V_{ub} Measurements

Charmless semileptonic B decays, $B \rightarrow X_u lv$

$B^{0,\pm} \qquad q \qquad q$	Experimentally Challenging Very High $B \rightarrow X_c lv BKG$ \Rightarrow Tight selection cuts \Rightarrow Limited phase space \Rightarrow Extrapolation uncertainties			
Study inclusive kinematic quantities after charm suppression; V_{ub} from total BR(b \rightarrow ulv) \rightarrow Major issue: Extrapolation to the full phase space (Shape Function)	Study exclusive decay channels; $\Rightarrow V_{ub}$ from partial BR(B $\Rightarrow X_{u} v)$ \Rightarrow Major issue: QCD uncertainties in Form Factor prediction (non perturbative effects)			

• In the limit of negligible lepton mass, the differential decay rate for $B \rightarrow \pi l \nu$ decays is:

$$\frac{d \varGamma}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} \mathbf{p}_\pi^3 |f_+^{B\pi}(q^2)|^2$$

• $q = p_B - p_{\pi}$: 4-momentum transfer

•
$$\mathbf{p}_{\pi} = \left[(m_B^2 + m_{\pi}^2 - q^2)^2 - 4m_B^2 m_{\pi}^2 \right]^{1/2} / (2m_B)$$

- $f_{+}^{B_{\pi}}(q^2)$ Form Factor for the B transition to a pseudoscalar final state
- Theory Challenge: calculation of FF
 - LQCD: High q². Limited computational resources prohibit calculations with real values for the u/d quarks masses. Generate data with a sequence of light-quark masses (down to m_s/10) and lattice

spacing (down to a~0.09 fm) and extrapolate to the physical masses and zero spacing

- Realistic estimates by HPQCD [Dalgic et al., Phys. Rev. D73, 074502 (2006)] and Ferminab MILC [Aubin et al., Phys. Rev. D70, 114501 (2004)]
- LCSR: Low q². Uncertainty from quark-hadron duality approximation, values of the quark masses, renormalization scale

- Experimental goal: measurement of the BR and the q² spectrum to determine the FF(q²) dependence.
- Experimental Challenge: background rejection from $B \to X_c^{} I v$ decays and separation of $B \to \pi I v$ from other $B \to X_u^{} I v$ decays

Different strategies:

- Tagged analyses Signal identification on the recoil of a fully (partially) reconstructed B hadronic (semileptonic) decay
 - Very clean, precise neutrino reconstruction, but statistically limited
- Untagged analyses (most precise results) Neutrino 4-momentum from missing energy. "Reconstructed" neutrino combined with a lepton
 - Background dominated by continuum (real lepton from hadron decays or misidentified hadrons). B \rightarrow X_c I v contamination suppressed using squared missing mass.

BaBar Untagged Analysis (L=349 fb⁻¹) [Phys. Rev. D83, 052011 (2011)]

- Four signal modes selected: $B^0 \rightarrow \pi^- (\rho^-) l^+ \mathbf{v}$, $B^+ \rightarrow \pi^0 (\rho^0) l^+ \mathbf{v}$; $(\rho^- \rightarrow \pi^- \pi^0; \rho^0 \rightarrow \pi^+ \pi^-)$
 - Approach reduces uncertainties due to cross-feed between the different modes
- Signal reconstructed with $p_{\pi}^* > 1.3 \text{ GeV}$, $p_{\mu}^* > 2.2 (2.0) \text{ GeV}$, $p_{\pi}^* + p_{\mu}^* > 2.8(2.65) \text{ GeV}$ for π (ρ) reconstruction and $|\cos \theta_{BY}| \le 1.0$
 - Neutrino momentum obtained from $P_{\nu}^2 \simeq m_{
 m miss}^2 = E_{
 m miss}^2 |ec{p}_{
 m miss}|^2$

$$q_{\rm raw}^2 = [(E_\ell, \vec{p}_\ell) + (p_{\rm miss}, \vec{p}_{\rm miss})]^2 \longrightarrow \vec{p}_\nu = \alpha \vec{p}_{\rm miss} \quad \text{with } \alpha = 1 - \frac{\Delta E}{E_{\rm miss}}$$

BaBar Untagged Analysis (L=349 fb⁻¹) [Phys. Rev. D83, 052011 (2011)]

- Selected sample composed by:
 - Signal:
 - → True signal
 - Combiatorial signal: hadron selected from decay tracks of the other B
 - → Isospin-conjugate: $B^0 \rightarrow \pi^- l^+ \nu \leftarrow \rightarrow B^+ \rightarrow \pi^0 l^+ \nu$
 - Cross-feed: $B^0 \rightarrow \rho \, l \, \nu \rightarrow B \rightarrow \pi \, l \, \nu$
 - Background:
 - → Continuum (true leptons, fake leptons)
 - → Different $B \rightarrow X_{\mu}$ decays
 - $\rightarrow B \rightarrow X_{c}$ decays
 - → Secondary leptons from J/ ψ , τ , γ
 - → Fake leptons
- Background suppression exploiting event shape, neutrino reconstruction and kinematical variables optimized as a function of q²
- Nπ⁺= 7181, Nπ⁰= 3446, Nρ⁺=1577, Nρ⁰=1970 with a S/N ~0.2

Martino Margoni, Dipartimento di Fisica e Astronomia Universita` di Padova, A.A. 2015/2016

BaBar Untagged Analysis (L=349 fb⁻¹) [Phys. Rev. D83, 052011 (2011)]

Combinatorial signal

 $B \rightarrow D/D^{(\star)}$ (n π) I v

 $B \rightarrow \rho l \nu$ $B \rightarrow X_{\mu} I \nu$ incl. $B \rightarrow D^* I v$

- Variables included in neural-network discriminators, trained for each background class and q² range Data (on-resonance) Signal
- Fox-Wolfram moments, thrust, missing mass, $\cos\theta_{_{BV}}$,...

