• Neutral weakly-decaying self-conjugate pairs of mesons:

 $K^{0}/\bar{K^{0}}; D^{0}/\bar{D^{0}}; B^{0}_{q}/\bar{B^{0}}_{q}; [q=d,s]$

- Mixing in neutral K, B_d, B_s and D mesons discovered by [Lande et al., Phys. Rev. 103, 1901-1904 (1956)], ARGUS [Phys. Lett. B192, 245 (1987)], CDF/D0 [Phys. Rev. Lett. 97, 242003/021802 (2006)] and Babar [Phys. Rev. Lett. 98, 211802 (2007)]
- Consider for example the B meson system:
 - Two Flavor eigenstates whith definite quark content:

$$B_q^0 = \overline{b} q$$
, $\overline{B_q^0} = b \overline{q}$

describe particle interaction (production and decays)

• Two Hamiltonian eigenstates with definite mass and lifetime

$$B_{q, Light}$$
, $B_{q, Heavy}$

describe the propagation through space

- Propagation eigenstates are not flavor eigenstates: flavor eigenstates are mixed as they propagate through space
 - The two neutral K propagation eigenstates have very different lifetimes: convenient to define states by the lifetime: K₁, K₅
 - Neutral D mesons have mixing rate much slower than the decay rate: flavor eigenstates D⁰/D⁰ are the most convenient basis

 A linear combination of flavor eigenstates is governed by the time-dependent Schrodinger equation:

$$a|B^{0}\rangle + b|\overline{B}^{0}\rangle \qquad \qquad i\frac{d}{dt} \begin{pmatrix} a \\ b \end{pmatrix} = H \begin{pmatrix} a \\ b \end{pmatrix} \equiv (M - \frac{i}{2}\Gamma) \begin{pmatrix} a \\ b \end{pmatrix}$$

where $\mathcal{H}_{\text{eff}} = \mathbf{M} - \frac{i\Gamma}{2}$ = $\left[\begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{21} & \Gamma_{22} \end{pmatrix} \right]$

- CPT symmetry: $M_{11} = M_{22}$ and $\Gamma_{11} = \Gamma_{22}$
- Off-diagonal terms related to transition amplitude from B⁰ to B⁰ arising from box diagrams with two W exchanges.
- K/D mesons: dominated by long-distance contributions due to common intermediate states
- B mesons: dominated by short-distance contributions (top exchange); long-distance contributions strongly suppressed (off the region of hadronic resonances)

Effective (not Hermitian) Hamiltonian whith M and Γ complex matrices describing the masses and decay rates.

2

• Eigenvalue problem gives complex eigenvalues and eigenstates represented as an admixture of the flavor eigenstates:

$$\begin{split} |B_{\rm L,H}\rangle &= p|B_{q}^{0}\rangle \pm q|\overline{B}_{q}^{0}\rangle \quad |q|^{2} + |p|^{2} = 1 \quad \text{normalization condition} \\ &= \sqrt{\frac{M_{12}^{*} - \frac{i}{2}\Gamma_{12}}{M_{12} - \frac{i}{2}\Gamma_{12}}} \\ \bullet \text{ Eigenvalues} \\ &= m_{L} - \frac{i}{2}\Gamma_{L} = M_{11} - \frac{i}{2}\Gamma_{11} + \frac{p}{q} \Big(M_{12} - \frac{i}{2}\Gamma_{12} \Big) \\ &= m_{H} - \frac{i}{2}\Gamma_{L} = M_{11} - \frac{i}{2}\Gamma_{11} - \frac{p}{q} \Big(M_{12} - \frac{i}{2}\Gamma_{12} \Big) \\ &= m_{H} - \frac{i}{2}\Gamma_{H} = M_{11} - \frac{i}{2}\Gamma_{11} - \frac{p}{q} \Big(M_{12} - \frac{i}{2}\Gamma_{12} \Big) \end{split}$$

