

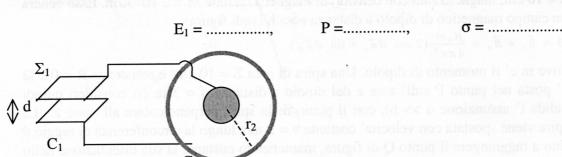
UNIVERSITA' DEGLI STUDI DI PADOVA FACOLTA' DI INGEGNERIA

I^a prova scritta di accertamento del Corso di Fisica II per Ing. delle Telecomunicazioni e dell'Automazione. A.A.2003-2004 Padova, 25 Giugno 2004

COGNOME	NOME	Matr

Problema 1

Un condensatore piano C_1 ed uno sferico C_2 sono collegati in parallelo come in figura. La superficie delle armature piane e' $\Sigma_1 = 400~\text{cm}^2$ e la distanza tra loro e' d=1,5~cm. I raggi delle due armature sferiche sono rispettivamente $r_1=0,1~\text{m}$ a $r_2=0,3~\text{m}$. I due condensatori vengono caricati con una carica totale $q_{tot}=8~10^{-8}~\text{C}$. Determinare:


a) la capacita' equivalente del sistema e la d.d.p. tra le armature:

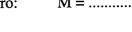
$$C = \Delta V =$$

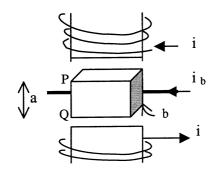
b) il campo elettrico tra le armature del condensatore sferico alla distanza $r_0 = 0.2$ m dal suo centro: $E_2(r_0) = \dots$

Tra le aramature del condensatore piano viene inserito un dielettrico di costante dielettrica relativa k = 2. Determinare:

c) il campo elettrico tra le armature del condensatore piano, la densita' di polarizzazione del dielettrico e la densita' di carica di polarizzazione che compare sulla sua superficie:

Un blocchetto di rame di sezione rettangolare, di altezza a = 1 cm e spessore


b= 1 mm (vedi figura) e' posto nel traferro di un ferromagnerte costituito da un solenoide indefinito con n=600 spire/metro con un nucleo di ferro avente permeabilita' magetica $k_m=2000$. Si consideri il campo magnetico nel volume del traferro uguale al campo B nel nucleo di ferro. La corrente $i_b=10$ A percorre il


blocchetto, e si osserva tra i punti P e Q di esso una f.e.m. di Hall $\mathcal{E}_H = 0$, 88 μV . Sapendo che il numero di portatori di carica per unita' di volume nel rame e' $n_e = 8,5$ 10^{28} elettroni/m³, determinare:

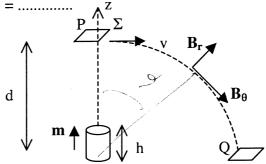
a) la velocita' di deriva degli elettroni nel rame: $v_d =$

b) la corrente che circola nel solenoide (si ricordi che la permeabilita' magnetica nel vuoto vale $\mu_0 = 4\pi \ 10^{-7} \ H/m$): i =

c) la densita' di magnetizzazione del ferro: M =

Problema 3:

Un dipolo magnetico e' costituito da un cilindretto di ferro di sezione $\Sigma = 10 \text{ cm}^2$ e altezza


h = 10 cm, magnetizzato con densita' di magnetizzazione $M = 2 \cdot 10^5$ A/m. Esso genera un campo magnetico di dipolo a distanza r >> h (vedi figura):

$$\vec{B} = \vec{B}_r + \vec{B}_\theta = \frac{\mu_0 m}{4\pi r^3} (2 \cos \vartheta \vec{u}_r + \sin \vartheta \vec{u}_\theta)$$

dove m e' il momento di dipolo. Una spira di area $\Sigma=10~{\rm cm^2}$ e resistenza $R=0.2~\Omega$ e' posta nel punto P sull' asse z del dipolo a distanza $d=3~{\rm m}$ (si consideri quindi valida l' assunzione d>>h), con il piano della spira perpendicolare all' asse z. La spira viene spostata con velocita' costante $v=2~{\rm m/s}$ lungo la circonferenza di raggio d fino a raggiungere il punto Q di figura, mantenendo costante la sua orientazione nello spazio. Calcolare (approssimando come uniforme il campo B sulla superficie della spira):

a) il mormento di dipolo magnetico del cilindretto ed il flusso del campo magnetico concatenato con la spira nel punto P: $m = \dots, \Phi_P = \dots$

b) il valor medio della corrente che circola nella spira nel tempo di spostamento della spira da P a Q: <i>= A z

$$C_1 = \frac{\xi_0 \bar{\xi}_1}{d} = \frac{2.36.10^{-11}}{e}$$

$$C_2 = 4\pi E_0 \frac{R_1 R_2}{\Lambda_1 - R_1} = 1.67.10 F$$

$$(eq = \frac{q_{\tau,\tau}}{\sqrt{2}} = 0 \text{ and } = \frac{q_{\tau,\tau}}{\sqrt{2}} = \frac{1985 \text{ V}}{\sqrt{2}}$$

$$e_1 = C_2 > V = 3.3.10^{-8}c$$

$$\phi(E) = 4\pi n^2 E(n_0) = \frac{9^2}{E_0}$$

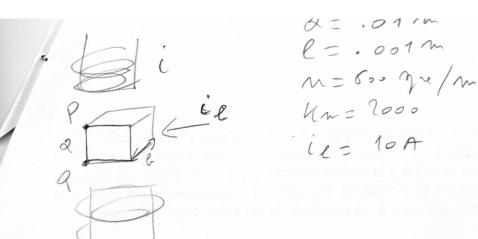
$$F(r_0) = \frac{p_1}{4\pi \xi_{10}^2} = \frac{2452 \text{ V/m}}{4\pi \xi_{10}^2}$$

$$c) k = 2$$

$$C_1 = kC_1 = 4.77.10^{-11}F = 0.39.10^{-11}F$$

$$C_1 = kC_1 = 4.76.00$$

$$OV = PToT = 1252 V ; E_1 = OV = 83462 V/m$$


$$C'eq = 1252 V ; E_1 = OV = 83462 V/m$$

$$C'eq = 7.4.10$$

$$Ceg$$
 $60 = 60E_0 = E_0 2V = 1.17.10^{-6} C/m^2$

$$E_{1} = \frac{6_{0} - 6p}{E_{0}} = \frac{6_{0} - 6p}{E_{0}} = \frac{E_{1}E_{0}}{E_{0}}$$