Combinatorial signal

$$\begin{split} B &\to \rho \, I \, \nu \\ B &\to X_u \, I \, \nu \text{ incl.} \\ B &\to D^* \, I \, \nu \end{split}$$

BaBar Untagged Analysis (L=349 fb⁻¹) [Phys. Rev. D83, 052011 (2011)]

- Variables included in neural-network discriminators, trained for each background class and q² range
 Data (on-resonance)
 Signal
- Fox-Wolfram moments, thrust, missing mass, $\cos\theta_{_{BY}}$,...

BaBar Untagged Analysis (L=349 fb⁻¹) [Phys. Rev. D83, 052011 (2011)]

Combinatorial signal

$$\begin{split} B &\to \rho \, I \, \nu \\ B &\to X_u \, I \, \nu \text{ incl.} \\ B &\to D^* \, I \, \nu \end{split}$$

- Variables included in neural-network discriminators, trained for each background class and q² range
 Data (on-resonance)
 Signal
- Fox-Wolfram moments, thrust, missing mass, $\cos\theta_{_{BY}}$,...

Martino Margoni, Dipartimento di Fisica e Astronomia Universita` di Padova, A.A. 2015/2016

BaBar Untagged Analysis (L=349 fb⁻¹) [Phys. Rev. D83, 052011 (2011)]

• Event yields determined in 12 q² bins from a 2D fit to (ΔE , m_{ES}) with signal and background shapes from MC

 $\begin{aligned} \mathcal{B}(B^0 \to \pi^- \ell^+ \nu) &= (1.41 \pm 0.05 \pm 0.07) \times 10^{-4} \\ \mathcal{B}(B^0 \to \rho^- \ell^+ \nu) &= (1.75 \pm 0.15 \pm 0.27) \times 10^{-4} \end{aligned}$

- Systematics from:
 - → K⁰_L spectrum affecting neutrino reconstruction (only a small fraction of K⁰_L energy is deposited in the e.m. Calorimeter),
 - Lepton identification
 - Continuum description
 - → $B \rightarrow \rho l v$ sensitive to the B $\rightarrow X_{\mu} I v$ BKG parameterization

VExclusive MeasurementBaBar Untagged Analysis (L=349 fb⁻¹) [Phys. Rev. D83, 052011 (2011)]

• Event yields determined in 12 q² bins from a 2D fit to (ΔE , m_{ES}) with signal and background shapes from MC $B^0 \rightarrow \pi^- l^+ \nu$

Image: Non-StructureImage: Non-StructureBaBar Untagged Analysis (L=349 fb⁻¹) [Phys. Rev. D83, 052011 (2011)]

• Event yields determined in 3 q² bins from a 2D fit to (ΔE , m_{ES}) with signal and background shapes from MC $B^+ \rightarrow \rho^0 l^+ \nu$

77

V_{ub}: Exclusive Measurement BaBar Untagged Analysis (L=349 fb⁻¹) [Phys. Rev. D83, 052011 (2011)] Systematics on BR

	B	\rightarrow	$\pi \ell \nu$				
q^2 range (GeV ²)	0-4	4-8	8-12	12-16	16-20	>20	0-26.4
Track efficiency	3.4	1.5	2.3	0.1	1.5	2.8	1.9
Photon efficiency	0.1	1.4	1.0	4.6	2.8	0.3	1.8
Lepton identification	3.8	1.6	1.9	1.8	1.9	3.0	1.8
K_L efficiency	1.0	0.1	0.5	4.5	0.4	2.0	1.4
K_L shower energy	0.1	0.1	0.1	0.8	0.9	3.8	0.7
K_L spectrum	1.6	1.9	2.2	3.1	4.4	2.3	2.5
$B \to \pi \ell \nu FF f_+$	0.5	0.5	0.5	0.6	1.0	1.0	0.6
$B \rightarrow \rho \ell \nu FFA_1$	1.7	1.2	3.4	2.0	0.1	1.6	1.7
$B \rightarrow \rho \ell \nu FFA_2$	1.3	0.8	2.6	1.0	0.1	0.4	1.1
$B \rightarrow \rho \ell \nu FFV$	0.2	0.3	0.9	0.7	0.1	0.5	0.5
${\cal B}(B^+ o \omega \ell^+ u)$	0.1	0.1	0.1	0.2	0.3	1.5	0.2
${\cal B}(B^+ o\eta\ell^+ u)$	0.1	0.1	0.2	0.2	0.2	0.5	0.2
${\cal B}(B^+ o\eta'\ell^+ u)$	0.1	0.1	0.1	0.1	0.1	0.3	0.1
$\mathcal{B}(B \to X_u \ell \nu)$	0.2	0.1	0.1	0.1	1.1	1.6	0.4
$B \to X_u \ell \nu$ SF param.	0.4	0.1	0.2	0.2	0.5	4.2	0.7
$B \to D \ell \nu \ { m FF} \ ho_D^2$	0.2	0.1	0.5	0.3	0.2	0.7	0.3
$B o D^* \ell \nu$ FF R_1	0.1	0.4	0.8	0.6	0.3	0.6	0.5
$B \to D^* \ell \nu \ { m FF} \ R_2$	0.5	0.2	0.1	0.2	0.1	0.4	0.2
$B ightarrow D^* \ell u$ FF $ ho_{D^*}^2$	0.7	0.2	0.6	0.8	0.4	1.1	0.6
$\mathcal{B}(B \to D\ell\nu)$	0.2	0.2	0.3	0.4	0.5	0.5	0.3
$\mathcal{B}(B \to D^* \ell \nu)$	0.4	0.1	0.3	0.3	0.3	0.7	0.3
$\mathcal{B}(B \to D^{**} \ell \nu)_{narrow}$	0.4	0.1	0.1	0.3	0.1	0.5	0.2
$\mathcal{B}(B \to D^{**} \ell \nu)_{broad}$	0.1	0.1	0.1	0.5	0.1	0.2	0.2
Secondary leptons	0.5	0.2	0.3	0.2	0.2	0.7	0.3
Continuum	5.3	1.0	2.6	1.8	3.1	6.1	2.0
Bremsstrahlung	0.3	0.1	0.1	0.1	0.1	0.4	0.2
Radiative corrections	0.5	0.1	0.1	0.2	0.2	0.6	0.3
$N_{B\overline{B}}$	1.2	1.0	1.2	1.2	1.1	1.6	1.2
B lifetimes	0.3	0.3	0.3	0.3	0.3	0.7	0.3
f_{\pm}/f_{00}	1.0	0.4	0.8	0.8	0.5	1.3	0.8
Total syst. error	8.2	3.9	6.7	8.3	6.9	10.6	5.0

