B^{0} Mixing

- Neutral weakly-decaying self-conjugate pairs of mesons:

$$
K^{0} / \bar{K}^{0} ; D^{0} / \bar{D}^{0} ; B_{q}^{0} / \bar{B}_{q}^{0} ;[q=d, s]
$$

- Mixing in neutral K, $\mathrm{B}_{\mathrm{d}}, \mathrm{B}_{\mathrm{s}}$ and D mesons discovered by [Lande et al., Phys. Rev. 103, 1901-1904 (1956)], ARGUS [Phys. Lett. B192, 245 (1987)], CDF/DO [Phys. Rev. Lett. 97, 242003/021802 (2006)] and Babar [Phys. Rev. Lett. 98, 211802 (2007)]
- Consider for example the B meson system:
- Two Flavor eigenstates whith definite quark content:

$$
B_{q}^{0}=\bar{b} q, \quad \bar{B}_{q}^{0}=b \bar{q}
$$

describe particle interaction (production and decays)

- Two Hamiltonian eigenstates with definite mass and lifetime

$$
B_{q, \text { Light }}, \quad B_{q, \text { Heavy }}
$$

describe the propagation through space

- Propagation eigenstates are not flavor eigenstates: flavor eigenstates are mixed as they propagate through space
- The two neutral K propagation eigenstates have very different lifetimes: convenient to define states by the lifetime: K_{L}, K_{S}
- Neutral D mesons have mixing rate much slower than the decay rate: flavor eigenstates $D^{0} / \overline{D^{0}}$ are the most convenient basis

Martino Margoni, Dipartimento di Fisica e Astronomia Universita` di Padova, A.A. 2015/2016

B^{0} Mixing

- A linear combination of flavor eigenstates is governed by the time-dependent Schrodinger equation:

$$
a\left|B^{0}\right\rangle+b\left|\bar{B}^{0}\right\rangle \quad i \frac{d}{d t}\binom{a}{b}=H\binom{a}{b} \equiv\left(M-\frac{i}{2} \Gamma\right)\binom{a}{b}
$$

where $\quad \mathcal{H}_{\text {eff }}=\mathbf{M}-\frac{i \boldsymbol{\Gamma}}{2}$

$$
=\left[\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right)-\frac{i}{2}\left(\begin{array}{ll}
\Gamma_{11} & \Gamma_{12} \\
\Gamma_{21} & \Gamma_{22}
\end{array}\right)\right]
$$

- CPT symmetry: $\mathrm{M}_{11}=\mathrm{M}_{22}$ and $\Gamma_{11}=\Gamma_{22}$
- Off-diagonal terms related to transition amplitude from B^{0} to $\overline{\mathrm{B}^{0}}$ arising from box diagrams with two W exchanges.
- K/D mesons: dominated by long-distance contributions due to common intermediate states
- B mesons: dominated by short-distance contributions (top exchange); long-distance contributions strongly suppressed (off the region of hadronic resonances)

Effective (not Hermitian) Hamiltonian whith M and Γ complex matrices describing the masses and decay rates.
 Martino Margoni, Dipartimento di Fisica e Astronomia Universita` di Padova, A.A. 2015/2016

B^{0} Mixing

- Eigenvalue problem gives complex eigenvalues and eigenstates represented as an admixture of the flavor eigenstates:

$$
\begin{array}{ll}
\left|B_{\mathrm{L}, \mathrm{H}}\right\rangle=p\left|B_{q}^{0}\right\rangle \pm q\left|\bar{B}_{q}^{0}\right\rangle & |q|^{2}+|p|^{2}=1 \quad \text { normalization condition } \\
& \frac{q}{p}=\sqrt{\frac{M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}}{M_{12}-\frac{i}{2} \Gamma_{12}}}
\end{array}
$$

- Eigenvalues

$$
\begin{aligned}
& m_{L}-\frac{i}{2} \Gamma_{L}=M_{11}-\frac{i}{2} \Gamma_{11}+\frac{p}{q}\left(M_{12}-\frac{i}{2} \Gamma_{12}\right) \\
& m_{H}-\frac{i}{2} \Gamma_{H}=M_{11}-\frac{i}{2} \Gamma_{11}-\frac{p}{q}\left(M_{12}-\frac{i}{2} \Gamma_{12}\right)
\end{aligned}
$$

Neglecting $\mathrm{O}\left(\mathrm{m}_{\mathrm{b}}^{2} / \mathrm{m}_{\mathrm{w}}{ }_{\mathrm{w}}\right)$:
$\Delta m=m_{H}-m_{L} \sim 2\left|M_{12}\right|>0$
$\Delta \Gamma=\Gamma_{L}-\Gamma_{H} \simeq 2\left|\Gamma_{12}\right| \cos \Phi$
$\Phi=\arg \left(-M_{12} / \Gamma_{12}\right)$
$\Delta m_{d}=3.34 \times 10^{-10} \mathrm{MeV}$
$\Delta m_{s}=1.16 \times 10^{-8} \mathrm{MeV}$

- Sign of $\Delta \mathrm{m}$ by definition
- Sign of $\Delta \Gamma$ determined by experiment. SM predicts $\Phi \sim$ few degrees $\rightarrow \Gamma_{H}<\Gamma_{L}$

For comparison:

$$
\begin{gathered}
\Delta m_{K}=3.48 \times 10^{-12} \mathrm{MeV} \\
\Delta m_{D}=9.45 \times 10^{-12} \mathrm{MeV}
\end{gathered}
$$

- Eigenvalue problem gives complex eigenvalues and eigenstates represented as an admixture of the flavor eigenstates:

$$
\begin{aligned}
\left|B_{\mathrm{L}, \mathrm{H}}\right\rangle=p\left|B_{q}^{0}\right\rangle \pm q\left|\bar{B}_{q}^{0}\right\rangle & |q|^{2}+|p|^{2}=1 \quad \text { normalization condition } \\
& \frac{q}{p}=\sqrt{\frac{M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}}{M_{12}-\frac{i}{2} \Gamma_{12}}}
\end{aligned}
$$