$$G_{0} = \frac{E_{1}E_{0}}{E_{0}} = \frac{1}{4.32.10} = \frac{7}{4.32.10}$$

$$B = \mu_0 m i k_m = 0$$
 $i = \frac{B}{\mu_0 m k_m} = 0$
 $i = \frac{A}{\mu_0 m k_m} = 0$
 $i = \frac{A}{\mu_0 m k_m} = 0$

ie som kin

c)
$$11 = (k_{m-1})H$$
; $H = \frac{B}{u_{s} + w_{m}} = 77 = (k_{m-1})B$

=>1= 1,90.10 A/m

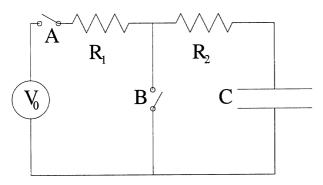
$$T = 10 \text{ m}^2$$
 $h = 10 \text{ m}$
 $h = 7.10^5 \text{ A/m}$

$$R = .2 \Omega$$

$$d = 3 m$$

$$U = 2 m/s$$

$$B_n \notin P$$
) = $\frac{h_s m}{4\pi d^3}$ (2) = 1.49.10⁻⁷T


e)
$$S = \frac{\pi}{2}d = 4.71 \text{ m}$$

 $t = \frac{5}{10} = 2.365$

$$Q = \frac{\triangle \Phi}{R} \qquad \qquad \Phi_1 = \Phi_P$$

$$\phi_{q} = \frac{\mu_{o} m_{\xi}}{4\pi d^{3}} = 4.4.10^{-11} W_{\xi} = \frac{\phi(P)}{2}$$

$$Q = 3.73.10^{-10}C$$
=> $Ci > = Q = 1.58.10^{-10}A$

Un condensatore, di capacità $C=1.5 \mathrm{nF}$, è connesso ad un generatore di tensione costante $V_0=450 \mathrm{V}$ tramite due resistori in serie, con resistenza $R_1=2.7 \mathrm{M}\Omega$ e $R_2=680 \mathrm{K}\Omega$, come mostrato in figura. Inizialmente il condensatore è scarico ed entrambi gli interruttori sono aperti.

Ad un certo istante l'interruttore A viene chiuso e si attende che il condensatore sia completamente carico.

• Determinare il lavoro W_{gen} compiuto dal generatore, l'energia U_C contenuta nel condensatore, l'energia U_d dissipata in totale e l'energia U_1 dissipata nel resistore 1.

Successivamente l'interruttore B viene chiuso, in modo da scaricare il condensatore attraverso il solo resistore 2, fino a che la tensione non si riduce a $V_1=0.03V_0$, e poi riaperto fino a che la tensione non diventa $V_2=0.92V_0$; il processo viene quindi ripetuto più volte in modo uguale tra le stesse tensioni V_1 e V_2 .

• Determinare i tempi $t_1(V_1 \to V_2)$ e $t_2(V_2 \to V_1)$ impiegati in ciascun processo di carica e scarica.

Lavoro fatto dal generatore ed energia elettrostatica:

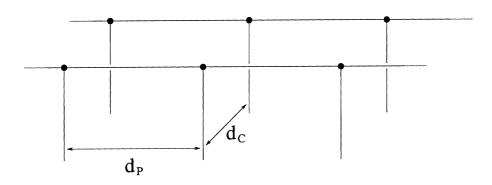
$$W_{gen} = qV_0 = CV_0^2 = 304\mu J$$
; $U_C = \frac{1}{2}CV_0^2 = 152\mu J$

Energia dissipata:

$$U_d = W_{gen} - U_C = \frac{1}{2}CV_0^2 = 152\mu J$$
; $U_1 = \frac{R_1}{R_1 + R_2}U_d = 121\mu J$

Costanti di tempo per carica e scarica:

$$\tau_1 = (R_1 + R_2)C = 5.07 \text{ms}$$
; $\tau_2 = R_2C = 1.02 \text{ms}$


tempo di carica e scarica:

$$V_0 - V_2 = (V_0 - V_1)e^{-\frac{t_1}{\tau_1}} \implies t_1(V_1 \to V_2) = \tau_1 \ln \frac{V_0 - V_1}{V_0 - V_2} = 12.65 \text{ms}$$

$$V_1 = V_2 e^{-\frac{t_2}{\tau_2}} \implies t_2(V_2 \to V_1) = \tau_2 \ln \frac{V_2}{V_1} = 3.49 \text{ms}$$

Un impianto industriale assorbe una potenza $W_E=35\mathrm{MW}$ prodotta da una centrale che si trova ad una distanza $L=12\mathrm{km}$; l'energia viene trasportata mediante 2 cavi in alluminio (di resistività $\rho=2.65*10^{-8}\Omega\mathrm{m}$) a sezione circolare con raggio $r=2\mathrm{cm}$. La potenza dissipata per effetto Joule non deve superare complessivamente, nei 2 cavi, il valore massimo $W_D=30\mathrm{kW}$.

- Qual è la minima differenza di potenziale V_{min} che deve essere utilizzata?
- Se viene utilizzata una differenza di potenziale $V_E=200\rm kV$, e i pali della linea si trovano ad una distanza $d_P=150\rm m$ tra loro, mentre la distanza tra i cavi è $d_C=2.5\rm m$, qual è la forza magnetica che agisce su ciascun tratto di cavo ?

Resistenza di ciascun cavo:

$$R = \rho \frac{L}{S} = \frac{\rho L}{\pi r^2} = 0.253\Omega$$

Potenza dissipata, corrente massima e tensione minima:

$$W_d = 2Ri_{max}^2 \Rightarrow i_{max} = \sqrt{\frac{W_d}{2R}} = 243A \Rightarrow V_{min} = \frac{W_E}{i_{max}} = 144 \text{kV}$$

Corrente e campo magnetico:

$$i_E = \frac{W_E}{V_E} = 175 \text{A} \implies B = \frac{\mu_0 i_E}{2\pi d_C} = 1.4 \cdot 10^{-5} \text{T}$$

Forza:

$$F = Bd_p i_E = 0.367 N$$

Una bobina, composta da $N_B=125$ spire di superficie $S=6 {\rm cm}^2$ e resistenza complessiva $R=300\Omega$, ruota intorno ad un asse complanare ad essa ed ortogonale ad un campo magnetico uniforme $B=1.7{\rm T}$; la velocità angolare è mantenuta costante da un motore di potenza $P=2{\rm W}$.

- \bullet Determinare la carica q (in modulo) che circola nella bobina in ogni mezzo giro.
- ullet Determinare la f.e.m. massima \mathcal{E}_0 nella bobina e la velocità di rotazione ω .