 $\Delta m_d = 3.34 \times 10^{-10} MeV$ $\Delta m_s = 1.16 \times 10^{-8} MeV$ For comparison: $\Delta m_{K} = 3.48 \times 10^{-12} MeV$ $\Delta m_{D} = 9.45 \times 10^{-12} MeV$

- Sign of Δm by definition
- Sign of $\Delta\Gamma$ determined by experiment. SM predicts $\Phi \sim$ few degrees $\rightarrow \Gamma_{H} < \Gamma_{L}$

3

• Eigenvalue problem gives complex eigenvalues and eigenstates represented as an admixture of the flavor eigenstates:

$$\begin{split} |B_{\mathrm{L},\mathrm{H}}\rangle &= p|B_{q}^{0}\rangle \pm q|\overline{B}_{q}^{0}\rangle \quad |q|^{2} + |p|^{2} = 1 \quad \text{normalization condition} \\ &= \frac{q}{p} = \sqrt{\frac{M_{12}^{*} - \frac{i}{2}\Gamma_{12}^{*}}{M_{12} - \frac{i}{2}\Gamma_{12}}} \\ \bullet \text{ Eigenvalues} \\ &= m_{L} - \frac{i}{2}\Gamma_{L} = M_{11} - \frac{i}{2}\Gamma_{11} + \frac{p}{q} \Big(M_{12} - \frac{i}{2}\Gamma_{12} \Big) \\ &= m_{H} - \frac{i}{2}\Gamma_{H} = M_{11} - \frac{i}{2}\Gamma_{11} - \frac{p}{q} \Big(M_{12} - \frac{i}{2}\Gamma_{12} \Big) \\ &= m_{H} - m_{L} \approx 2 |\Gamma_{12}| \cos \Phi \\ &= arg \left(-M_{12}/\Gamma_{12} \right) \end{split}$$

• In the limit of |q/p|~1 [Lenz, Nierste arXiv 1102.4274 (2011), Beringer et al., Phys. Rev. D 86, 010001 (2012)]:

 $\Delta \Gamma_q / \Delta m_q = |\Gamma_{12} / M_{12}| \sim 5 \times 10^{-3} \text{ independent of CKM elements (same for B}_d^0 \text{ and B}_s^0)$ • $\Delta \Gamma_d / \Gamma_d = 0.42 \pm 0.08\%, \Delta \Gamma_s / \Gamma_s = 15 \pm 2\%$ width difference caused by the existence of final states to which both B⁰_q and B⁰_q mesons can decay (b \rightarrow ccq are Cabibbo suppressed (allowed) for q=d(s)) 4

• Time evolved state for an initially pure state at t=0:

$$egin{aligned} &|B_q^0(t)
angle = g_+(t) \,|B_q^0
angle + rac{q}{p}\,g_-(t) \,|\overline{B}_q^0
angle \ &|\overline{B}_q^0(t)
angle = g_+(t) \,|\overline{B}_q^0
angle + rac{p}{q}g_-(t) \,|B_q^0
angle \end{aligned}$$

where

$$g_{+}(t) = e^{-iMt} e^{-\Gamma t/2} \cos(\Delta m_B t/2)$$
$$g_{-}(t) = e^{-iMt} e^{-\Gamma t/2} i \sin(\Delta m_B t/2)$$
$$\Gamma = (\Gamma_H + \Gamma_L)/2, \ M = (M_H + M_L)/2$$

• Time-dependent probability that the flavor states remain unchanged (+) or oscillate (-)

$$g_{\pm}(t)|^2 = \frac{e^{-\Gamma_q t}}{2} \left[\cosh\left(\frac{\Delta\Gamma_q}{2}t\right) \pm \cos(\Delta m_q t) \right]$$