$B \rightarrow$	ρεν			
q^2 range (GeV ²)	0-8	8-16	>16	0-20.3
Track efficiency	3.2	2.9	0.3	2.5
Photon efficiency	2.6	2.0	2.6	2.4
Lepton Identification	5.7	3.0	4.0	3.4
K_L efficiency	10.3	1.2	4.9	4.8
K_L shower energy	1.6	0.8	1.0	1.1
K_L spectrum	4.2	6.1	7.0	5.7
$B \to \pi \ell \nu$ FF f_+	0.1	0.1	0.7	0.2
$B \rightarrow \rho \ell \nu \ \mathrm{FF} \ A_1$	10.7	6.6	4.5	7.5
$B \rightarrow \rho \ell \nu \ \mathrm{FF} \ A_2$	8.5	3.8	0.8	4.7
$B \rightarrow \rho \ell \nu \ \mathrm{FF} \ V$	3.4	3.0	3.6	3.2
$\mathcal{B}(B^+ \to \omega \ell^+ \nu)$	0.7	0.7	3.4	1.2
$\mathcal{B}(B^+ \to \eta \ell^+ \nu)$	0.8	0.1	0.6	0.4
$\mathcal{B}(B^+ \to \eta' \ell^+ \nu)$	0.8	0.5	1.2	0.7
$\mathcal{B}(B \to X_u \ell \nu)$	7.4	7.3	10.6	8.0
$B \to X_u \ell \nu$ SF param.	11.9	7.6	12.8	10.0
$B \rightarrow D \ell \nu$ FF ρ_D^2	0.9	0.2	0.1	0.4
$B \to D^* \ell \nu \mathrm{FF} \ R_1$	0.7	0.1	0.3	0.3
$B \rightarrow D^* \ell \nu \text{FF} R_2$	1.7	0.1	0.2	0.6
$B \rightarrow D^* \ell \nu \text{FF} \ \rho_{D^*}^2$	2.0	0.2	0.1	0.7
$\mathcal{B}(B o D\ell \nu)$	1.6	0.2	0.1	
	1.0	0.5	0.1	0.7
$\mathcal{B}(B o D^* \ell u)$	0.5	0.3	$0.1 \\ 0.3$	$0.7 \\ 0.3$
$\mathcal{B}(B o D^* \ell u)$ $\mathcal{B}(B o D^{**} \ell u)_{narrow}$	0.5	0.3 0.1 0.1	0.1 0.3 0.1	0.7 0.3 0.5
$egin{aligned} \mathcal{B}(B o D^* \ell u) \ \mathcal{B}(B o D^{**} \ell u)_{ ext{narrow}} \ \mathcal{B}(B o D^{**} \ell u)_{ ext{broad}} \end{aligned}$	0.5 1.3 0.7	0.3 0.1 0.1 0.1	0.1 0.3 0.1 0.1	0.7 0.3 0.5 0.3
$ \begin{array}{l} \mathcal{B}(B \to D^* \ell \nu) \\ \mathcal{B}(B \to D^{**} \ell \nu)_{\text{narrow}} \\ \mathcal{B}(B \to D^{**} \ell \nu)_{\text{broad}} \\ \text{Secondary leptons} \end{array} $	0.5 1.3 0.7 1.5	0.3 0.1 0.1 0.1 0.1	0.1 0.3 0.1 0.1 0.1	$0.7 \\ 0.3 \\ 0.5 \\ 0.3 \\ 0.5$
$ \begin{array}{c} \mathcal{B}(B \to D^* \ell \nu) \\ \mathcal{B}(B \to D^{**} \ell \nu)_{\text{narrow}} \\ \mathcal{B}(B \to D^{**} \ell \nu)_{\text{broad}} \\ \hline \\ \hline \\ \text{Secondary leptons} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{array} $	0.5 1.3 0.7 1.5 8.9	0.3 0.1 0.1 0.1 0.1 3.8	0.1 0.3 0.1 0.1 0.1 5.0	$0.7 \\ 0.3 \\ 0.5 \\ 0.3 \\ 0.5 \\ \hline 4.0$
$ \begin{array}{c} \mathcal{B}(B \to D^* \ell \nu) \\ \mathcal{B}(B \to D^{**} \ell \nu)_{\text{narrow}} \\ \mathcal{B}(B \to D^{**} \ell \nu)_{\text{broad}} \\ \hline \\$	0.5 1.3 0.7 1.5 8.9 0.9	0.3 0.1 0.1 0.1 0.1 3.8 0.1	0.1 0.3 0.1 0.1 0.1 5.0 0.2	$ \begin{array}{r} 0.7\\ 0.3\\ 0.5\\ 0.3\\ 0.5\\ \hline 4.0\\ \hline 0.4\\ \end{array} $
$\begin{array}{c} \mathcal{B}(B \to D^* \ell \nu) \\ \mathcal{B}(B \to D^{**} \ell \nu)_{\text{narrow}} \\ \mathcal{B}(B \to D^{**} \ell \nu)_{\text{broad}} \\ \hline \\ \text{Secondary leptons} \\ \hline \\ $	0.5 1.3 0.7 1.5 8.9 0.9 1.3	0.3 0.1 0.1 0.1 0.1 3.8 0.1 0.1	0.1 0.3 0.1 0.1 0.1 5.0 0.2 0.7	$0.7 \\ 0.3 \\ 0.5 \\ 0.3 \\ 0.5 \\ 4.0 \\ 0.4 \\ 0.6$
$ \begin{array}{l} \mathcal{B}(B \to D^* \ell \nu) \\ \mathcal{B}(B \to D^{**} \ell \nu)_{\text{narrow}} \\ \mathcal{B}(B \to D^{**} \ell \nu)_{\text{broad}} \\ \hline B$	0.5 1.3 0.7 1.5 8.9 0.9 1.3 2.7	0.3 0.1 0.1 0.1 0.1 3.8 0.1 0.1 2.0	$\begin{array}{c} 0.1 \\ 0.3 \\ 0.1 \\ 0.1 \\ 0.1 \\ \hline 5.0 \\ 0.2 \\ 0.7 \\ \hline 2.5 \end{array}$	$\begin{array}{r} 0.7 \\ 0.3 \\ 0.5 \\ 0.3 \\ 0.5 \\ \hline 4.0 \\ 0.4 \\ \hline 0.6 \\ \hline 2.3 \end{array}$
$\begin{array}{c} \mathcal{B}(B \rightarrow D^* \ell \nu) \\ \mathcal{B}(B \rightarrow D^{**} \ell \nu)_{\text{narrow}} \\ \mathcal{B}(B \rightarrow D^{**} \ell \nu)_{\text{broad}} \\ \hline \\ \hline \text{Secondary leptons} \\ \hline \\ $	0.5 1.3 0.7 1.5 8.9 0.9 1.3 2.7 1.5	0.3 0.1 0.1 0.1 0.1 3.8 0.1 0.1 2.0 0.4	$\begin{array}{c} 0.1 \\ 0.3 \\ 0.1 \\ 0.1 \\ 0.1 \\ \hline 5.0 \\ 0.2 \\ 0.7 \\ 2.5 \\ 0.4 \end{array}$	$\begin{array}{c} 0.7 \\ 0.3 \\ 0.5 \\ 0.3 \\ 0.5 \\ \hline 4.0 \\ 0.4 \\ 0.6 \\ \hline 2.3 \\ 0.7 \\ \end{array}$
$\begin{array}{c} \mathcal{B}(B \to D^* \ell \nu) \\ \mathcal{B}(B \to D^{**} \ell \nu)_{\text{narrow}} \\ \mathcal{B}(B \to D^{**} \ell \nu)_{\text{broad}} \\ \hline \mathcal{B}(B \to D^{**} \ell \mu)_{\text{broad}} \\ \hline \mathcal{B}(B \to D^{**} \ell \mu)_{\text{broad}} \\ \hline \mathcal{B}(B \to D^{**} \ell \mu)_{\text{broad}} \\ \hline \mathcal{B}$	$\begin{array}{c} 1.0 \\ 0.5 \\ 1.3 \\ 0.7 \\ 1.5 \\ 8.9 \\ 0.9 \\ 1.3 \\ 2.7 \\ 1.5 \\ 1.2 \end{array}$	$\begin{array}{c} 0.3 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ \hline 3.8 \\ 0.1 \\ 0.1 \\ \hline 2.0 \\ 0.4 \\ 0.1 \\ \end{array}$	$\begin{array}{c} 0.1 \\ 0.3 \\ 0.1 \\ 0.1 \\ \hline 0.1 \\ \hline 5.0 \\ 0.2 \\ 0.7 \\ \hline 2.5 \\ 0.4 \\ 0.1 \\ \end{array}$	$\begin{array}{r} 0.7 \\ 0.3 \\ 0.5 \\ 0.3 \\ 0.5 \\ \hline 4.0 \\ 0.4 \\ \hline 0.6 \\ \hline 2.3 \\ 0.7 \\ 0.4 \end{array}$