Flusso e carica:

$$\Phi = \Phi_0 \cos \omega t = N_B B S \cos \omega t$$
 \Rightarrow $\Phi_0 = N_B B S = 0.1275 Wb$

$$q = 2\frac{\Phi_0}{R} = 2\frac{N_B B S}{R} = 0.85 \text{mC}$$

Potenza media e f.e.m. massima:

$$P = \frac{1}{2} \frac{\mathcal{E}_0^2}{R}$$
 \Rightarrow $\mathcal{E}_0 = \sqrt{2PR} = 34.64$ V

f.e.m. indotta e velocità angolare:

$$\mathcal{E}_{i} = -\frac{d\Phi}{dt} = \omega \Phi_{0} \operatorname{sen} \omega t = \mathcal{E}_{0} \operatorname{sen} \omega t \qquad \Rightarrow \qquad \mathcal{E}_{0} = \omega \Phi_{0} = \omega N_{B} B S = 35.7 \text{V}$$

$$\Rightarrow \qquad \omega = \frac{\mathcal{E}_{0}}{N_{B} B S} = 271.7 \text{s}^{-1}$$

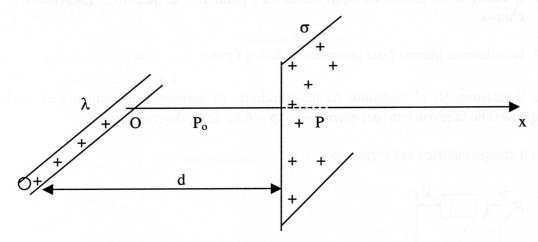
I prova di accertamento di Fisica II per Ingegneria delle Telecomunicazioni e dell'Automazione. A.A.2003-2004 Padova, 29 Maggio 2004

Cognome: Nome: Matr.:

Problema 1.

Una distribuzione lineare di carica positiva con densita' uniforme $\lambda = 6,28~10^{-8}$ C/m e' disposta parallelamente ad un piano, caricato anch'esso positivamente, con una densita' suprficiale $\sigma = 10^{-8}$ C/m², alla distanza d = 5 m da esso (vedi figura).

Determinare (si ricordi che ε_0 =8,85 10^{-12} C²/Nm²):

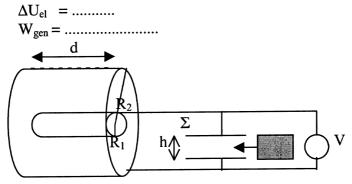

a) il campo elettrico E(x) lungo l'asse x perpendicolare al piano e passante per la distribuzione lineare di carica e la distanza x_0 da O del punto P_0 in cui il campo e' nullo (si ponga l'origine O dell'asse sulla distribuzione di carica): $E(x)=\dots$

b) la differenza di potenziale $\Delta V = V(P) - V(P_0)$ tra P_0 e il punto P di intersezione dell' asse con il piano:

 $\Delta V = \dots$

Una carica negativa $q_0 = -10^{-7}$ C di massa $m = 10^{-2}$ kg, inizialmente posta in P_0 , viene messa in moto lungo l'asse x in direzione del piano, con velocita' iniziale trascurabile. Determinare:

c) la velocita' con cui la carica q_0 colpisce il piano: $v = \dots$


Un condensatore cilindrico C_1 ed un condensatore piano C_2 sono collegati in parallelo tra loro; un generatore mantiene tra le armature una d.d.p. V, come mostrato in figura. La lunghezza del condensatore cilindrico e' d=0,4 m ed i raggi delle sue armature interna ed esterna sono R_1 = 1cm e R_2 =3 cm rispettivamente. Le armature del condensatore piano hanno superficie Σ =2 dm² e sono distanti h = 1 cm. La carica sulle armature del condensatore cilindrico e' Q_1 = 10^{-9} C. Determinare:

a) La carica Q2 sul condensatore piano e la capacita' equivalente del sistema:

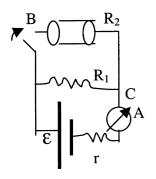
 $Q_2 = \dots$ $C_{eq} = \dots$

Tra le armature del condensatore piano viene inserito un dielettrico di costante dielettrica relativa k =2,2. Calcolare:

b) la variazione dell' energia elettrostatica immagazzinata nel sistema ed il lavoro compiuto dal generatore durante l'inserimento del dielettrico:

Problema 3:

Nel circuito di figura i due resistori collegati in parallelo tramite un interruttore hanno resistenze R_1 =40 Ω e R_2 =60 Ω . L' amperometro A misura una corrente i_1 = 100 mA quando l' interruttore in B e' aperto. Con l' interruttore chiuso, l' amperometro misura la corrente i_2 = 150 mA. Determinare:


a) il valore della resistenza equivalente tra i punti B e C quando l' interruttore e' chiuso:

$$R_{eq} = \dots$$

b) la resistenza interna r del generatore e la sua f.e.m.:

Se il resistore R_2 e' costituito da un cilindretto di germanio di sezione $\Sigma=1$ cm², sapendo che la resistivita' del germanio e' $\rho=0.46~\Omega$ m, determinare:

c) il campo elettrico nel germanio: E =

$$\frac{1}{R_{eg}} = \frac{1}{R_{i}} + \frac{1}{R_{i}} = 24R$$

$$\frac{1}{R_{eg}} = \frac{1}{R_{i}} + \frac{1}{R_{i}} = 24R$$

$$\frac{1}{R_{eg}} = \frac{1}{R_{i}} + \frac{1}{R_{i}} = \frac{1}{R_{i}} = \frac{1}{R_{i}}$$

$$\frac{1}{R_{eg}} = \frac{1}{R_{i}} + \frac{1}{R_{eg}} = \frac{1}{R_{i}} = \frac{1}{R_{i}}$$

$$\frac{1}{R_{eg}} = \frac{1}{R_{eg}} + \frac{1}{R_{eg}} = \frac{1}{R_{eg}}$$

$$\frac{1}{R_{eg}} = \frac{1}{R_{eg}} + \frac{1}{R_{eg}} = \frac{1}{R_{eg}} + \frac{1}{R_{eg}}$$

$$\frac{1}{R_{eg}} = \frac{1}{R_{eg}} + \frac{1}{R_{eg}} = \frac{1}{R_{eg}} + \frac{1}{R_{eg}}$$

$$\frac{1}{R_{eg}} = \frac{1}{R_{eg}} + \frac{1}{R_{eg}} = \frac{1}{R_{eg}} + \frac{1}{R_{eg}}$$

$$\frac{1}{R_{eg}} = \frac{1}{R_{eg}} + \frac{1}{R_{eg}} + \frac{1}{R_{eg}} = \frac{1}{R_{eg}} + \frac{1}{R_{eg}}$$