- Time integrated mixing probability χ_{a}

Meson	$M/{ m MeV}$	$\Delta m/{ m MeV}$	$\Gamma/{ m MeV}$	$\Delta \Gamma/{ m MeV}$
K^0	497.6	3.48×10^{-12}	$3.68 imes10^{-12}$	7.34×10^{-12}
D^0	1864.9	9.45×10^{-12}	$1.6 imes 10^{-9}$	2.57×10^{-11}
B_d	5279.6	$3.34 imes10^{-10}$	$4.43 imes10^{-10}$	~ 0
B_s	5366.8	$1.16 imes 10^{-8}$	4.39×10^{-10}	6.58×10^{-11}

$$\begin{split} \chi_q &= \frac{x_q^2 + y_q^2}{2(x_q^2 + 1)} & x_q = \frac{\Delta m_q}{\Gamma_q}, \quad y_q = \frac{\Delta \Gamma_q}{2\Gamma_q} \\ \begin{cases} x_d &= 0.774 \pm 0.008 & (B_d^0 - \overline{B}_d^0 \text{ system}) \\ x_s &= 26.2 &\pm 0.5 & (B_s^0 - \overline{B}_s^0 \text{ system}) \end{cases} \end{split}$$

 $\chi_d = 0.182 \pm 0.015$ $\chi_s = 0.49930 \pm 0.00001$

$$\bar{\chi} = f_d \chi_d + f_s \chi_s$$

6

• $\overline{\chi}$ gives informations on B_{a} production fractions

• Time-dependent evolution depends on mixing parameters

CPV in Mixing

$$\left|\frac{q}{p}\right|^{2} = \left|\frac{M_{12}^{*} - \frac{i}{2}\Gamma_{12}^{*}}{M_{12} - \frac{i}{2}\Gamma_{12}}\right| \sim 1 + \left|\frac{\Gamma_{12}}{M_{12}}\right| \sin\left(\Phi_{M} - \Phi_{\Gamma}\right) \sim 1 - \Im\left(\frac{\Gamma_{12}}{M_{12}}\right); \quad [\Phi_{M} - \Phi_{\Gamma} \sim \pi + O\left(\frac{m_{c}^{2}}{m_{b}^{2}}\right)]$$
where Φ_{L} are the phases of M_{L} and Γ

where Φ_{M} , Φ_{Γ} are the phases of M_{12} and I_{12} [Lenz, Nierste arXiv 1102.4274 (2011), Beringer et al., Phys. Rev. D 86, 010001 (2012)]

- If CP is conserved (is a symmetry of the Hamiltonian), the mass eigenstates are CP eigenstates. In that case the relative phase between M_{12} and Γ_{12} vanishes:
 - |q/p| ≠ 1 implies CPV in mixing (so called indirect CPV)

$$\begin{split} |B_{\rm L,H}\rangle &= p|B_q^0\rangle \pm q|\overline{B}_q^0\rangle \quad |q|^2 + |p|^2 = 1 \qquad [\Phi_q = \arg(-M_{12}^q/\Gamma_{12}^q)] \\ &\frac{q}{p} = \sqrt{\frac{M_{12}^* - \frac{i}{2}\Gamma_{12}}{M_{12} - \frac{i}{2}\Gamma_{12}}} \\ CP \ \left|B_{L,H}\rangle &= \pm \left|B_{L,H}\rangle \to \left|\frac{q}{p}\right| = 1 \to \Phi_q = 0 \end{split}$$

Martino Margoni, Dipartimento di Fisica e Astronomia Universita` di Padova, A.A. 2015/2016

8

CPV in Mixing

$$\left|\frac{q}{p}\right|^{2} = \left|\frac{M_{12}^{*} - \frac{i}{2}\Gamma_{12}}{M_{12} - \frac{i}{2}\Gamma_{12}}\right| \sim 1 + \left|\frac{\Gamma_{12}}{M_{12}}\right| \sin\left(\Phi_{M} - \Phi_{\Gamma}\right) \sim 1 - \Im\left(\frac{\Gamma_{12}}{M_{12}}\right); \quad [\Phi_{M} - \Phi_{\Gamma} \sim \pi + O\left(\frac{m_{c}^{2}}{m_{b}^{2}}\right)]$$

where Φ_{M} , Φ_{Γ} are the phases of M_{12} and Γ_{12} [Lenz, Nierste arXiv 1102.4274 (2011), Beringer et al., Phys. Rev. D 86, 010001 (2012)]