BaBar Untagged Analysis (L=349 fb⁻¹) [Phys. Rev. D83, 052011 (2011)]

 q² spectrum corrected for resolution, radiative effects using an unfolding technique [Hocker, Kartvelishvili, Nucl. Instrum. Meth. A37, 469 (1996)] giving the ΔBR/Δq² distributions

Spectra are fitted to different FF parameterizations & compared with predictions
Used for the |V_{uk}| extraction

BaBar Untagged Analysis (L=349 fb⁻¹) [Phys. Rev. D83, 052011 (2011)]

• Spectra are fitted to different FF parameterizations & compared with predictions • Used for the $|V_{\mu\nu}|$ extraction

	q^2 Range	$\Delta \mathcal{B}$	$\Delta \zeta$	$ V_{ub} $
	(GeV^2)	(10^{-4})	(ps^{-1})	(10^{-3})
$B o \pi \ell \nu$				
LCSR 1 [<u>15</u>]	0 - 16	1.10 ± 0.07	$5.44{\pm}1.43$	$3.63 \pm 0.12^{+0.59}_{-0.40}$
LCSR 2 [<u>19</u>]	0 - 12	0.88 ± 0.06	$4.00\substack{+1.01 \\ -0.95}$	$3.78\pm0.13^{+0.55}_{-0.40}$
HPQCD [<u>23</u>]	16-26.4	0.32 ± 0.03	$2.02{\pm}0.55$	$3.21\pm0.17^{+0.55}_{-0.36}$
$B ightarrow ho \ell u$				
LCSR [<u>17</u>]	0 - 16.0	1.48 ± 0.28	13.79	2.75 ± 0.24
ISGW2 [<u>14</u>]	0 - 20.3	1.75 ± 0.31	14.20	2.83 ± 0.24