$$\frac{1}{R_{eg}} = \frac{1}{R_{eg}} + \frac{1}{R_{eg}} + \frac{1}{R_{eg}} = \frac{1}{R_{eg}} + \frac{1}{R_{eg}} = \frac{1}{R_{eg}} + \frac{1}{R_{eg}}$$

$$\frac{1}{R_{eg}} = \frac{1}{R_{eg}} + \frac{1}{R_{eg}} + \frac{1}{R_{eg}} = \frac{1}{R_{eg}} + \frac{1$$

$$I_g = \frac{V_{BC}}{R_2} = 60 \text{ mH}$$

)
$$C_1 = \frac{2\pi \xi}{4\pi (R_1/R_1)}$$
 $C_2 = \frac{\xi_0 \Sigma}{4\pi (R_1/R_1)} = \frac{1.77.10^{-11} F}{4\pi (R_1/R_1)}$

$$V = \frac{Q_1}{C_2} = 0$$
 $Q_2 = Q_1 \frac{C_2}{C_1} = \frac{8.76.10^{-10}}{C}$

2)
$$C_2 = C_2 K$$

 $C_2 = C_1 + C_2 = 5.91.10^{-11} F$

$$U = \frac{1}{2} c_{q} V^{2} = 4.64 lo^{-8}$$

$$\int U = 2.6.10^{-8}$$

$$E(x) = -\frac{1}{2\pi \xi x} - \frac{6}{2\xi}$$

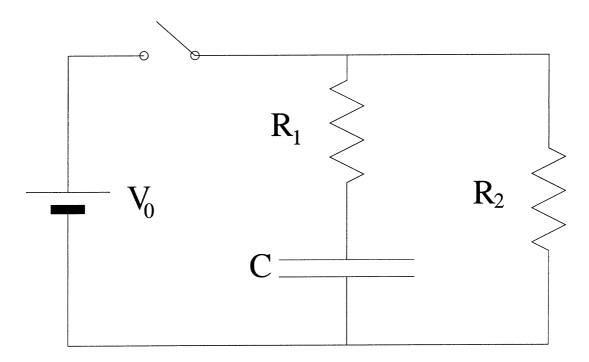
$$n70; E(n) = \frac{1}{245n} + \frac{6}{26}$$

$$E(x_5) = \frac{1}{2\pi \xi x_5} = \frac{6}{2\xi} = \frac{1}{2\xi} = \frac{6}{2\xi}$$

$$x_0 = \frac{1}{c} = 2m$$

2)
$$V(P) - V(P_0) = -\int_{P_0}^{\infty} E(n) dn = -\int_{P_0}^{\infty} \frac{1}{2\pi \xi n} - \frac{6}{2\xi} dn$$

$$=-\left[\frac{1}{2\pi s}\ln x-\frac{6\pi}{2s}\right]^{d}=$$

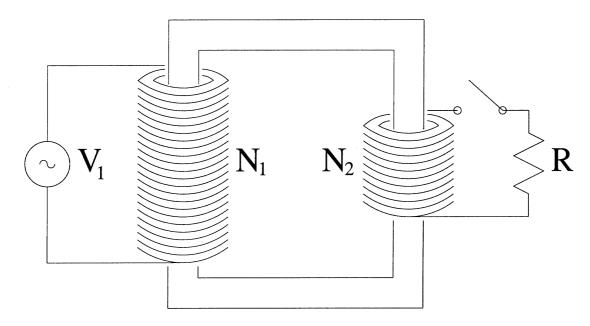

$$=\frac{6}{28}(d-n_0)=\frac{\lambda}{2\pi 8}\ln\left(\frac{d}{n_0}\right)=\frac{1118}{8}$$

3)
$$\frac{1}{2}mv^{2} = 90V = 9$$
 $v = \sqrt{\frac{290V}{m}} = .115 m/s$

COGNOMENOMEMATRICOLA.....

Problema 1

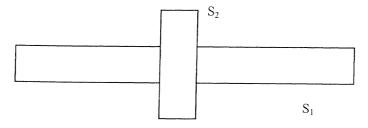
Un condensatore, costituito da due lamine piane con lati a=2cm e b=12cm, parallele tra loro a distanza h=0.1mm, è connesso in serie ad una resistenza $R_1=680\Omega$ e, tramite un interruttore, ad un generatore di tensione costante $V_0=24V$; in parallelo ad essi è connessa una resistenza $R_2=1200\Omega$, come mostrato in figura. Il condensatore è inizialmente scarico, l'interruttore viene chiuso e, dopo un tempo t_0 sufficiente per caricare completamente il condensatore, viene aperto per un uguale tempo t_0 , pure sufficiente per scaricare completamente il condensatore; in seguito vengono ripetuti indefinitamente uguali cicli di carica e scarica.



- ullet Qual è la potenza dissipata nella resistenza R_2 mentre l'interruttore è chiuso?
- Qual è l'energia massima immagazzinata nel condensatore?
- Qual è la forza F tra le lamine?
- $\bullet\,$ Qual è l'energia dissipata nella resistenza R_1 in un processo di scarica?
- Si tracci il grafico della differenza di potenziale V_1 ai capi del condensatore in funzione del tempo: qual è la differenza tra gli intervalli di tempo t_A e t_B in cui V_1 è maggiore o minore, rispettivamente, di $V_0/2$?

COGNOMENOMEMATRICOLA.....

Problema 2


Un giogo in materiale ferromagnetico, con permeabilità magnetica relativa k=2200, ha forma rettangolare, con lati x=4cm e y=7cm e sezione $S=1.8cm^2$; su uno dei lati maggiori è avvolto un primo solenoide composto da $N_1=3800$ spire, connesso ad un generatore di tensione sinusoidale con frequenza $\nu=50Hz$, mentre sul lato opposto è avvolto un secondo solenoide composto da $N_2=700$ spire, a cui può essere connessa una resistenza $R=200\Omega$ chiudendo un interruttore. Mentre l'interruttore è aperto, nel primo solenoide circola una corrente massima $i_0=30.3mA$.

- Qual è il campo magnetico massimo all'interno del giogo, con l'interruttore aperto?
- Qual è la tensione efficace V_1 fornita dal generatore?
- Qual è la f.e.m. indotta \mathcal{E} nel secondo solenoide, con l'interruttore aperto?
- Qual è la corrente massima i_1 che circola nel primo solenoide, se l'interruttore viene chiuso?
- Qual è la potenza spesa dal generatore, in questo caso?