- If CP is conserved (is a symmetry of the Hamiltonian), the mass eigenstates are CP eigenstates. In that case the relative phase between M_{12} and Γ_{12} vanishes:
 - |q/p| ≠ 1 implies CPV in mixing (so called indirect CPV)
- Effect can be observer through the CP Asymmetry:

$$A_{CP}^{q} = \frac{Prob(\bar{B}_{q}^{0} \to B_{q}^{0}, t) - Prob(\bar{B}_{q}^{0} \to \bar{B}_{q}^{0}, t)}{Prob(\bar{B}_{q}^{0} \to B_{q}^{0}, t) + Prob(\bar{B}_{q}^{0} \to \bar{B}_{q}^{0}, t)} = \frac{1 - |q/p|_{q}^{4}}{1 + |q/p|_{q}^{4}} = \frac{|\Gamma_{12}^{q}|}{|M_{12}^{q}|} \sin \phi_{q} \quad [\Phi_{q} = arg(-M_{12}^{q}/\Gamma_{12}^{q})]$$

Independent on t

Predicted to be very small in the SM [Nierste, arXiv:1212.5805 (2012)]

$$A_{CP}^{d} = (-4.0 \pm 0.6) \times 10^{-4}; \quad \Phi_{d} = -4.9^{\circ} \pm 1.4^{\circ}$$

 $A_{CP}^{s} = (1.8 \pm 0.3) \times 10^{-5}; \quad \Phi_{s} = 0.24^{\circ} \pm 0.06^{\circ}$

Martino Margoni, Dipartimento di Fisica e Astronomia Universita` di Padova, A.A. 2015/2016

9

CPV in Mixing

$$\left|\frac{q}{p}\right|^{2} = \left|\frac{M_{12}^{*} - \frac{i}{2}\Gamma_{12}}{M_{12} - \frac{i}{2}\Gamma_{12}}\right| \sim 1 + \left|\frac{\Gamma_{12}}{M_{12}}\right| \sin\left(\Phi_{M} - \Phi_{\Gamma}\right) \sim 1 - \Im\left(\frac{\Gamma_{12}}{M_{12}}\right); \quad [\Phi_{M} - \Phi_{\Gamma} \sim \pi + O\left(\frac{m_{c}^{2}}{m_{b}^{2}}\right)]$$

where Φ_M , Φ_{Γ} are the phases of M_{12} and Γ_{12} [Lenz, Nierste arXiv 1102.4274 (2011), Beringer et al., Phys. Rev. D 86, 010001 (2012)]

- If CP is conserved (is a symmetry of the Hamiltonian), the mass eigenstates are CP eigenstates. In that case the relative phase between M_{12} and Γ_{12} vanishes:
 - |q/p| ≠ 1 implies CPV in mixing (so called indirect CPV)
- Beyond SM [Lenz, Nierste, JHEP 0706, 072 (2007)]
- New Physics could modify M₁₂ by introducing an additional contribution:

$$M_{12}^{NP,q} = M_{12}^{SM,q} \Delta_{q}; \quad \Delta_{q} = |\Delta_{q}| e^{i\phi_{q}^{\Delta}}$$

$$A_{SL}^{NP} = \frac{\left|\Gamma_{12}^{q}\right|}{\left|M_{12}^{SM,q}\right|} \frac{\sin\left(\phi_{q}^{SM} + \phi_{q}^{\Delta}\right)}{\left|\Delta_{q}\right|}$$
N

New Physics if
$$\Delta_q = |\Delta_q| e^{i \phi_q^{\Delta}} \neq 1$$

• Assuming $\Delta \Gamma_d = 0$ the time-dependent probabilities to have (-) or not (+) flavor oscillation are:

$$h_{\pm}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left[1 \pm \cos(\Delta m_d \Delta t)\right]$$

• Neutral B^0_d mesons are produced via Y(4S) decays. The wave function for the final state is in an anti-symmetric coherent P-wave (L=1) state:

$$arPsi = rac{1}{\sqrt{2}} \left(|B^0
angle |\overline{B}{}^0
angle - |\overline{B}{}^0
angle |B^0
angle
ight)$$

- The B_d mesons remains in this coherent state with exactly one B^0 and one $\overline{B^0}$ until one of them decays. Then the wave function collapses and the second B meson continues to propagate and oscillate until it also decays.
- If one of the B mesons decays into a flavor-specific eigenstate (B_{tag}), it unambigously determines the flavor of the other (B_{rec}) at this time.