- Eigenvalues

$$
\begin{aligned}
& m_{L}-\frac{i}{2} \Gamma_{L}=M_{11}-\frac{i}{2} \Gamma_{11}+\frac{p}{q}\left(M_{12}-\frac{i}{2} \Gamma_{12}\right) \\
& m_{H}-\frac{i}{2} \Gamma_{H}=M_{11}-\frac{i}{2} \Gamma_{11}-\frac{p}{q}\left(M_{12}-\frac{i}{2} \Gamma_{12}\right)
\end{aligned}
$$

Neglecting $\mathrm{O}\left(\mathrm{m}_{\mathrm{b}}^{2} / \mathrm{m}_{\mathrm{w}}^{2}\right)$:

$$
\Delta m=m_{H}-m_{L} \stackrel{\mathrm{~b}}{\sim} 2|{\underset{M}{12}}|>0
$$

$$
\Delta \Gamma=\Gamma_{L}-\Gamma_{H} \simeq 2\left|\Gamma_{12}\right| \cos \Phi
$$

$$
\Phi=\arg \left(-M_{12} / \Gamma_{12}\right)
$$

- In the limit of $|q / p| \sim 1$ [Lenz, Nierste arXiv 1102.4274 (2011), Beringer et al., Phys. Rev. D 86, 010001 (2012)]:
$\Delta \Gamma_{q} / \Delta m_{q}=\left|\Gamma_{12} / M_{12}\right| \sim 5 \times 10^{-3}$ independent of CKM elements (same for $\mathrm{B}_{\mathrm{d}}^{0}$ and $\mathrm{B}_{\mathrm{s}}^{0}$)
- $\Delta \Gamma_{d} / \Gamma_{d}=0.42 \pm 0.08 \%, \Delta \Gamma_{s} / \Gamma_{s}=15 \pm 2 \%$ width difference caused by the existence of final states to which both $\mathrm{B}_{\mathrm{q}}^{0}$ and $\overline{\mathrm{B}_{\mathrm{q}}^{0}}$ mesons can decay ($\mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{c} q}$ are Cabibbo suppressed (allowed) for $\mathrm{q}=\mathrm{d}(\mathrm{s})$)

B^{0} Mixing

- Time evolved state for an initially pure state at $t=0$:

$$
\begin{aligned}
\left|B_{q}^{0}(t)\right\rangle & =g_{+}(t)\left|B_{q}^{0}\right\rangle+\frac{q}{p} g_{-}(t)\left|\bar{B}_{q}^{0}\right\rangle \\
\left|\bar{B}_{q}^{0}(t)\right\rangle & =g_{+}(t)\left|\bar{B}_{q}^{0}\right\rangle+\frac{p}{a} g_{-}(t)\left|B_{q}^{0}\right\rangle
\end{aligned}
$$

where

$$
\begin{aligned}
& g_{+}(t)=e^{-i M t} e^{-\Gamma t / 2} \cos \left(\Delta m_{B} t / 2\right) \\
& g_{-}(t)=e^{-i M t} e^{-\Gamma t / 2} i \sin \left(\Delta m_{B} t / 2\right) \\
& \Gamma=\left(\Gamma_{H}+\Gamma_{L}\right) / 2, \quad M=\left(M_{H}+M_{L}\right) / 2
\end{aligned}
$$

- Time-dependent probability that the flavor states remain unchanged (+) or oscillate (-)

$$
\left|g_{ \pm}(t)\right|^{2}=\frac{e^{-\Gamma_{q} t}}{2}\left[\cosh \left(\frac{\Delta \Gamma_{q}}{2} t\right) \pm \cos \left(\Delta m_{q} t\right)\right]
$$

B^{0} Mixing

- Time integrated mixing probability X_{q}

Meson	M / MeV	$\Delta m / \mathrm{MeV}$	Γ / MeV	$\Delta \Gamma / \mathrm{MeV}$
K^{0}	497.6	3.48×10^{-12}	3.68×10^{-12}	7.34×10^{-12}
D^{0}	1864.9	9.45×10^{-12}	1.6×10^{-9}	2.57×10^{-11}
B_{d}	5279.6	3.34×10^{-10}	4.43×10^{-10}	~ 0
B_{s}	5366.8	1.16×10^{-8}	4.39×10^{-10}	6.58×10^{-11}

$$
\chi_{q}=\frac{x_{q}^{2}+y_{q}^{2}}{2\left(x_{q}^{2}+1\right)} \quad x_{q}=\frac{\Delta m_{q}}{\Gamma_{q}}, \quad y_{q}=\frac{\Delta \Gamma_{q}}{2 \Gamma_{q}}
$$

$$
\begin{aligned}
& \begin{cases}x_{d}=0.774 \pm 0.008 & \left(B_{d}^{0}-\bar{B}_{d}^{0} \text { system }\right) \\
x_{s}=26.2 \pm 0.5 & \left(B_{s}^{0}-\bar{B}_{s}^{0} \text { system }\right)\end{cases} \\
& \chi_{d}=0.182 \pm 0.015 \quad \bar{\chi}=f_{d} \chi_{d}+f_{s} \chi_{s} \\
& \chi_{s}=0.49930 \pm 0.00001 \quad
\end{aligned}
$$

- \bar{X} gives informations on B_{q} production fractions

Martino Margoni, Dipartimento di Fisica e Astronomia Universita` di Padova, A.A. 2015/2016

B^{0} Mixing

- Time-dependent evolution depends on mixing parameters

Martino Margoni, Dipartimento di Fisica e Astronomia Universita` di Padova, A.A. 2015/2016