Una bobina S_2 , costituita con $N_2 = 60$ spire, con area $A_2 = 15 \times 10^{-4} \text{ m}^2$, è avvolta intorno alla parte centrale di un lungo solenoide rettilineo S_1 , di area $A_1 = 5.3 \times 10^{-4} \text{ m}^2$ con una densità di spire n = 4500 spire / m. La bobina S_2 e il solenoide S₁ sono coassiali. Determinare:

- a) l'induttanza per unità di lunghezza del solenoide S₁
- b) la mutua induttanza dei due circuiti
- c) la f.e.m. massima indotta in S_2 (in modulo), quando in S_1 circola una corrente I_1 = I_0 Cos Ω t (I_0 = 2 A e $\Omega = 300 \text{ s}^{-1}$).

Terzo problema

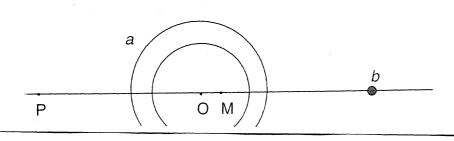
Un piano di fili rettilinei indefiniti accostati ha n=800 fili per metro. Sopra il piano dei fili è posta una spira conduttrice quadrata di lato a=0.15m.

1) Calcolare il coefficiente di mutua induzione fili-spira se la spira giace in un piano ortogonale alla direzione dei fili.

2) Ripetere il calcolo se il piano della spira è parallelo alla direzione dei fili.

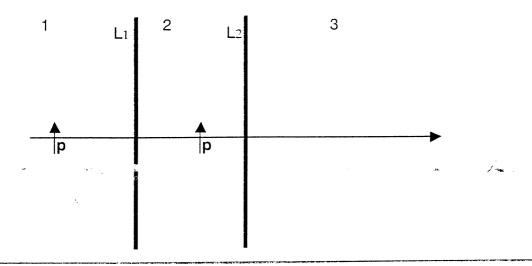
Si supponga che la spira, avente resistenza $R=27\Omega$, venga fatta ruotare dalla posizione A alla posizione B e che la carica messa di conseguenza in moto nella spira sia q=1.67·10⁻⁷C.

3) Calcolare il valore della corrente che circola in ciascun filo.


Problema 1

Due conduttori rettilinei e paralleli, a e b, sono così costituiti: a è un cilindro cavo di raggio interno r_1 = 0.013 m ed esterno r_2 =0.019 m; b è un filo di diametro trascurabile rispetto alle altre dimensioni, posto a distanza d = 0.05 m dal centro di a. Si misura l'induzione magnetica B generata dai due conduttori nei punti O (centro O del conduttore a) e P posto sull'asse comune dei due conduttori a distanza $x_P = -0.05$ m da O. Si ottiene: B(P) = 0.65 x 10 $^{-4}$ T e B(O) = -0.35 $x10^{-4}$ T. (B positivo se orientato verso il basso). Determinare:

- a) intensità e verso della corrente nel filo b
- b) la densità uniforme di corrente nel conduttore a


c) la forza di interazione tra i due fili (per unità di lunghezza)

d) l'intensità ed il verso dell'induzione magnetica B nel punto M (0.005 metri,0) (coordinata calcolata rispetto ad O)

Due lamine isolanti (infinite) L_1 e L_2 cariche, con densità di carica uniforme, sono disposte parallelamente l'una all'altra. Un piccolo dipolo elettrico di momento dipolare $p=10^{-9}$ Cm. posto verticalmente, con il momento dipolare orientato verso l'alto, nel semispazio 1, a sinistra rispetto a L_1 , subisce un momento meccanico massimo $\tau_1=9x10^{-5}$ Nm antiorario, perpendicolare al piano del disegno. Posto invece nello spazio 2, tra le due lamine, presenta un momento massimo $\tau_2=3.1x10^{-5}$ Nm (segno orario, opposto rispetto a τ_1).

- a) i campi elettrici nelle tre zone in cui le lamine dividono lo spazio
- b) la densità di carica superficiale sulle due lamine
- c) il lavoro compiuto per avvicinare le lastre di d =0.07 m

Problema 4 (facoltativo)

Un solenoide toroidale di sezione trasversale quadrata, ha raggio interni R = 0.15 m e lato l = 0.05 m. E' costituito da N=1500 spire ed è percorso dalla corrente l = 12 A. Determinare:

- a) il coefficiente di autoinduzione
- b) l'energia magnetica totale accumulata nel solenoide

Un filo indefinito è carico con densità di carica lineare uniforme positiva $\lambda = 2x10^{-9}$ C/m. Una particella puntiforme di carica (negativa) $q = -3.2x10^{-19}$ C e massa $m = 2x \cdot 10^{-24}$ kg parte da ferma da una distanza $d_0 = 1.2$ cm dal filo e transita ad una distanza d = 0.7 cm dallo stesso. Determinare:

a) la forza di Coulomb cui è sottoposta la particella nella posizione iniziale.

b) la velocità della particella quando transita a distanza d dal filo

Terzo Problema

Un condensatore piano è costituito da due lastre parallele conduttrici di superficie Σ =1.5x10⁻⁴ m² a distanza d =0.007m l'una dall'altra. Il condensatore viene connesso ad una batteria e portato alla d.d.p. tra le armature V_A - V_B = 35 volt. Indi viene sconpesso e tra le armature viene infilata completamente una lastra di rame di spessore do =0.002m. La lastra è parallela alle armature ed ha superficie Σ .

Determinare:

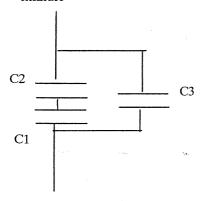
- 1) la carica presente sulle armature del condensatore prime dell'inserimento della lastra
- 2) la d.d.p. tra le armature del condensatore quando la lastra è stata completamente inserita.
- 3) La differenza di energia elettrostatica nel condensatore tra le due configurazioni (lastra inserita configurazione finale)

Problema 4

Un solenoide toroidale di sezione trasversale quadrata, ha raggio interno R = 0.15 m e il lato del quadrato è I = 0.05 m. Quando il toroide è percorso dalla corrente I = 12 A, l'induzione magnetica nel punto P, al centro della sua sezione quadrata è $B_P = 20.6$ mT. Determinare:

- a) il coefficiente di autoinduzione del toroide
- b) l'energia magnetica in esso accumulata

I condensatori C1= $0.033~\mu F$ e C2= $0.018~\mu F$, collegati in serie, sono in parallelo con il condensatore C3 = 22~n F. Mediante un generatore elettrostatico, si fornisce al circuito la carica q= $0.34~\mu C$, terminata la carica il generatore viene scollegato. Determinare:

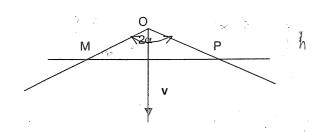

1)la d.d.p. agli estremi di C3

2)le cariche su ciascuno dei tre condensatori

Gli estremi del condensatore C1 vengono collegati con un filo metallico (cortocircuito). Calcolare, nella nuova situazione di equilibrio:

3)la d.d.p. agli estremi di C3

4) la variazione complessiva di energia elettrostatica del sistema rispetto alla configurazione iniziale


Problema 3

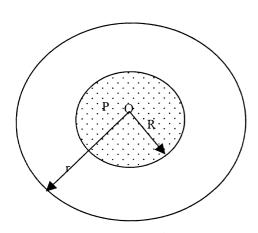
Un filo rettilineo di resistività per unità di lunghezza ρ =0.5 Ω /m è piegato nel punto O in modo da formare un angolo 2α =120 °. Un filo MP, dello stesso materiale e con la stessa resistività, è disposto perpendicolarmente alla bisettrice dell'angolo 2 α e forma con il filo piegato un contorno triangolare chiuso OMP. Questo triangolo è posto in un campo magnetico uniforme B=0.85 T perpendicolare al piano del triangolo con verso entrante nel foglio. Il filo MP scivola sul contorno con la velocità costante v=0.25 m/s. Il moto inizia dal vertice O del contorno. Trascurando la resistenza dei contatti, determinare:

a) il verso e l'intensità della corrente che circola nel triangolo OMP

b) l'intensità la direzione e il verso della forza meccanica applicata al lato MP all'istante t₁= 0.8 s, che permette che il moto dell'asta avvenga con velocità costante

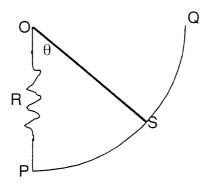
c) il calore totale dissipato nel circuito fino al tempo t₁

Un elettromagnete circolare di raggio R=0.10 m produce un campo magnetico a simmetria assiale B=0.55 *(1-exp[-3*t]) dove t è il tempo in secondi ed il campo è espresso in tesla. Una spira circolare di raggio r=0.25 m, costituita da un filo di sezione $\sigma=8*10^{-7}$ m² e di resistività $\rho=9.7*10^{-8}$ Ω m, è posta in un piano perpendicolare alle linee di campo intorno all'elettromagnete. Calcolare:


a) la resistenza totale della spira;

b) la corrente indotta nella spira all'istante $t_1 = 1.5 \times 10^{-2}$ s;

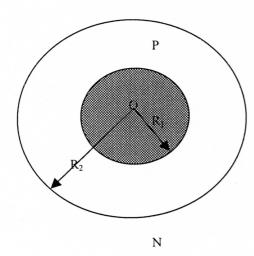
Nello stesso istante, un elettrone viene emesso con velocità trascurabile in un punto P a distanza d = 0.05 m dall'asse centrale del magnete.


c) il campo elettrico indotto che agisce sull'elettrone;

d) l'accelerazione dell'elettrone all'istante t_1 (massa elettrone $m_e = 9.1*10^{-31} kg$, $e = -1.6*10^{-19} C$) Nelle risposte alle ultime due domande, si trascuri il campo magnetico prodotto dalla corrente indotta nella spira.

Una sbarra di metallo OS di lunghezza I=0.85 m, ruota in un piano orizzontale attorno ad un asse verticale passante per il punto O con velocità costante $\omega=0.25$ s⁻¹. L'estremo S della sbarra scivola su un filo metallico a forma di arco di circonferenza PQ, di raggio I. Il filo è collegato al punto O nel tratto PO, mediante una resistenza R=0.7 Ω . Un campo magnetico costante e uniforme B=0.4 T, agisce perpendicolarmente al circuito con verso uscente dal foglio. Determinare :

- a) la carica totale indotta nel circuito OPS θ quando la sbarra ruota di $\theta = \pi/2$
- b) il momento delle forze (rispetto ad O) necessario per mantenere costante la velocità angolare
- c) il lavoro compiuto da questo momento per fare percorrere alla sbarra un quarto di giro


Problema 4

Un solenoide rettilineo indefinito, di sezione circolare (raggio $R = 25x10^{-2}$ m), è percorso dalla corrente i = 3 A ed ha un coefficiente di autoinduzione per unità di lunghezza $L = 6.3x \cdot 10^{-4}$ H/m. Calcolare:

- a) l'energia magnetica per unità di lunghezza del solenoide
- b) l'intensità del campo magnetico all'interno del solenoide
- c) il valore della corrente i, che deve percorrere una spira circolare di raggio R per produrre al centro un campo magnetico uguale a quello prodotto dal solenoide

Su una sfera metallica di raggio R_1 = 2 cm è impressa una carica q = 3 nC. La sfera è racchiusa in un guscio sferico di raggio interno R_1 e di raggio esterno R_2 = 4 cm. Il guscio è costituito da un dielettric isotropo e omogeneo con costante dielettrica relativa k = 2 e non ha carica impressa. Calcolare:

- a) il modulo del vettore **D** spostamento elettrico nei punti O (centro della sfera), P (a distanza $r_P = 3$ cr. da O), N (a distanza $r_N = 5$ cm da O):
- b) il modulo del campo elettrico E nei punti P ed N
- c) la d.d.p. tra i punti P ed N

Un elettromagnete circolare di raggio R = 0.10 m produce un campo magnetico a simmetria assiale B = 0.55 *(1-exp [-3*t]) dove t è il tempo in secondi ed il campo è espresso in Tesla. Una spira circolare di raggio r = 0.25 m, costituita da un filo di sezione $\sigma = 8*10^{-7} \text{ m}^2$ e di resistività $\rho = 9.7*10^{-8} \Omega \text{m}$, è posta in un piano perpendicolare alle linee di campo intorno all'elettromagnete. Calcolare:

a) la resistenza totale della spira;

b) la corrente indotta nella spira all'istante $t_1 = 1.5$ s, $t_2 = 1.5$

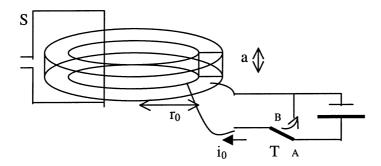
Nello stesso istante, un elettrone viene emesso con velocità trascurabile in un punto a distanza d = 0.05 m dall'asse centrale del magnete.

c) il campo elettrico indotto che agisce sull'elettrone;

d) l'accelerazione dell'elettrone all'istante t_1 (massa elettrone me = $9.1*10^{-31}$ kg)

Nelle risposte alle ultime due domande, si trascuri il campo magnetico provocato dalla corrente indotta nella spira.