- $|V_{ub}|$ Extraction
- Simultaneous fit to the q² spectra and the LQCD predictions in the BCL parameterization [Bourrely, Caprini, Lellouch, Phys. Rev. D79, 013008 (2009)]
- Measured partial $\Delta BR(q^2_{min}, q^2_{min})$ compared with the normalized partial decay rate $\Delta \zeta(q^2_{min}, q^2_{max})$ predicted from FF integration (LQCD: q²>16 GeV², LCSR: q²<12 GeV²)

- $|V_{ub}|$ Extraction
- Simultaneous fit to the q² spectra and the LQCD predictions in the BCL parameterization [Bourrely, Caprini, Lellouch, Phys. Rev. D79, 013008 (2009)]
- Measured partial $\Delta BR(q^2_{min}, q^2_{min})$ compared with the normalized partial decay rate $\Delta \zeta(q^2_{min}, q^2_{max})$ predicted from FF integration (LQCD: q²>16 GeV², LCSR: q²<12 GeV²)

	LCSR	HPQCD	FNAL/MILC	FNAL/MILC fit
$\Delta \zeta ~({ m ps}^{-1})$	$4.59\substack{+1.00 \\ -0.85}$	$2.02{\pm}0.55$	$2.21\substack{+0.47 \\ -0.42}$	$2.21\substack{+0.47\\-0.42}$
q^2 range (${ m GeV}^2)$	0-12	16-26.4	16-26.4	16-26.4
Experiment		$\left V_{ub} ight $	(10^{-3})	
BABAR (6 bins)	$3.54 \pm 0.12 \substack{+0.38 \\ -0.33}$	$3.22\pm0.15^{+0.55}_{-0.37}$	$3.08\pm0.14^{+0.34}_{-0.28}$	2.98 ± 0.31
$B\!A\!B\!A\!R~(12 \ { m bins})$	$3.46\pm0.10^{+0.37}_{-0.32}$	$3.26\pm0.19^{+0.56}_{-0.37}$	$3.12\pm0.18^{+0.35}_{-0.29}$	3.22 ± 0.31
Belle	$3.44 \pm 0.10^{+0.37}_{-0.32}$	$3.60\pm0.13^{+0.61}_{-0.41}$	$3.44 \pm 0.13^{+0.38}_{-0.32}$	3.52 ± 0.34
BABAR + Belle	$3.47 \pm 0.06 ^{+0.37}_{-0.32}$	$3.43 \pm 0.09^{+0.59}_{-0.39}$	$3.27\pm0.09^{+0.36}_{-0.30}$	3.23 ± 0.30
Tagged	$3.10\pm0.16^{+0.33}_{-0.29}$	$3.47 \pm 0.23 ^{+0.60}_{-0.39}$	$3.32\pm0.22^{+0.37}_{-0.31}$	3.33 ± 0.39

Error from BR measurements (3%), shapes of the q² spectra from data (4%), FF normalization (f₁(0)) from theory (8%)

- Inclusive Cabibbo-suppressed decays (most precise |V_{ub}| determination) Theoretical Summary in [Phys. Rept. 494, 197-414 (2010)]
- Theoretical description of inclusive $B\to X_{_{u}}$ I v similar to $B\to X_{_{c}}$ I v used for the $V_{_{cb}}$ determination.
- Challenge: large BKG from $B \rightarrow X_{c} I v$
 - Highest experimental sensitivity in the region of phase space less impacted by the dominant $B \rightarrow X_c I v$ background: for $m_x < m_p \& p_i(b) > p_i(c)$
 - Requires extrapolation to the full spectrum using theoretical parameterizations to describe the unmeasured regions of phase space (Shape Functions) reflecting in theory error
- Discriminating variables: lepton energy, $p_X^+ = E_X |\boldsymbol{p}_X|$, $p_X^- = E_X + |\boldsymbol{p}_X|$
- Differential decay rate:

$$\begin{aligned} \frac{d^{3}\Gamma}{dp_{X}^{+} dp_{X}^{-} dE_{\ell}} &= \frac{G_{F}^{2} |V_{ub}|^{2}}{192\pi^{3}} \int dk \, C(E_{\ell}, p_{X}^{-}, p_{X}^{+}, k) \, F(k) \\ &+ O\left(\frac{\Lambda_{\text{QCD}}}{m_{b}}\right). \end{aligned}$$

• $C(E_{\ell}, p_X^-, p_X^+, k)$: perturbative description of the b quark decay

83

- Inclusive Cabibbo-suppressed decays (most precise |V_{ub}| determination) Theoretical Summary in [Phys. Rept. 494, 197-414 (2010)]
- Theoretical description of inclusive $B\to X_{_{u}}\,I\,v$ similar to $B\to X_{_{c}}\,I\,v$ used for the $V_{_{cb}}$ determination.
- Challenge: large BKG from $B \rightarrow X_{c} I v$
 - Highest experimental sensitivity in the region of phase space less impacted by the dominant $B \rightarrow X_c I v$ background: for $m_x < m_p \& p_i(b) > p_i(c)$
 - Requires extrapolation to the full spectrum using theoretical parameterizations to describe the unmeasured regions of phase space (Shape Functions) reflecting in theory error
- Discriminating variables: lepton energy, $p_X^+ = E_X |\mathbf{p}_X|$, $p_X^- = E_X + |\mathbf{p}_X|$
- Differential decay rate:

$$\begin{split} \frac{d^3 \Gamma}{dp_X^+ \, dp_X^- \, dE_\ell} &= \frac{G_F^2 V_{ub}|^2}{192 \pi^3} \int dk \, C(E_\ell, p_X^-, p_X^+, k) \, F(k) \\ &+ O\left(\frac{\Lambda_{\rm QCD}}{m_b}\right). \end{split}$$

 F(k): non-perturbative shape function describing the momentum distribution of the b quark inside the B meson [Bigi et al., Int. J. Mod. Phys. A9, 2467-2504 (1994), Neubert, Phys. Rev. D49, 4623-4633 (1994)]

Untagged Analyses

- First evidence for charmless B semileptonic decays by CLEO
 [Phys. Rev. Lett. 71, 4111-4115 (1993)] from observation of charged lepton above
 the kinematical endpoint for B → X_c I v (p*=2.3 GeV)
- Inclusive B → X_u I v are described by the sum of three-body decays involving a single light charmless meson (20%) and decays to non-resonant multi-body final states. Two components normalized to reproduce the OPE inclusive prediction, and adjusted to the measured inclusive charmless BR.