CPV in Mixing

$\left|\frac{q}{p}\right|^{2}=\left|\frac{M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}}{M_{12}-\frac{i}{2} \Gamma_{12}}\right| \sim 1+\left|\frac{\Gamma_{12}}{M_{12}}\right| \sin \left(\Phi_{M}-\Phi_{\Gamma}\right) \sim 1-\mathfrak{J}\left(\frac{\Gamma_{12}}{M_{12}}\right) ; \quad\left[\Phi_{M}-\Phi_{\Gamma} \sim \pi+O\left(\frac{m_{c}^{2}}{m_{b}^{2}}\right)\right]$
where Φ_{M}, Φ_{Γ} are the phases of M_{12} and Γ_{12}
[Lenz, Nierste arXiv 1102.4274 (2011), Beringer et al., Phys. Rev. D 86, 010001 (2012)]

- If CP is conserved (is a symmetry of the Hamiltonian), the mass eigenstates are CP eigenstates. In that case the relative phase between M_{12} and Γ_{12} vanishes:
- $|q / p| \neq 1$ implies CPV in mixing (so called indirect CPV)

$$
\left|B_{\mathrm{L}, \mathrm{H}}\right\rangle=p\left|B_{q}^{0}\right\rangle \pm q\left|\bar{B}_{q}^{0}\right\rangle \quad|q|^{2}+|p|^{2}=1 \quad\left[\Phi_{q}=\arg \left(-M_{12}^{q} / \Gamma_{12}^{q}\right)\right]
$$

$$
\begin{array}{r}
\frac{q}{p}=\sqrt{\frac{M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}}{M_{12}-\frac{i}{2} \Gamma_{12}}} \\
C P\left|B_{L, H}\right\rangle= \pm\left|B_{L, H}\right\rangle \rightarrow\left|\frac{q}{p}\right|=1 \rightarrow \Phi_{q}=0
\end{array}
$$

CPV in Mixing

$\left|\frac{q}{p}\right|^{2}=\left|\frac{M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}}{M_{12}-\frac{i}{2} \Gamma_{12}}\right| \sim 1+\left|\frac{\Gamma_{12}}{M_{12}}\right| \sin \left(\Phi_{M}-\Phi_{\Gamma}\right) \sim 1-\Im\left(\frac{\Gamma_{12}}{M_{12}}\right) ; \quad\left[\Phi_{M}-\Phi_{\Gamma} \sim \pi+O\left(\frac{m_{c}^{2}}{m_{b}^{2}}\right)\right]$
where $\Phi_{M^{\prime}} \Phi_{\Gamma}$ are the phases of M_{12} and Γ_{12}
[Lenz, Nierste arXiv 1102.4274 (2011), Beringer et al., Phys. Rev. D 86, 010001 (2012)]

- If CP is conserved (is a symmetry of the Hamiltonian), the mass eigenstates are CP eigenstates. In that case the relative phase between M_{12} and Γ_{12} vanishes:
- $|q / p| \neq 1$ implies CPV in mixing (so called indirect CPV)
- Effect can be observer through the CP Asymmetry:

$$
A_{C P}^{q}=\frac{\operatorname{Prob}\left(\bar{B}_{q}^{0} \rightarrow B_{q}^{0}, t\right)-\operatorname{Prob}\left(B_{q}^{0} \rightarrow \bar{B}_{q}^{0}, t\right)}{\operatorname{Prob}\left(\bar{B}_{q}^{0} \rightarrow B_{q}^{0}, t\right)+\operatorname{Prob}\left(B_{q}^{0} \rightarrow \bar{B}_{q}^{0}, t\right)}=\frac{1-|q / p|_{q}^{4}}{1+|q / p|_{q}^{4}}=\frac{\left|\Gamma_{12}^{q}\right|}{\left|M_{12}^{q}\right|} \sin \phi_{q} \quad\left[\Phi_{q}=\arg \left(-M_{12}^{q} / \Gamma_{12}^{q}\right)\right]
$$

- Independent on t
- Predicted to be very small in the SM [Nierste, arXiv:1212.5805 (2012)]

$$
\begin{gathered}
A_{C P}^{d}=(-4.0 \pm 0.6) \times 10^{-4} ; \quad \Phi_{d}=-4.9^{o} \pm 1.4^{o} \\
A_{C P}^{s}=(1.8 \pm 0.3) \times 10^{-5} ; \quad \Phi_{s}=0.24^{o} \pm 0.06^{\circ}
\end{gathered}
$$

CPV in Mixing

$\left|\frac{q}{p}\right|^{2}=\left|\frac{M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}}{M_{12}-\frac{i}{2} \Gamma_{12}}\right| \sim 1+\left|\frac{\Gamma_{12}}{M_{12}}\right| \sin \left(\Phi_{M}-\Phi_{\Gamma}\right) \sim 1-\Im\left(\frac{\Gamma_{12}}{M_{12}}\right) ; \quad\left[\Phi_{M}-\Phi_{\Gamma} \sim \pi+O\left(\frac{m_{c}^{2}}{m_{b}^{2}}\right)\right]$
where $\Phi_{M^{\prime}} \Phi_{\Gamma}$ are the phases of M_{12} and Γ_{12}
[Lenz, Nierste arXiv 1102.4274 (2011), Beringer et al., Phys. Rev. D 86, 010001 (2012)]