$$\begin{cases}
\frac{d}{dx} = \frac{d}{dx} = \frac{27\pi n}{dx} = 0.19 \text{ n}
\end{cases}$$


$$\begin{cases}
\frac{d}{dx} = \frac{1}{2} \frac{d}{dx} = \frac$$

The state of the s

Problema 3:

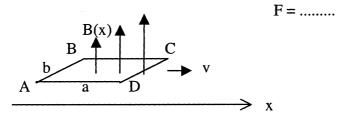
Un solenoide toroidale di raggio interno r_0 =0,5 m e sezione quadrata di lato a=0.2 m è costituito da N= 500 spire. L' avvolgimento del toroide ha resistenza totale R = 10 Ω . Una singola spira S (vedi figura) e' concatenata col toroide. All' istante iniziale il toroide e' percorso dalla corrente i_0 =2 A e l'interruttore T viene spostato dalla posizione A alla posizione B escludendo il generatore. Determinare:

- a) Il campo magnetico nel centro della sezione toroidale e la densita' di energia magnetica all' istante iniziale: B_0 =....., u_m =
- b) il flusso del campo magnetico concatenato con la singola spira del toroide all' istante iniziale ed il coefficiente di autoinduzione del toroide: $\Phi_1 = \dots, L$
- c) la costante di tempo del processo di azzeramento della corrente nel toroide :
- c) la f.e.m. indotta all' istante $t_1 = 2 \cdot 10^{-3}$ s nella spira S : $\varepsilon_i(t_1) = \dots$

UNIVERSITA' DEGLI STUDI DI PADOVA- FACOLTA' DI INGEGNERIA

IIa prova scritta di accertamento in itinere Fisica II per Ingegneria delle Telecomunicazioni e dell'Automazione. A.A.2003-2004 Padova, 23 Giugno 2004

Problema 1


Una spira rettangolare ABCD di lati AD=a = 0,2 m e AB=b = 0,1 m si muove lungo l' asse x con velocita' v = 2 m/s mantenuta costante, in una regione di spazio nella quale vi e' un campo magnetico non uniforme diretto perpendicolarmente alla spira (vedi figura), che varia secondo la legge $B(x) = \alpha x$, con $\alpha = 0.05$ T/m. La spira ha resistenza $R = 0.2 \Omega$. Calcolare:

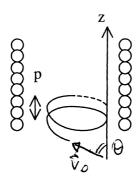
a) il flusso concatenato con la spira quando il lato AB e' nella posizione $x_1 = 1 \text{ m}$.

$$\Phi_1 =$$

b) la f.e.m. indotta sulla spira [suggerimento: si consideri la funzione $\Phi(x)$, dove x e' la posizione del lato AB della spira, e si utilizzi la relazione: $d\Phi(x(t))/dt = (d\Phi/dx) \cdot (dx/dt)$]:

c) la forza che deve essere applicata alla spira per mantenere costante la sua velocita':

Problema 2


Un protone (massa $m_p = 1,67 \cdot 10^{-27}$ kg, carica $e = 1,6 \cdot 10^{-19}$ C) entra con velocita' $v_0 = 6 \cdot 10^4$ m/s in un solenoide rettilineo indefinito, avente n=1000 spire/metro. Il vettore v_0 forma l' angolo θ =85° con l'asse z del solenoide. Si osserva che il passo della traiettoria elicoidale del protone nel solenoide e' p = 2 cm. Determinare:

- a) il periodo di rivoluzione del protone all' interno del solenoide: T =
- b) il campo magnetico nel solenoide e la corrente che circola nelle spire (si ricordi che la

permeabilita' magnetica nel vuoto vale $\mu_0 = 4\pi \ 10^{-7} \ H/m)$:

c) il raggio di curvatura della traittoria elicoidale:

r =

$$AD = 0 = .7m$$

$$AB = \ell = .7m$$

$$V = 2m/5$$

$$B(n) = dn$$

$$d = .05 T/m$$

$$R = 0.7S$$

1)
$$\phi(AB = 2m = 1m)$$

$$= d \left(\frac{(n+a)^2 - n^2}{2} \right) = d \left(\frac{(n+a)^2 - 2n^2 - n^2}{2} \right) = d \left(\frac{(n+a)^2 - 2n^2 - n^2}{2} \right) = d \left(\frac{(n+a)^2 - 2n^2 - n^2}{2} \right) = d \left(\frac{(n+a)^2 - 2n^2 - n^2}{2} \right) = d \left(\frac{(n+a)^2 - 2n^2 - n^2}{2} \right) = d \left(\frac{(n+a)^2 - 2n^2 - 2n^2}{2} \right) = d \left(\frac{(n+a)^2 - 2n^2 - 2n^2}{2} \right) = d \left(\frac{(n+a)^2 - 2n^2 - 2n^2}{2} \right) = d \left(\frac{(n+a)^2 - 2n^2 - 2n^2}{2} \right) = d \left(\frac{(n+a)^2 - 2n^2 - 2n^2}{2} \right) = d \left(\frac{(n+a)^2 - 2n^2 - 2n^2}{2} \right) = d \left(\frac{(n+a)^2 - 2n^2 - 2n^2}{2} \right) = d \left(\frac{(n+a)^2 - 2n^2 - 2n^2}{2} \right) = d \left(\frac{(n+a)^2 - 2n^2 - 2n^2}{2} \right) = d \left(\frac{(n+a)^2 - 2n^2 - 2n^2}{2} \right) = d \left(\frac{(n+a)^2 - 2n^2$$

2)
$$\phi(n) = \frac{d^2}{2} \left(\alpha^2 - 2\alpha^2 \right)$$

$$\frac{d^{2}}{dx} = \frac{d}{dx} = \frac{d}{$$

$$\frac{d^{2}}{dt} = V$$

1) Coct in sero overio

From = FAR+Fro dietta veno nosto => des Merco

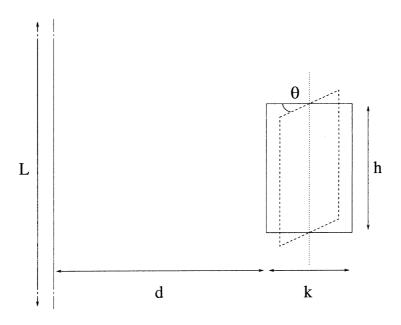
No fora uno deta offete.

$$I = \frac{t}{R} = .01A$$

$$= 7 |F| = I e d a = 10^{-5} N$$

i)
$$F_{i} = PGNB$$
 $F_{i} = PGBDD = PGBD$
 $MG_{i} = PGNB$ $= PGBDD = PGBDD$

$$0 = 0.00 = 2\pi m = 0.017 T$$


3)
$$V_{\perp} = Wn$$
 $n = V_{\perp} = V_{0} + 2\pi$.036 m
 $V_{0} \rightarrow h \rightarrow 2\pi$