- Asymmetric B-Factories: center-of-mass is boosted forward in the direction of the electron (high energy) beam
- Time evolution described in terms of the time difference between the two B meson decays in the center-of-mass frame, obtained from the distance between the two decay verteces along the beam axis

B mesons almost at rest in the center-of-mass frame $p_{R} \sim 300 \text{ MeV}$

12

 Δm obtained from a simultaneous fit to the time-dependent asymmetry of unmixed (+) and mixed (-) events in decay channels specific to B⁰ or B⁰ mesons (e.g. B⁰ → D^{*-} I⁺ v)

- Measured asymmetry affected by experimental effects:
 - Flavor misidentification
 - Time resolution
- Analysis ingredients: Flavor Tagging of the ${\rm B}_{_{tag}}$ meson and

measurement of Δt

Martino Margoni, Dipartimento di Fisica e Astronomia Universita` di Padova, A.A. 2015/2016

13

Flavor Tagging

- Purpose: classify the B_{tag} either as a B^0 or a $\overline{B^0}$ at the time of its decay in order to fix the flavor of the other meson (B_{rec}) at the same time
- Signal meson usually fully reconstructed. B meson pairs are produced with no underlying event and pile-up is negligible: tracks not belonging to the B_{rec} are assumed to come from the B_{tag} decay
- A large fraction of B mesons decay to a final state that is flavor specific. Usually inclusive techniques are employed (e.g. Lepton, Kaon, slow Pion charge)
- Two stages algorithms:
 - Analysis of flavor-specific signatures
 - Results combined in a final flavor tag using multivariate methods
- Figure of merit: effective tagging efficiency (tagging power) $Q = \varepsilon_{
 m tag} (1-2w)^2$
 - ϵ_{tag} : fraction of events with tagging assignment
 - ω:mistag probability
 - D=1-2ω: dilution (factor by which measured CP and mixing asymmetries are reduced from their physical values)

14

Flavor Tagging

- Purpose: classify the B_{tag} either as a B^0 or a $\overline{B^0}$ at the time of its decay in order to fix the flavor of the other meson (B_{rec}) at the same time
- Signal meson usually fully reconstructed. B meson pairs are produced with no underlying event and pile-up is negligible: tracks not belonging to the B_{rec} are assumed to come from the B_{tag} decay
- A large fraction of B mesons decay to a final state that is flavor specific. Usually inclusive techniques are employed (e.g. Lepton, Kaon, slow Pion charge)
- Two stages algorithms:
 - Analysis of flavor-specific signatures
 - Results combined in a final flavor tag using multivariate methods
- Tagging efficiency and mistag could be different for the two different flavors due to detector performance not charge symmetric (expecially for K tags):

$$egin{aligned} arepsilon_{ ext{tag}} &= rac{arepsilon_{B^0} + arepsilon_{\overline{B}^0}}{2} & \Delta arepsilon_{ ext{tag}} &= arepsilon_{B^0} - arepsilon_{\overline{B}^0} \ & w &= rac{w_{B^0} + w_{\overline{B}^0}}{2} & \Delta w &= w_{B^0} - w_{\overline{B}^0} \end{aligned}$$

Martino Margoni, Dipartimento di Fisica e Astronomia Universita` di Padova, A.A. 2015/2016