- If CP is conserved (is a symmetry of the Hamiltonian), the mass eigenstates are CP eigenstates. In that case the relative phase between M_{12} and Γ_{12} vanishes:
- $|q / p| \neq 1$ implies CPV in mixing (so called indirect CPV)
- Beyond SM [Lenz, Nierste, JHEP 0706, 072 (2007)]
- New Physics could modify M_{12} by introducing an additional contribution:

$$
\begin{aligned}
& M_{12}^{N P, q}=M_{12}^{S M, q} \Delta_{q} ; \Delta_{q}=\left|\Delta_{q}\right| e^{i \phi_{q}^{S}} \\
& A_{S L}^{N P}=\frac{\left|\Gamma_{12}^{q}\right|}{\left|M_{12}^{S M, q}\right|} \frac{\sin \left(\phi_{q}^{S M}+\phi_{q}^{\Delta}\right)}{\left|\Delta_{q}\right|}
\end{aligned}
$$

New Physics if $\Delta_{q}=\left|\Delta_{q}\right| e^{i \phi_{q}^{\Delta}} \neq 1$

Measurement of $\Delta \mathrm{m}_{\mathrm{d}} @ B$-Factories

- Assuming $\Delta \Gamma_{d}=0$ the time-dependent probabilities to have (-) or not (+) flavor oscillation are:

$$
h_{ \pm}(\Delta t)=\frac{e^{-|\Delta t| / \tau_{B^{0}}}}{4 \tau_{B^{0}}}\left[1 \pm \cos \left(\Delta m_{d} \Delta t\right)\right]
$$

- Neutral B_{d}^{0} mesons are produced via $Y(4 S)$ decays. The wave function for the final state is in an anti-symmetric coherent P-wave ($\mathrm{L}=1$) state:

$$
\Psi=\frac{1}{\sqrt{2}}\left(\left|B^{0}\right\rangle\left|\bar{B}^{0}\right\rangle-\left|\bar{B}^{0}\right\rangle\left|B^{0}\right\rangle\right)
$$

- The B_{d} mesons remains in this coherent state with exactly one B^{0} and one $\overline{B^{0}}$ until one of them decays. Then the wave function collapses and the second B meson continues to propagate and oscillate until it also decays.
- If one of the B mesons decays into a flavor-specific eigenstate $\left(B_{\text {tag }}\right)$, it unambigously determines the flavor of the other $\left(\mathrm{B}_{\text {rec }}\right)$ at this time.

Measurement of $\Delta m_{d} @ B$-Factories

- Asymmetric B-Factories: center-of-mass is boosted forward in the direction of the electron (high energy) beam
- Time evolution described in terms of the time difference between the two B meson decays in the center-of-mass frame, obtained from the distance between the two decay verteces along the beam axis

Measurement of $\Delta m_{d} @ B$-Factories

- $\Delta \mathrm{m}$ obtained from a simultaneous fit to the time-dependent asymmetry of unmixed (+) and mixed (-) events in decay channels specific to B^{0} or $\overline{\mathrm{B}^{0}}$ mesons (e.g. $\mathrm{B}^{0} \rightarrow \mathrm{D}^{*} I^{+}$v)

$$
\begin{aligned}
& h_{ \pm}(\Delta t)=\frac{e^{-|\Delta t| / \tau_{B^{0}}}}{4 \tau_{B^{0}}}\left[1 \pm \cos \left(\Delta m_{d} \Delta t\right)\right] \\
& A(\Delta t)=\frac{h_{+}(\Delta t)-h_{-}(\Delta t)}{h_{+}(\Delta t)+h_{-}(\Delta t)}=\cos (\Delta m \Delta t)
\end{aligned}
$$

- Unmixed events: $\mathrm{B}^{0} \overline{\mathrm{~B}^{0}}$
- Mixed events: $\mathrm{B}^{0} \mathrm{~B}^{0}$ and $\overline{\mathrm{B}^{0}} \overline{\mathrm{~B}^{0}}$

- Measured asymmetry affected by experimental effects:
- Flavor misidentification
- Time resolution
- Analysis ingredients: Flavor Tagging of the $\mathrm{B}_{\mathrm{tag}}$ meson and measurement of Δt

Measurement of $\Delta m_{d} @ B$-Factories

Flavor Tagging

- Purpose: classify the $\mathrm{B}_{\text {tag }}$ either as a B^{0} or $a \overline{\mathrm{~B}^{0}}$ at the time of its decay in order to fix the flavor of the other meson $\left(\mathrm{B}_{\text {rec }}\right)$ at the same time
- Signal meson usually fully reconstructed. B meson pairs are produced with no underlying event and pile-up is negligible: tracks not belonging to the $B_{\text {rec }}$ are assumed to come from the $B_{\text {tag }}$ decay
- A large fraction of B mesons decay to a final state that is flavor specific. Usually inclusive techniques are employed (e.g. Lepton, Kaon, slow Pion charge)
- Two stages algorithms:
- Analysis of flavor-specific signatures
- Results combined in a final flavor tag using multivariate methods
- Figure of merit: effective tagging efficiency (tagging power) $Q=\varepsilon_{\operatorname{tag}}(1-2 w)^{2}$
- $\varepsilon_{\text {tag }}$: fraction of events with tagging assignment
- ω :mistag probability
- D=1-2w: dilution (factor by which measured CP and mixing asymmetries are reduced from their physical values)

Martino Margoni, Dipartimento di Fisica e Astronomia Universita` di Padova, A.A. 2015/2016

