 | 1 | X | X | | | | | | | | | | | L1_DoubleMu5_SQ_OS_Mass7to18 | 1,275 | 1,178 | 1 | X | X | | | | | | | | | | | L1_DoubleMu8_SQ | 1,080 | 996 | 1 | X | X | | | | | | | | | | | L1_DoubleMu4_SQ_OS_dR_Max1p2 | 3,506 | 3,237 | 1 | | X | | | X | | | X | X | X | | | L1_TripleMu_5_3p5_2p5_DoubleMu_5_2p5_OS_Mass_5to17 | 1,313 | 1,213 | 1 | | | X | x | | | | | | | | | L1_TripleMu_5SQ_3SQ_0OQ_DoubleMu_5_3_SQ_OS_Mass_Max9 | 1,488 | 1,375 | 1 | | | X | | X | | | X | | | | | L1_DoubleMu5Upsilon_OS_DoubleEG3 | v4 | v4 | | | | | x | | | | | | | | | L1_DoubleMu3_OS_DoubleEG7p5Upsilon | v4 | v4 | | | | | X | | | | | | | | | L1_TripleMu_5OQ_3p5OQ_2p5OQ_DoubleMu_5_2p5_OQ_OS_Mass_8to14 | v4 | v4 | | | | | X | | | | | | | | | L1_TripleMu_5OQ_3p5OQ_2p5OQ_DoubleMu_5_2p5_OQ_OS_Mass_5to17 | v4 | v4 | | | | | X | | | | | | | | | SMP High pT triggers | | | | | | | | | | X | ## HLT trigger paths | HLT menu | Prescaled rate
[@ 1.5e34] | average
prescale | | | | | | | | | | | | |---|------------------------------|---------------------|--|-----------------------|---|-------|-----------------------------|-----|--------------|--------------------|-------------------------|---------------------------------|-----------| | | | | Quarkonium cross sections and polarization | Chi_b->Y(nS)
gamma | Double
quarkonia
(including
J/Psi Y) | Ymumu | CPV with
Bs -> J/Psi Phi | Bmm | Z -> J/Psi X | tau->3Mu
search | P5' angular
analysis | B Lambda
resonance
search | B -> tauX | | HLT_Dimuon10_PsiPrime_Barrel_Seagulls | 4.7 | 1 | x | | | | | | | | | | | | HLT_Dimuon20_Jpsi_Barrel_Seagulls | 6.9 | 1 | X | | | | | | | | | | | | HLT_Dimuon10_Upsilon_Barrel_Seagulls | 7.3 | 1 | X | x | | | | | | | | | | | HLT_Dimuon14_Phi_Barrel_Seagulls | 6.7 | 1 | X | | | | | | | | | | | | HLT_Dimuon12_Upsilon_eta1p5 | 8.6 | 1 | | x | | | | | | | | | | | HLT_Dimuon0_Jpsi3p5_Muon2 | 13.8 | 1 | | | X | | x | | | | | | | | HLT_Trimuon5_3p5_2_Upsilon_Muon | 9.9 | 1 | | | X | x | | | | | | | | | HLT_TrimuonOpen_5_3p5_2_Upsilon_Muon | v4 | | | | | x | | | | | | | | | HLT_DoubleMu5_Upsilon_DoubleEle3_CaloldL_TrackIdL | v4 | | | | | x | | | | | | | | | HLT_DoubleMu3_DoubleEle7p5_CaloIdL_TrackIdL_Upsilon | v4 | | | | | x | | | | | | | | | HLT_DoubleMu4_JpsiTrkTrk_Displaced | 10.9 | 1 | | | | | x | | | | | | | | HLT_DoubleMu4_3_Bs | 9.6 | 1 | | | | | | X | | | | | | | HLT_DoubleMu4_3_Jpsi_Displaced | 4.9 | 8 | | | | | | x | | | | | | | SMP High pT triggers | | | | | | | | | x | | | | | | HLT_DoubleMu3_Trk_Tau3mu | 18.6 | 1 | | | | | | | | X | | | | | HLT_Tau3Mu_Mu7_Mu1_TkMu1_lsoTau15_Charge1 | 4.7 | 1 | | | | | | | | x | | | | | HLT_Tau3Mu_Mu7_Mu1_TkMu1_IsoTau15 | 4.8 | 1 | | | | | | | | X | | | | | HLT_Tau3Mu_Mu7_Mu1_TkMu1_Tau15_Charge1 | 0.7 | 20 | | | | | | | | x | | | | | HLT_Tau3Mu_Mu7_Mu1_TkMu1_Tau15 | 0.7 | 20 | | | | | | | | X | | | | | HLT_DoubleMu4_LowMassNonResonantTrk_Displaced | 22.1 | 1 | | | | | | | | | x | | | | HLT_DoubleMu4_JpsiTrk_Displaced | 15.1 | 1 | | | | | | | | | x | x | | | HLT_DoubleMu4_PsiPrimeTrk_Displaced | 1.2 | 1 | | | | | | | | | X |