15

Flavor Tagging

- Purpose: classify the B_{tag} either as a B^0 or a $\overline{B^0}$ at the time of its decay in order to fix the flavor of the other meson (B_{rec}) at the same time
- Signal meson usually fully reconstructed. B meson pairs are produced with no underlying event and pile-up is negligible: tracks not belonging to the B_{rec} are assumed to come from the B_{tag} decay
- A large fraction of B mesons decay to a final state that is flavor specific. Usually inclusive techniques are employed (e.g. Lepton, Kaon, slow Pion charge)
- Two stages algorithms:
 - Analysis of flavor-specific signatures
 - Results combined in a final flavor tag using multivariate methods
- Due to the mistag, the measured time dependence of events is now:

$$egin{aligned} h^{ ext{Phys}}_{\pm}(\Delta t) &= rac{e^{-|\Delta t|/ au_{B^0}}}{4 au_{B^0}} [1 \mp \Delta w & + : ext{Unmixed} \ &- : ext{Mixed} \ &\pm \langle D
angle \cos(\Delta m_d \Delta t)] \end{aligned}$$

Martino Margoni, Dipartimento di Fisica e Astronomia Universita` di Padova, A.A. 2015/2016

16

Flavor Tagging

- Purpose: classify the B_{tag} either as a B^0 or a $\overline{B^0}$ at the time of its decay in order to fix the flavor of the other meson (B_{rec}) at the same time
- Signal meson usually fully reconstructed. B meson pairs are produced with no underlying event and pile-up is negligible: tracks not belonging to the B_{rec} are assumed to come from the B_{tag} decay
- A large fraction of B mesons decay to a final state that is flavor specific. Usually inclusive techniques are employed (e.g. Lepton, Kaon, slow Pion charge)
- Two stages algorithms:
 - Analysis of flavor-specific signatures
 - Results combined in a final flavor tag using multivariate methods
- Due to the mistag, the measured time dependence of events is now:

$$A(\Delta t) = \frac{h_{+}(\Delta t) - h_{-}(\Delta t)}{h_{+}(\Delta t) + h_{-}(\Delta t)} = -\Delta \omega + D\cos(\Delta m \Delta t)$$

Unmixed (+), Mixed (-), Asymmetry amplitude reduced by the dilution term D 17

Tagging Power

- Mixing and CP results come from asymmetries measurements
- Assume N⁰ and N⁰ true number of events with a given flavor, the number of reconstructed B decays are

$$N = arepsilon_{ ext{tag}} (1-w) N_0 + arepsilon_{ ext{tag}} w \overline{N}_0
onumber \ \overline{N} = arepsilon_{ ext{tag}} (1-w) \overline{N}_0 + arepsilon_{ ext{tag}} w N_0$$

Measured Asymmetry

True physical Asymmetry:

$$A^{
m rec}=rac{N-\overline{N}}{N+\overline{N}}$$
 = $(1-2w)A^0=DA^0$

$$A^0 = (N_0 - \overline{N}_0) / (N_0 + \overline{N}_0)$$

18

• Statistical uncertainty:

$$egin{aligned} \sigma_{A^0} &= rac{\sigma_{A^{ ext{rec}}}}{1-2w} \ && \sigma_{A^{ ext{rec}}} \propto rac{1}{\sqrt{N_{ ext{tag}}}} && N_{ ext{tag}} = N + \overline{N} \ && \sigma_{A^0} \propto rac{1}{\sqrt{arepsilon_{ ext{tag}}}(1-2w)} = rac{1}{\sqrt{Q}} \end{aligned}$$

Sources of Flavor Information

- Leptons: e, μ produced in semileptonic direct B decays b → clv tag the flavor of the B meson; cascade decays b → c → slv provide opposite information, but have softer momentum. Several kinematical variable used (q, p*, θ, p_{miss}, θ(l-p_{miss})...)
- Kaons: produced from b → c → s transitions have charge correlated to the B flavor (q, K-PID informations, nKs, p*, angles)
- Slow pions: produced from D* decays affected by large background. Pions selected exploiting the small phase space available in the D* decay: D⁰ and π emitted almost at rest in the D* rest frame, have direction opposite to the rest of B_{tag} products in the

B_{tag} rest frame (q, p*, p, θ , PID informations,...)