Measurement of $\Delta m_{d} @ B$-Factories

Flavor Tagging

- Purpose: classify the $\mathrm{B}_{\text {tag }}$ either as a B^{0} or $a \overline{\mathrm{~B}^{0}}$ at the time of its decay in order to fix the flavor of the other meson $\left(\mathrm{B}_{\text {rec }}\right)$ at the same time
- Signal meson usually fully reconstructed. B meson pairs are produced with no underlying event and pile-up is negligible: tracks not belonging to the $B_{\text {rec }}$ are assumed to come from the $B_{\text {tag }}$ decay
- A large fraction of B mesons decay to a final state that is flavor specific. Usually inclusive techniques are employed (e.g. Lepton, Kaon, slow Pion charge)
- Two stages algorithms:
- Analysis of flavor-specific signatures
- Results combined in a final flavor tag using multivariate methods
- Tagging efficiency and mistag could be different for the two different flavors due to detector performance not charge symmetric (expecially for K tags):

$$
\begin{array}{ll}
\varepsilon_{\mathrm{tag}}=\frac{\varepsilon_{B^{0}}+\varepsilon_{\bar{B}^{0}}}{2} & \Delta \varepsilon_{\mathrm{tag}}=\varepsilon_{B^{0}}-\varepsilon_{\bar{B}^{0}} \\
w=\frac{w_{B^{0}}+w_{\bar{B}^{0}}}{2} & \Delta w=w_{B^{0}}-w_{\bar{B}^{0}}
\end{array}
$$

Martino Margoni, Dipartimento di Fisica e Astronomia Universita` di Padova, A.A. 2015/2016

Measurement of $\Delta m_{d} @ B$-Factories

Flavor Tagging

- Purpose: classify the $\mathrm{B}_{\text {tag }}$ either as a B^{0} or $a \overline{\mathrm{~B}^{0}}$ at the time of its decay in order to fix the flavor of the other meson $\left(\mathrm{B}_{\text {rec }}\right)$ at the same time
- Signal meson usually fully reconstructed. B meson pairs are produced with no underlying event and pile-up is negligible: tracks not belonging to the $B_{\text {rec }}$ are assumed to come from the $B_{\text {tag }}$ decay
- A large fraction of B mesons decay to a final state that is flavor specific. Usually inclusive techniques are employed (e.g. Lepton, Kaon, slow Pion charge)
- Two stages algorithms:
- Analysis of flavor-specific signatures
- Results combined in a final flavor tag using multivariate methods
- Due to the mistag, the measured time dependence of events is now:

$$
\begin{array}{cc}
h_{ \pm}^{\text {Phys }}(\Delta t)=\frac{e^{-|\Delta t| / \tau_{B^{0}}}}{4 \tau_{B^{0}}}[1 \mp \Delta w & +: \text { Unmixed } \\
\left. \pm\langle D\rangle \cos \left(\Delta m_{d} \Delta t\right)\right] &
\end{array}
$$

Measurement of $\Delta m_{d} @ B$-Factories

Flavor Tagging

- Purpose: classify the $\mathrm{B}_{\text {tag }}$ either as a B^{0} or $a \overline{\mathrm{~B}^{0}}$ at the time of its decay in order to fix the flavor of the other meson $\left(\mathrm{B}_{\text {rec }}\right)$ at the same time
- Signal meson usually fully reconstructed. B meson pairs are produced with no underlying event and pile-up is negligible: tracks not belonging to the $B_{\text {rec }}$ are assumed to come from the $\mathrm{B}_{\text {tag }}$ decay
- A large fraction of B mesons decay to a final state that is flavor specific. Usually inclusive techniques are employed (e.g. Lepton, Kaon, slow Pion charge)
- Two stages algorithms:
- Analysis of flavor-specific signatures
- Results combined in a final flavor tag using multivariate methods
- Due to the mistag, the measured time dependence of events is now:

$$
A(\Delta t)=\frac{h_{+}(\Delta t)-h_{-}(\Delta t)}{h_{+}(\Delta t)+h_{-}(\Delta t)}=-\Delta \omega+D \cos (\Delta m \Delta t)
$$

Unmixed (+), Mixed (-), Asymmetry amplitude reduced by the dilution term D

Measurement of $\Delta m_{d} @ B$-Factories

Tagging Power

- Mixing and CP results come from asymmetries measurements
- Assume N^{0} and N^{0} true number of events with a given flavor, the number of reconstructed B decays are

$$
\begin{aligned}
& N=\varepsilon_{\operatorname{tag}}(1-w) N_{0}+\varepsilon_{\operatorname{tag}} w \bar{N}_{0} \\
& \bar{N}=\varepsilon_{\operatorname{tag}}(1-w) \bar{N}_{0}+\varepsilon_{\operatorname{tag}} w N_{0}
\end{aligned}
$$

- Measured Asymmetry

$$
A^{\mathrm{rec}}=\frac{N-\bar{N}}{N+\bar{N}}=(1-2 w) A^{0}=D A^{0}
$$

True physical Asymmetry:

- Statistical uncertainty:

$$
\begin{aligned}
& \sigma_{A^{0}}=\frac{\sigma_{A^{\mathrm{rec}}}}{1-2 w} \\
& \sigma_{A^{\text {rec }}} \propto \frac{1}{\sqrt{N_{\mathrm{tag}}}} \quad N_{\mathrm{tag}}=N+\bar{N}
\end{aligned}
$$

$$
\sigma_{A^{0}} \propto \frac{1}{\sqrt{\varepsilon_{\operatorname{tag}}}(1-2 w)}=\frac{1}{\sqrt{Q}}
$$

Measurement of $\Delta \mathrm{m} @$ B-Factories

Sources of Flavor Information

- Leptons: e, μ produced in semileptonic direct B decays $\mathrm{b} \rightarrow$ clv tag the flavor of the B meson; cascade decays $\mathrm{b} \rightarrow \mathrm{c} \rightarrow$ slv provide opposite information, but have softer momentum. Several kinematical variable used (q, $\mathrm{p}^{*}, \theta, \mathrm{p}_{\text {miss }}, \theta\left(l-\mathrm{p}_{\text {miss }}\right) \ldots$)
- Kaons: produced from $\mathrm{b} \rightarrow \mathrm{c} \rightarrow \mathrm{s}$ transitions have charge correlated to the B flavor (q , K-PID informations, nKs, ${ }^{*}$, angles)
- Slow pions: produced from D* decays affected by large background. Pions selected exploiting the small phase space available in the D^{*} decay: D^{0} and π emitted almost at rest in the D^{*} rest frame, have direction opposite to the rest of $B_{\text {tag }}$ products in the $\mathrm{B}_{\text {tag }}$ rest frame ($\mathrm{q}, \mathrm{p}^{*}, \mathrm{p}, \theta$, PID informations,...)