Tagged Analyses

- Lepton with P_I>1 GeV on the recoil of a reconstructed hadronic decay taken as a signature of B_{SL} : low rate due to ε(Tag), but reduced combinatorial BKG
 - → Phase-space restriction covers 90% of the total inclusive rate to reduce error on extrapolation. Theory errors from m_b, higher-order perturbative corrections, signal shape functions used for the efficiency calculation

Untagged Analyses

- First evidence for charmless B semileptonic decays by CLEO
 [Phys. Rev. Lett. 71, 4111-4115 (1993)] from observation of charged lepton above
 the kinematical endpoint for B → X_c I v (p*=2.3 GeV)
- Inclusive B → X_u I v are described by the sum of three-body decays involving a single light charmless meson (20%) and decays to non-resonant multi-body final states. Two components normalized to reproduce the OPE inclusive prediction, and adjusted to the measured inclusive charmless BR.

Tagged Analyses

- Observables: q², m_x:
 - $B \to X_{_{\! C}}\, I \, v \, BKG$ suppressed by vetoing K and slow pions from D decays
 - Events with additional missing particles rejected by cuts on the missing mass squared
 - Systematics from tag efficiency cancels in the ratio of charmless to inclusive SL decays

BaBar Untagged Analysis (L=80 fb⁻¹) [Phys. Rev. D73, 012006 (2006)]

- Observed spectra of the highest momentum electron in the $\Upsilon(4S)$ frame
- Challenge: $B \rightarrow X_{c} I v$ subtraction, secondary leptons from D (J/Ψ) and fakes.
- Signal yield from a fit using MC shapes for signal and background components
- Sensitivity of the fitted yield from the MC shape of the signal spectrum reduced by combining the data between 2.1 to 2.8 GeV in a single bin

BaBar Untagged Analysis (L=80 fb⁻¹) [Phys. Rev. D73, 012006 (2006)]

- Observed spectra of the highest momentum electron in the $\Upsilon(4S)$ frame
- Challenge: $B \rightarrow X_{c} I v$ subtraction, secondary leptons from D (J/ Ψ) and fakes.
- Signal yield from a fit using MC shapes for signal and background components
- Sensitivity of the fitted yield from the MC shape of the signal spectrum reduced by combining the data between 2.1 to 2.8 GeV in a single bin

$\Delta p \; (\text{GeV}/c)$	2.0–2.6	2.1–2.6	2.2–2.6	2.3–2.6	2.4–2.6
Total sample	609.81 ± 0.78	295.76 ± 0.54	133.59 ± 0.37	65.48 ± 0.26	35.38 ± 0.19
Non- $B\overline{B}$ background	142.38 ± 0.63	105.20 ± 0.48	74.86 ± 0.36	50.13 ± 0.25	29.96 ± 0.16
$X_c e \nu$ background	416.22 ± 2.52	157.17 ± 1.29	38.82 ± 0.47	4.00 ± 0.10	0.09 ± 0.01
J/ψ and $\psi(2S)$	6.17 ± 0.14	4.00 ± 0.10	2.33 ± 0.06	1.17 ± 0.04	0.47 ± 0.02
Other e^{\pm} background	1.61 ± 0.05	0.62 ± 0.02	0.24 ± 0.01	0.08 ± 0.01	0.03 ± 0.00
π misidentification	1.34 ± 0.04	0.98 ± 0.03	0.64 ± 0.02	0.34 ± 0.02	0.10 ± 0.01
K misidentification	0.47 ± 0.02	0.26 ± 0.01	0.13 ± 0.01	0.05 ± 0.01	0.01 ± 0.00
Other misidentification	0.27 ± 0.01	0.15 ± 0.01	0.08 ± 0.01	0.04 ± 0.01	0.02 ± 0.00
$X_u e \nu$ background	1.62 ± 0.10	0.66 ± 0.05	0.20 ± 0.02	0.03 ± 0.01	0.01 ± 0.00
$X_u e \nu$ signal	39.72 ± 2.70	26.72 ± 1.49	16.31 ± 0.71	9.64 ± 0.38	4.70 ± 0.25
$X_u e \nu$ efficiency (%)	42.1 ± 0.3	41.2 ± 0.4	40.2 ± 0.5	39.5 ± 0.7	37.9 ± 1.0

BaBar Untagged Analysis (L=80 fb⁻¹) [Phys. Rev. D73, 012006 (2006)]

- Observed spectra of the highest momentum electron in the $\Upsilon(4S)$ frame
- Challenge: $B \rightarrow X_{c} I v$ subtraction, secondary leptons from D (J/Ψ) and fakes.
- Signal yield from a fit using MC shapes for signal and background components
- Sensitivity of the fitted yield from the MC shape of the signal spectrum reduced by combining the data between 2.1 to 2.8 GeV in a single bin

Fitted yield with 2.0
N_e = 610 x 10³
N_{signal} = (39.72 ± 2.70) 10³

$$\Delta B(B \rightarrow X_u | v) = (0.572 \pm 0.41 \pm 0.065) 10^{-3}$$

 $\Delta B(\Delta p) = \frac{N_{tot}(\Delta p) - N_{bg}(\Delta p)}{2\epsilon(\Delta p)N_{B\overline{B}}}(1 + \delta_{rad}(\Delta p))$
 Δp = momentum interval
 δ_{rad} = accounts for distortion due to Final State
Radiation

89

BaBar Untagged Analysis (L=80 fb⁻¹) [Phys. Rev. D73, 012006 (2006)]