Category	$arepsilon_{ ext{tag}}(\%)$	$\Delta arepsilon_{ ext{tag}}(\%)$	w(%)	$\Delta w(\%)$	Q(%)	$\Delta Q(\%)$
Lepton	9.7 ± 0.1	0.2 ± 0.2	2.1 ± 0.2	0.2 ± 0.5	8.9 ± 0.1	0.1 ± 0.4
Kaon I	11.3 ± 0.1	-0.1 ± 0.2	4.1 ± 0.3	0.2 ± 0.6	9.6 ± 0.1	-0.1 ± 0.4
Kaon II	15.9 ± 0.1	-0.1 ± 0.2	13.0 ± 0.3	-0.2 ± 0.6	8.7 ± 0.2	0.0 ± 0.5
Kaon-Pion	13.2 ± 0.1	0.4 ± 0.2	23.0 ± 0.4	-1.3 ± 0.7	3.9 ± 0.1	0.5 ± 0.3
Pion	16.8 ± 0.1	-0.3 ± 0.3	33.3 ± 0.4	-2.7 ± 0.6	1.9 ± 0.1	0.6 ± 0.2
Other	10.6 ± 0.1	-0.5 ± 0.2	41.8 ± 0.5	5.9 ± 0.7	0.28 ± 0.03	-0.4 ± 0.1
Total	77.5 ± 0.1	-0.3 ± 0.5			33.1 ± 0.3	0.7 ± 0.8

BaBar Tagging performance

Resolution of Δt

- Difference of the proper times of decay of the two B mesons in the center-of-mass frame: $\Delta t = \Delta z / \beta \gamma$
- Experimental error are taken into account by convolving the R(δt , $\sigma_{\Delta t}$) resolution function defined in terms of the event-by-event error $\sigma_{\Delta t}$ and $\delta t = \Delta t \Delta t_{true}$ with the function describing the event rate, $f_{\pm}^{Phys}(\Delta t)$

$$\begin{split} F^{\rm Phys}_{\pm}(\Delta t) &= \int\limits_{-\infty}^{\infty} f^{\rm Phys}_{\pm}(\Delta t_{\rm true}) R(\delta t, \sigma_{\Delta t}) \mathrm{d}\Delta t_{\rm true}, \\ &= f^{\rm Phys}_{\pm}(\Delta t) \otimes R(\delta t, \sigma_{\Delta t}). \end{split}$$

• Typical Resolution Function:

$$\begin{aligned} \mathcal{R}_{\mathrm{sig}}(\delta t,\sigma_{\Delta t}) &= f_{\mathrm{core}}G_{\mathrm{core}}\left(\delta t,\mu_{\mathrm{core}}\sigma_{\Delta t},s_{\mathrm{core}}\sigma_{\Delta t}\right) + & \mathsf{s}_{\mathrm{core}}^{\mathrm{core}} = 1.20 \pm 0.02 \ (\mathrm{non-lepton} \ \mathrm{tag}) \\ & f_{\mathrm{tail}}G_{\mathrm{tail}}\left(\delta t,\mu_{\mathrm{tail}}\sigma_{\Delta t},s_{\mathrm{tail}}\sigma_{\Delta t}\right) + & \mathsf{s}_{\mathrm{tail}}^{\mathrm{core}} = 3 \\ & f_{\mathrm{outlier}}G_{\mathrm{outlier}}\left(\delta t,\mu_{\mathrm{outlier}},s_{\mathrm{outlier}}\right) + & \mathsf{S}_{\mathrm{outlier}}^{\mathrm{core}} = 3 \\ & \mathsf{S}_{\mathrm{outlier}}^{\mathrm{core}} \sim 8 \ \mathrm{ps} \\ & \mu_{\mathrm{i}}, \, \mathsf{s}_{\mathrm{i}} \ \mathrm{usually} \ \mathrm{determined} \ \mathrm{by} \ \mathrm{the} \ \mathrm{fit} \end{aligned}$$

 $=1.01 \pm 0.04$ (lepton tag)