BaBar Tagging performance

Category	$\varepsilon_{\mathrm{tag}}(\%)$	$\Delta \varepsilon_{\text {tag }}(\%)$	$w(\%)$	$\Delta w(\%)$	$Q(\%)$	$\Delta Q(\%)$
Lepton	9.7 ± 0.1	0.2 ± 0.2	2.1 ± 0.2	0.2 ± 0.5	8.9 ± 0.1	0.1 ± 0.4
Kaon I	11.3 ± 0.1	-0.1 ± 0.2	4.1 ± 0.3	0.2 ± 0.6	9.6 ± 0.1	-0.1 ± 0.4
Kaon II	15.9 ± 0.1	-0.1 ± 0.2	13.0 ± 0.3	-0.2 ± 0.6	8.7 ± 0.2	0.0 ± 0.5
Kaon-Pion	13.2 ± 0.1	0.4 ± 0.2	23.0 ± 0.4	-1.3 ± 0.7	3.9 ± 0.1	0.5 ± 0.3
Pion	16.8 ± 0.1	-0.3 ± 0.3	33.3 ± 0.4	-2.7 ± 0.6	1.9 ± 0.1	0.6 ± 0.2
Other	10.6 ± 0.1	-0.5 ± 0.2	41.8 ± 0.5	5.9 ± 0.7	0.28 ± 0.03	-0.4 ± 0.1
Total	77.5 ± 0.1	-0.3 ± 0.5			33.1 ± 0.3	0.7 ± 0.8

Martino Margoni, Dipartimento di Fisica e Astronomia Universita` di Padova, A.A. 2015/2016

Measurement of $\Delta m_{d} @ B$-Factories

Resolution of Δt

- Difference of the proper times of decay of the two B mesons in the center-of-mass frame: $\Delta t=\Delta z / \beta \gamma$
- Experimental error are taken into account by convolving the $R\left(\delta t, \sigma_{\Delta t}\right)$ resolution function defined in terms of the event-by-event error $\sigma_{\Delta t}$ and $\delta t=\Delta t-\Delta t_{t r u e}$ with the function describing the event rate, $f_{ \pm}^{\text {phys }}(\Delta t)$

$$
\begin{aligned}
F_{ \pm}^{\text {Phys }}(\Delta t) & =\int_{-\infty}^{\infty} f_{ \pm}^{\text {Phys }}\left(\Delta t_{\text {true }}\right) R\left(\delta t, \sigma_{\Delta t}\right) \mathrm{d} \Delta t_{\text {true }} \\
& =f_{ \pm}^{\text {Phys }}(\Delta t) \otimes R\left(\delta t, \sigma_{\Delta t}\right) .
\end{aligned}
$$

- Typical Resolution Function:

$$
\begin{aligned}
& \mathcal{R}_{\text {sig }}\left(\delta t, \sigma_{\Delta t}\right)=f_{\text {core }} G_{\text {core }}\left(\delta t, \mu_{\text {core }} \sigma_{\Delta t}, s_{\text {core }} \sigma_{\Delta t}\right)+ \\
& f_{\text {tail }} G_{\text {tail }}\left(\delta t, \mu_{\text {tail }} \sigma_{\Delta t}, s_{\text {tail }} \sigma_{\Delta t}\right)+ \\
& f_{\text {outlier }} G_{\text {outlier }}\left(\delta t, \mu_{\text {outlier }}, s_{\text {outlier }}\right) \text {. } \\
& \mathrm{s}_{\text {core }}=1.01 \pm 0.04 \text { (lepton tag) } \\
& \mathrm{s}_{\text {core }}=1.20 \pm 0.02 \text { (non-lepton tag) } \\
& \mathrm{s}_{\text {tail }} \sim 3 \\
& \mathrm{~S}_{\text {outtier }} \sim 8 \mathrm{ps} \\
& \mu_{i}, s_{i} \text { usually determined by the fit }
\end{aligned}
$$

Measurement of $\Delta m_{d} @ B$-Factories

Resolution of Δt

- Difference of the proper times of decay of the two B mesons in the center-of-mass frame: $\Delta \mathrm{t}=\Delta \mathrm{z} / \beta \gamma$
- Experimental error are taken into account by convolving the $R\left(\delta t, \sigma_{\Delta t}\right)$ resolution function defined in terms of the event-by-event error $\sigma_{\Delta t}$ and $\delta t=\Delta t-\Delta t_{t r u e}$ with the function describing the event rate, $f_{ \pm}^{\text {Phys }}(\Delta t)$

$$
\begin{aligned}
F_{ \pm}^{\text {Phys }}(\Delta t) & =\int_{-\infty}^{\infty} f_{ \pm}^{\text {Phys }}\left(\Delta t_{\text {true }}\right) R\left(\delta t, \sigma_{\Delta t}\right) \mathrm{d} \Delta t_{\text {true }} \\
& =f_{ \pm}^{\text {Phys }}(\Delta t) \otimes R\left(\delta t, \sigma_{\Delta t}\right)
\end{aligned}
$$

- Measured Asymmetry taking into account experimental effects

$$
A(\Delta t)=\frac{F_{+}(\Delta t)-F_{-}(\Delta t)}{F_{+}(\Delta t)+F_{-}(\Delta t)}=F\left(D, \Delta m_{d}, \sigma \Delta t\right)
$$

Unmixed (+), Mixed (-)