- Observed spectra of the highest momentum electron in the $\Upsilon(4S)$ frame
- Challenge: $B \rightarrow X_{c} I v$ subtraction, secondary leptons from D (J/Ψ) and fakes.
- Signal yield from a fit using MC shapes for signal and background components
- Sensitivity of the fitted yield from the MC shape of the signal spectrum reduced by combining the data between 2.1 to 2.8 GeV in a single bin

Fitted yield with
$$2.0 < p_e^* < 2.6 \text{ GeV}$$
:
 $N_e^{=} 610 \times 10^3$
 $N_{signal}^{=} = (39.72 \pm 2.70) \ 10^3$
 $\Delta B(B \rightarrow X_u \ | v) = (0.572 \pm 0.41 \pm 0.065) \ 10^{-3}$

90

• First analysis extending below the $B \rightarrow X_c I v$ endpoint $p_e^* \sim 2.3 \text{ GeV}$ covering about 25% of the spectrum

BaBar Untagged Analysis (L=80 fb⁻¹) [Phys. Rev. D73, 012006 (2006)]

p^{\min} (GeV/c)	2.0	2.1	2.2	2.3	2.4
Track finding efficiency	0.7	0.7	0.7	0.7	0.7
Electron identification	1.4	1.4	1.3	0.9	0.8
Event selection efficiency	6.8	6.7	6.1	5.5	7.9
Non- $B\overline{B}$ background	2.4	2.5	2.4	2.5	2.3
J/ψ and $\psi(2S)$ background	0.9	0.8	0.8	0.6	0.5
$B \rightarrow D^* l \nu$ form factor	2.4	2.3	2.0	1.3	0.5
$B \rightarrow D l \nu$ form factor	0.7	0.9	0.8	0.2	0.4
$B \rightarrow D^{**} e \nu$ spectrum	2.8	2.5	2.4	0.9	0.7
Other e^{\pm} background	0.5	0.3	0.2	0.1	0.1
$B \rightarrow X_{\mu} e \nu$ background	1.1	0.6	0.3	0.1	0.0
π misidentification background	0.8	0.9	0.9	0.8	0.5
K misidentification background	0.4	0.4	0.3	0.2	0.1
Other hadron misidentification	0.2	0.2	0.2	0.1	0.1
B movement	1.3	1.7	1.5	0.6	0.1
Bremsstrahlung and FSR	1.0	1.2	1.2	0.9	0.9
$N_{B\bar{B}}$ normalization	1.1	1.1	1.1	1.1	1.1
Total experimental error	8.8	8.6	7.9	6.6	8.5
$B \rightarrow X_u e \nu$ spectrum					
$X_s \gamma$ SF, fit to spectrum	6.0	3.5	1.6	0.3	0.1
$X_s \gamma$ SF, fit to moments	11.3	6.7	3.1	0.6	0.1
$X_c e \nu$ SF, fit to moments	13.3	8.6	4.0	0.8	0.0
SF, combined fit to moments	7.2	4.8	2.3	0.5	0.0
Total systematic error					
$X_s \gamma$ SF, fit to spectrum	10.7	9.3	8.1	6.6	8.5
$X_s \gamma$ SF, fit to moments	14.3	10.9	8.5	6.6	8.5
$X_c e \nu$ SF, fit to moments	15.9	12.2	8.9	6.6	8.5
SF, combined fit to moments	11.4	9.8	8.2	6.6	8.5

Common Upper limit 2.6 GeV

- Experimental Systematics dominated by efficiency and BKG subtraction
- $B \rightarrow X_{\mu} I v$ spectrum modeling

systematic dominated by signal shape: Shape-Function parameters computed from:

- → Fit to B $\rightarrow X_s \gamma$ spectrum
- \rightarrow Moments of B $\rightarrow X_{s} \gamma$
- → Moments of $B \rightarrow X_c^{} I v$ inclusive lepton spectrum
- Combined fit to all the moments

- Tagged Analyses
- Partial BR (B \rightarrow X_u I v) from 2D fit to (m_x, q²) on the recoil of fully reconstructed hadronic decays
- Systematics from shape of the distribution from simulation and Shape Function for the extrapolation to the full phase space
- From average of Belle [Phys. Rev. Lett. 104, 021801 (2010)] & Babar [arXiv:1112.0702 (2011)] results:
 ΔBR(p* >1 GeV)=(1.87 ± 0.10 ± 0.11) x 10⁻³

Martino Margoni, Dipartimento di Fisica e Astronomia Universita` di Padova, A.A. 2015/2016

- Tagged Analyses
- Partial BR (B \rightarrow X_u I v) from 2D fit to (m_x, q²) on the recoil of fully reconstructed hadronic decays
- Systematics from shape of the distribution from simulation and Shape Function for the extrapolation to the full phase space
- From average of Belle [Phys. Rev. Lett. 104, 021801 (2010)] & Babar [arXiv:1112.0702 (2011)] results: ΔBR(p*>1 GeV)=(1.87 ± 0.10 ± 0.11) x 10⁻³

Martino Margoni, Dipartimento di Fisica e Astronomia Universita` di Padova, A.A. 2015/2016

|V_{ub}| Extraction

• Measured partial $\Delta BR(\Delta p)$ (Δp =momentum interval) compared with the predicted partial decay rate $\Delta \Gamma(\Delta p)$ for the selected phase space region

$$|V_{ub}| = \sqrt{\Delta \mathcal{B} / (\tau_B \, \Delta \Gamma_{\text{theory}})}$$