10 n= 10 n W= 500 1) $B = \frac{6NI}{2\pi(n_0 + \frac{\alpha}{2})} = 3,34.10^{-4}T$ $M_{\rm m} = \frac{8^2}{2h^2} = .044 \, J/m^3$ = /c/1/2 And Son all the Another = 1.25.10 % φ=LIN=) 1 NΦ = 8.25.4.10 H 3) 7= == 3. in 10-45 $\phi_{s} = \phi_{L}$ we $h = \frac{\psi_{1}}{L} = 6.75.10^{-6}H$ () I(t) = I = -t/2 NI x $Q_{S} = 4\Delta \cos \theta$ $C_{S} = -\Delta D_{S} = -\Delta D_{$

COGNOME MATRICOLA..... MATRICOLA.....

Problema 1

Un filo rettilineo in ferro, di resistività $\rho=9.7\cdot 10^{-8}\Omega m$, ha lunghezza L=6.5m e sezione circolare con raggio t=0.2mm ed è percorso da una corrente $I_F=27A$. Una spira rettangolare, con lati h=3cm e k=2cm, è disposta con i lati maggiori paralleli al filo ed è percorsa da una corrente $I_S=4A$. La spira può ruotare intorno ad un asse parallelo passante per il suo centro e parallelo agli assi maggiori; inizialmente essa si trova sullo stesso piano del filo, con il lato più vicino a distanza d=5cm da esso, e successivamente viene ruotata di un angolo $\theta=30^\circ$.

- ullet Qual è la differenza di potenziale V ai capi del filo?
- ullet Qual è la forza complessiva F che agisce sulla spira nella posizione iniziale?
- ullet Qual è il momento J che agisce sulla spira nella posizione finale?
- Qual è il lavoro W necessario per portare la spira dalla posizione iniziale a quella finale?

FISICA	GENERALE II	- II° APPELLO	SESSIONE	INVERNALE	- 12 Febbraio	2003

COGNOME NOME MATRICOLA.....

Problema 2

Due solenoidi di uguale lunghezza h=15cm sono costituiti ciascuno da N=350 spire; il primo ha resistenza $R_1=130\Omega$ e sezione $S_1=8cm^2$ ed il secondo, posto all'interno del primo con gli assi paralleli, ha resistenza $R_2=80\Omega$ e sezione $S_2=6cm^2$. Ciascuno dei due solenoidi può essere connesso ad un generatore che fornisce una corrente continua I=40A mentre i capi dell'altro sono collegati tra loro, oppure i due solenoidi possono venire connessi in serie tra loro in modo che la corrente circoli in essi con verso opposto.

- Qual è la carica q_1 che circola nel primo solenoide se il secondo viene connesso al generatore?
- Qual è la carica q_2 che circola nel secondo solenoide se il primo viene connesso al generatore?
- Qual è l'energia W immagazzinata nel sistema se entrambi i solenoidi sono connessi in serie al generatore?
- Qual è la frequenza di risonanza ν se entrambi i solenoidi vengono connessi in serie ad un condensatore di capacità C=1.5nF ?

FISICA	GENERAI	LE II - II°	APPELLO	SESSIONE	INVERN	IALE - 12 Febbra	io 2003
COGNO)ME		NOME			MATRICOLA	

Una lampada, posta ad una altezza h=3.2m rispetto al fondo di una piscina in cui l'acqua raggiunge il livello k=1.8m, emette luce di lunghezza d'onda $\lambda=440nm$ con una potenza complessiva P=70W. L'indice di rifrazione dell'acqua è $n_A=1.33$.

- Qual è il campo elettrico efficace E_{eff} immediatamente al di sopra il livello dell'acqua?
- Qual è l'intensità luminosa immediatamente al di sotto del livello dell'acqua?
- Qual è lo spessore minimo di uno strato di liquido, con indice di rifrazione $n_L = 1.5$, che galleggia sull'acqua, per cui si ha interferenza distruttiva tra le onde riflesse?
- Qual è la profondità apparente di un oggetto posto sul fondo?

L = 6.5 m L = 6.5 m L = 17 mm IF = 17A I = 17A

6=36m 6=36m Is=4A d=56m 9=300

1) V = nI $n = \frac{eL}{5} = 5n$ $S = \pi \ell^2 = 1.26.10^{\frac{1}{2}} \frac{1}{8}$

V= 135 V

2) = 15 It Is h (1-1)

270 A (d d+4)

 $\frac{3}{3} = \frac{3. + 0.10}{3}$ $\frac{3}{3} = \frac{3. + 0.10}{3}$

J= 40 I= Is S shad = 1.1000 NA

$$J = U_{1} - U_{1}$$
 $U_{1} = -MB$
 $U_{2} = -MB$
 $U_{3} = -MB$
 $U_{4} = -MB$
 $U_{5} = -MB$
 $U_{5} = -MB$
 $U_{7} = -MB$
 $U_{1} = -MB$
 $U_{1} = -MB$
 $U_{2} = -MB$
 $U_{3} = -MB$
 $U_{4} = -MB$
 $U_{5} = -MB$
 $U_{5} = -MB$
 $U_{7} = -MB$

1=3.2 m 4 = 1.8 m 1= Womm Ponx MA = 1.33 1) = 2.84 W/m² = E.C C = 32.34/m $I_{t} = T = \frac{4m_{t}n_{t}}{(n_{t}+m_{t})^{2}} = \int I_{t} = I_{t} \cdot T = 2.78 \text{ W/m}$ M1=1 M2=1.33 ne= 1.5 I The thought it lever the mis $\int_{-\infty}^{\infty} \frac{2\pi}{\lambda'} \left(\sum_{i=1}^{\infty} \frac{2\pi}{\lambda'} + \sum_{i=1}^{\infty} \frac{2\pi}{\lambda'} \right) dx$ 20 2+ + 11 =311 ut +1000, let to the 2 m2 + 21 $t = \frac{1}{2m} = 1.47.10^{-7} m$

W 91

 $32 = \frac{M_1}{M_2}$ $91 = \frac{M_2}{M_2}$ $4 = \frac{M_1}{M_2}$ $4 = \frac{M_1}{M_2}$ $4 = \frac{M_2}{M_2}$ $4 = \frac{M_1}{M_2}$ $4 = \frac{M_2}{M_2}$

u = u = 1.35 m u = u = 1.35 m $t_{q} = 1.35 m$

•

•