Measurement of $\Delta \mathrm{m}$
 @ B-Factories

Resolution of Δt

- Factors contributing to the resolution:
- $\mathrm{B}_{\text {tag }}$ vertex: tracking, finite lifetime of D mesons
- $\mathrm{B}_{\text {rec }}$ vertex: tracking
- Error on the βy boost determined from the beams energy
- Typical $\sigma_{\Delta z} \sim 50-100 \mu \mathrm{~m}$ depending on event reconstruction and dominated by the tag vertex
- Fit performed to extract mistag rate ω, lifetime and $\Delta \mathrm{m}$

Measurement of $\Delta m_{d} @ B$-Factories

 Babar Meas. using Partial $\mathrm{B}^{0} \rightarrow \mathrm{D}^{*}$ I v Reco ($\mathrm{L}=81 \mathrm{fb}^{-1}$) [Phys. Rev. D73 012004 (2006)]$$
\mathcal{M}_{\nu}^{2}=\left(\frac{\sqrt{s}}{2}-\tilde{E}_{D^{*+}}-E_{\ell^{-}}\right)^{2}-\left(\tilde{\mathbf{p}}_{D^{*+}}+\mathbf{p}_{\ell^{-}}\right)^{2}
$$

- Only the charged lepton from the B decay and the slow pion from the D* are identified. Due to the limited phase space available ($m_{D^{*}}-m_{D 0} \sim 150 \mathrm{MeV}$), the slow pion is emitted within a one-radian wide cone centered about the D^{*} direction in the $Y(4 S)$ rest frame.
- D* 4-momentum parameterized as a function of the pion momentum
- B^{0} assumed at rest
- Combinatorial background studied using wrong charge (same sign) lepton-slow pion correlations

Measurement of $\Delta m_{d} @ B$-Factories

 Babar Meas. using Partial $\mathrm{B}^{0} \rightarrow \mathrm{D}^{*}$ I v Reco $\left(\mathrm{L}=81 \mathrm{fb}^{-1}\right)$ [Phys. Rev. D73 012004 (2006)]$$
\mathcal{M}_{\nu}^{2}=\left(\frac{\sqrt{s}}{2}-\tilde{E}_{D^{*+}}-E_{\ell^{-}}\right)^{2}-\left(\tilde{\mathbf{p}}_{D^{*+}}+\mathbf{p}_{\ell^{-}}\right)^{2}
$$

- $B_{\text {rec }}$ vertex determined from the lepton and slow pion tracks constrained to the Beam Spot position
- $B_{\text {tag }}$ vertex from lepton and BS
- Flavor of $B_{\text {rec }}$ from lepton and pion charges, flavor of $B_{\text {tag }}$ from lepton charge
- BKG reduced by cut on combined Likelihood ratio using p_{1}, p_{π} and vertex probability
- 49K (28K) signal (BKG) events reconstructed

Measurement of $\Delta m_{d} @ B$-Factories

 Babar Meas. using Partial $B^{0} \rightarrow D^{*} I v \operatorname{Reco}\left(L=81 \mathrm{fb}^{-1}\right)$ [Phys. Rev. D73 012004 (2006)]

- Signal is any combination of a lepton and a charged D^{*} produced in a single B^{0} decay
- BKG from continuum, BB combinatorial, B^{-} peaking BKG from $B^{-} \rightarrow D^{*+} \pi^{-} l^{-} v, D^{*+} \pi^{-} X$ with a $\pi \rightarrow$ I misidentification

- Leptons divided in: primary, cascade tag-side, decay-side lepton from the unreconstructed D^{0} from the $B_{\text {rec }}$ decay not carrying any useful information

Measurement of $\Delta m_{d} @ B$-Factories

 Babar Meas. using Partial $\mathrm{B}^{0} \rightarrow \mathrm{D}^{*}$ I v Reco (L=81 fb ${ }^{-1}$) [Phys. Rev. D73 012004 (2006)]

- Fraction of different sample components from a fit to the $\mathrm{M}^{2}{ }_{\mathrm{V}}$ distribution

- Leptons from $B_{\text {tag }}$ and D^{0} decay side separated exploiting the angle between the lepton and the slow pion in the center-of-mass frame
iviartino iviargonı, Uıpartımento aı rısıca e Astronomia Universita` di Padova, A.A. 2015/2016

Measurement of $\Delta \mathrm{m} @$ B-Factories

Babar Meas. using Partial $B^{0} \rightarrow D^{*} 1$ v Reco $\left(L=81 \mathrm{fb}^{-1}\right)$ [Phys. Rev. D73 012004 (2006)]

- Simultaneous maximum-likelihood fit performed to mixed (same sign leptons) and unmixed (opposite sign leptons)
- Mistag and time resolution determined in the fit
$\mathcal{F}^{ \pm}\left(\Delta t, \sigma_{\Delta t}, \mathcal{M}_{\nu \nu}^{2} \mid \tau_{B^{0}}, \Delta m_{d}\right)=f_{q q}^{ \pm}\left(\mathcal{M}_{\nu}^{2}\right) \cdot \mathcal{F}_{q q}^{ \pm}\left(\Delta t, \sigma_{\Delta t}\right)+f_{B \bar{B}}^{ \pm}\left(\mathcal{M}_{\nu}^{2}\right) \cdot \mathcal{F}_{B \bar{B}}^{ \pm}\left(\Delta t, \sigma_{\Delta t}\right)+S_{B} f_{B_{B}^{ \pm}}^{(}\left(\mathcal{M}_{\nu}^{2}\right) \cdot \mathcal{F}_{B^{-}}^{ \pm}\left(\Delta t, \sigma_{\Delta t}\right)$

$$
+\left[1-S_{B}-f_{B}^{ \pm}\left(\mathcal{M}_{\nu}^{2}\right)-f_{B \bar{B}}^{ \pm}\left(\mathcal{M}_{\nu}^{2}\right)-f_{q q}^{ \pm}\left(\mathcal{M}_{\nu}^{2}\right)\right] \cdot \mathcal{F}_{\bar{B}^{\prime}}^{ \pm}\left(\Delta t, \sigma_{\Delta t} \mid \tau_{B^{0}}, \Delta m_{d}\right),
$$