	BLNP	GGOU	DGE
m_b scheme	SF scheme	Kinetic scheme	$\overline{\mathrm{MS}}$ scheme
$m_b~({ m GeV})$	$4.588 \pm 0.023 \pm 0.011$	4.560 ± 0.023	4.194 ± 0.043
$\mu_\pi^2~({ m GeV}^2)$	$0.189^{+0.041}_{-0.040}\pm0.020$	0.453 ± 0.036	—
Experiment		$ V_{ub} (10^{-3})$	
CLEO (Bornheim et al., 2002)	$4.19 \pm 0.49 ^{+0.26}_{-0.34}$	$3.93 \pm 0.46 ^{+0.22}_{-0.29}$	$3.82\pm0.43^{+0.23}_{-0.26}$
Belle (Limosani, 2005)	$4.88 \pm 0.45^{+0.24}_{-0.27}$	$4.75 \pm 0.44 ^{+0.17}_{-0.22}$	$4.79 \pm 0.44 ^{+0.21}_{-0.24}$
BABAR (Aubert, 2006x)	$4.48 \pm 0.25^{+0.27}_{-0.28}$	$4.29 \pm 0.24^{+0.18}_{-0.24}$	$4.28\pm0.24^{+0.22}_{-0.24}$
$B\!A\!B\!A\!R$ (Aubert, 2005h)	$4.66 \pm 0.31^{+0.31}_{-0.36}$	—	$4.32\pm0.29^{+0.24}_{-0.29}$
Average untagged	$4.65 \pm 0.22^{+0.26}_{-0.29}$	$4.39 \pm 0.22^{+0.18}_{-0.24}$	$4.44 \pm 0.21^{+0.21}_{-0.25}$
Belle (Urquijo, 2010)	$4.47 \pm 0.27 ^{+0.19}_{-0.21}$	$4.54 \pm 0.27 ^{+0.10}_{-0.11}$	$4.60\pm0.27^{+0.11}_{-0.13}$
BABAR (Lees, 20111)	$4.28\pm0.24^{+0.18}_{-0.20}$	$4.35\pm0.24^{+0.09}_{-0.11}$	$4.40\pm0.24^{+0.12}_{-0.13}$
Average tagged	$4.35\pm0.19^{+0.19}_{-0.20}$	$4.43 \pm 0.21^{+0.09}_{-0.11}$	$4.49\pm0.21^{+0.13}_{-0.13}$
Average all	$4.40\pm0.15^{+0.19}_{-0.21}$	$4.39 \pm 0.15^{+0.12}_{-0.14}$	$4.45\pm0.15^{+0.15}_{-0.16}$

Martino Margoni, Dipartimento di Fisica e Astronomia Universita` di Padova, A.A. 2015/2016

|V_{ub}| Extraction [Antonelli at al., Phys. Rept. 494, 197-414 (2010)]

$$\begin{aligned} \frac{d^{3}\Gamma}{dp_{X}^{+} dp_{X}^{-} dE_{\ell}} &= \frac{G_{F}^{2} |V_{ub}|^{2}}{192\pi^{3}} \int dk \, C(E_{\ell}, p_{X}^{-}, p_{X}^{+}, k) \, F(k) \\ &+ O\left(\frac{\Lambda_{\text{QCD}}}{m_{b}}\right). \qquad \qquad p_{X}^{+} = E_{X} - |\boldsymbol{p}_{X}|, \qquad p_{X}^{-} = E_{X} + |\boldsymbol{p}_{X}| \end{aligned}$$

- BLNP [Bosch, Lange, Neubert, Paz, Nucl. Phys. B699, 335-386 (2004), Lange. Neubert, Paz, Phys. Rev. D72, 073006 (2005)]: P⁺_x << P⁻_x (C dependences on P⁺_x, P⁻_x factorize). Resummation of double log to NNLL. Full O(α_x) corrections included.
- GGOU [Gambino, Giordano, Ossola, Uraltsev, JHEP 0710, 058 (2007)]: $P_{\chi}^{+} << P_{\chi}^{-}$ and $P_{\chi}^{+} \sim P_{\chi}^{-}$. C computed at fixed order to $O(\alpha_{s})$, no resummation at small P_{χ}^{+} .
- DGE [Anderson, Gardi, JHEP 0601, 097 (2006)]: NNLL resummation and full Full $O(\alpha_s)$ corrections included. Perturbative model for the leading shape function, non-perturbative correctios included via its moments. Most predictive model.

Martino Margoni, Dipartimento di Fisica e Astronomia Universita` di Padova, A.A. 2015/2016

- |V_{ub}| Extraction
- Measured partial $\Delta BR(\Delta p)$ (Δp =momentum interval) compared with the predicted partial decay rate $\Delta \Gamma(\Delta p)$ for the selected phase space region

$$|V_{ub}| = \sqrt{\Delta \mathcal{B} / (\tau_B \, \Delta \Gamma_{\text{theory}})}$$

$$|V_{ub}|_{
m incl} = (4.42 \pm 0.20_{
m exp} \pm 0.15_{
m th}) imes 10^{-3}$$

- Uncertainty dominated by experimental error. Similar statistical and systematic uncertainties (from particle identification and reconstruction efficiency).
- Theoretical error due to Shape Function for the extrapolation to the full phase space dominated by μ_{π}^2 , $m_{_{b}}$ depending on the scheme obtained from fits to $B \rightarrow X_{_{c}} I v$ moments (see before)
- Good agreement between the different QCD calculations

Summary on |V_{ub}|

- |V_{ub}|:
 - Inclusive fits to $B \rightarrow X_{u}I$ v gives comparable experimental and theoretical errors

 $|V_{ub}|_{\rm incl} = [4.42 \ (1 \pm 0.045_{\rm exp} \pm 0.034_{\rm th})] \times 10^{-3}$

- From exclusive decay $B^0 \to \pi I v$ using LQCD and the measured spectrum

$$|V_{ub}|_{
m excl} = [3.23 \; (1 \pm 0.05_{
m exp} \pm 0.08_{
m th})] imes 10^{-3}$$

- 3σ difference
- As for $V_{_{\rm cb}}$, discrepancy between exclusive and inclusive measurements is one of the most long standing tensions in the SM and still an open question