- Total PDF includes contributions from continuum, BB BKG, charged B BKG and signal
- Δt resolution described by a sum of three Gaussians
- Relative normalization between mixed and unmixed signal events constrained based on the time-integrated mixing rate:

$$
\begin{equation*}
\chi_{d}=\frac{x^{2}}{2\left(1+x^{2}\right)} \quad x=\Delta m_{d} \cdot \bar{\tau}_{B^{0}} \tag{27}
\end{equation*}
$$

Martino Margoni, Dipartimento di Fisica e Astronomia Universita` di Padova, A.A. 2015/2016

Measurement of $\Delta m_{d} @ B$-Factories

 Babar Meas. using Partial $B^{0} \rightarrow D^{*} \mid v \operatorname{Reco}\left(L=81 \mathrm{fb}^{-1}\right)$ [Phys. Rev. D73 012004 (2006)]$$
\tau_{B^{0}}=\left(1.504 \pm 0.013_{-0.013}^{+0.018}\right) p s ; \quad \Delta m_{d}=\left(0.511 \pm 0.007_{-0.006}^{+0.007}\right) p s^{-1}
$$

Martino Margoni, Dipartimento di Fisica e Astronomia Universita` di Padova, A.A. 2015/2016

Measurement of $\Delta m_{d} @ B$-Factories

 Babar Meas. using Partial $\mathrm{B}^{0} \rightarrow \mathrm{D}^{*}$ I v Reco $\left(\mathrm{L}=81 \mathrm{fb}^{-1}\right)$ [Phys. Rev. D73 012004 (2006)]$$
\tau_{B^{0}}=\left(1.504 \pm 0.013_{-0.013}^{+0.018}\right) p s ; \quad \Delta m_{d}=\left(0.511 \pm 0.007_{-0.006}^{+0.007}\right) p s^{-1}
$$

- Systematics from vertex detector alignment, z-scale of the detector, fit range and analysis bias ($\sim 1 \sigma$) from the MC statistical error

Source	Variation	$\delta \tau_{B^{0}}$ (ps)	$\delta \Delta m_{d}\left(\mathrm{ps}^{-1}\right)$	MC statistical error
(a) Sample Composition	$\pm 1.3 \%$	± 0.0003	∓ 0.0002	
(b) Analysis bias		± 0.0070	∓ 0.0035	
(c) $\tau_{B^{-}}$	1.671 ± 0.018	干0.0014	干0.0008	From comparison of beampipe dimention measured using scattered protons and nominal one
(d) $\mathcal{D}_{C l}$	0.65 ± 0.08	∓ 0.0003	∓ 0.0003	
(e) Combinatorial BKG		± 0.0007	∓ 0.0002	
(f) z scale		± 0.0070	∓ 0.0020	
(g) PEP-II boost		± 0.0020	∓ 0.0003	
(h) Beam-spot position		± 0.0050	∓ 0.0010	
(i) Alignment		${ }_{-0.0038}^{+0.0132}$	+0.0038 +0.0033	
(j) Decay-side tags		± 0.0013		From different sets of alignment parameters depending on detector conditions
(k) Binning		∓ 0.0021	± 0.0006	
(1) Outlier parameters		± 0.0028	± 0.0012	
(m) Δt and $\sigma_{\Delta t}$ cut		± 0.0033	∓ 0.0033	
(n) GExp model		-0.0016	+0.0011	
Total		+0.0182 +0.0131	$\begin{aligned} & +0.0068 \\ & +0.0064 \end{aligned}$	29

Martino Margoni, Dipartimento di Fisica e Astronomia Universita` di Padova, A.A. 2015/2016

Measurement of Δm

- From a similar analysis using fully reconstructed hadronic and SL B^{0} decays Belle found [Phys. Rev. D 71072003 (2005)]

$$
\begin{aligned}
\tau_{B^{0}} & =(1.534 \pm 0.008 \pm 0.010) p s \\
\Delta m_{d} & =(0.511 \pm 0.005 \pm 0.006) p s^{-1}
\end{aligned}
$$

- LHCb from $\mathrm{B}^{0} \rightarrow \mathrm{D}^{-} \pi^{+}, \mathrm{J} / \Psi \mathrm{K}^{* 0}$ (Most precise) [Phys. Lett. B 719 318-325 (2013)]:

$$
\Delta m_{d}=(0.5156 \pm 0.0051 \pm 0.0033) p^{-1}
$$

Measurement of Δm

$$
\Delta \mathrm{m}_{\mathrm{d}}\left(\mathrm{ps}^{-1}\right)
$$

- World Average

$$
\Delta m_{d}=(0.510 \pm 0.003) p s^{-}
$$

$$
0.495 \pm 0.033 \pm 0.027 \mathrm{ps}^{-1}
$$

$$
0.506 \pm 0.020 \pm 0.016 \mathrm{ps}^{-1}
$$

$$
0.506 \pm 0.006 \pm 0.004 \mathrm{ps}^{-1}
$$

$$
0.509 \pm 0.004 \pm 0.005 \mathrm{ps}^{-1}
$$

$$
0.514 \pm 0.005 \pm 0.003 \mathrm{ps}^{-1}
$$

$$
0.510 \pm 0.003 \mathrm{ps}^{-1}
$$

$$
0.498 \pm 0.032 \mathrm{ps}^{-1}
$$

$$
0.510 \pm 0.003 \mathrm{ps}^{-1}
$$