20

Resolution of Δt

- Difference of the proper times of decay of the two B mesons in the center-of-mass frame: $\Delta t = \Delta z / \beta \gamma$
- Experimental error are taken into account by convolving the R(δt , $\sigma_{\Delta t}$) resolution function defined in terms of the event-by-event error $\sigma_{\Delta t}$ and $\delta t = \Delta t \Delta t_{true}$ with the function describing the event rate, $f_{\pm}^{Phys}(\Delta t)$

$$egin{aligned} F^{ ext{Phys}}_{\pm}(\Delta t) &= \int\limits_{-\infty}^{\infty} f^{ ext{Phys}}_{\pm}(\Delta t_{ ext{true}}) R(\delta t, \sigma_{\Delta t}) \mathrm{d}\Delta t_{ ext{true}}, \ &= f^{ ext{Phys}}_{\pm}(\Delta t) \otimes R(\delta t, \sigma_{\Delta t}). \end{aligned}$$

• Measured Asymmetry taking into account experimental effects

$$A(\Delta t) = \frac{F_{+}(\Delta t) - F_{-}(\Delta t)}{F_{+}(\Delta t) + F_{-}(\Delta t)} = F(D, \Delta m_{d}, \sigma \Delta t)$$

Unmixed (+), Mixed (-)

Resolution of Δt

- Factors contributing to the resolution:
 - B_{tag} vertex: tracking, finite lifetime of D mesons
 - B_{rec} vertex: tracking
 - Error on the βγ boost determined from the beams energy
- Typical $\sigma_{\Delta z} \sim 50-100 \ \mu m$ depending on event reconstruction and dominated by the tag vertex

• Fit performed to extract mistag rate ω , lifetime and Δm

Babar Meas. using Partial $B^0 \rightarrow D^* I v \text{Reco} (L=81 \text{ fb}^{-1})$ [Phys. Rev. D73 012004 (2006)]

$$\mathcal{M}_{\nu}^{2} = \left(\frac{\sqrt{s}}{2} - \tilde{E}_{D^{*+}} - E_{\ell^{-}}\right)^{2} - (\tilde{\mathbf{p}}_{D^{*+}} + \mathbf{p}_{\ell^{-}})^{2}$$

- Only the charged lepton from the B decay and the slow pion from the D* are identified. Due to the limited phase space available (m_{D*}- m_{D0} ~ 150 MeV), the slow pion is emitted within a one-radian wide cone centered about the D* direction in the Y(4S) rest frame.
- D* 4-momentum parameterized as a function of the pion momentum
- B⁰ assumed at rest
- Combinatorial background studied using wrong charge (same sign) lepton-slow pion correlations

Measurement of $\Delta m_d \oslash B$ -Factories Babar Meas. using Partial B⁰ \rightarrow D* I v Reco (L=81 fb⁻¹) [Phys. Rev. D73 012004 (2006)]

$$\mathcal{M}_{\nu}^{2} = \left(\frac{\sqrt{s}}{2} - \tilde{E}_{D^{*+}} - E_{\ell^{-}}\right)^{2} - (\tilde{\mathbf{p}}_{D^{*+}} + \mathbf{p}_{\ell^{-}})^{2}$$

- B_{rec} vertex determined from the lepton and slow pion tracks constrained to the Beam Spot position
- B_{tag} vertex from lepton and BS
- Flavor of $\rm B_{\rm rec}$ from lepton and pion charges, flavor of $\rm B_{\rm tag}$ from lepton charge
- BKG reduced by cut on combined Likelihood ratio using p₁, p_π and vertex probability

 v^2/c^4 • 49K (28K) signal (BKG) events reconstructed

Measurement of $\Delta m_d \oslash B$ -Factories Babar Meas. using Partial B⁰ \rightarrow D* I v Reco (L=81 fb⁻¹) [Phys. Rev. D73 012004 (2006)]

- Signal is any combination of a lepton and a charged D* produced in a single B⁰ decay
- BKG from continuum, BB combinatorial, B⁻ peaking BKG from $B^- \rightarrow D^{*+} \pi^- I^- v$, $D^{*+} \pi^- X$ with a $\pi \rightarrow I$ misidentification
- Leptons divided in: primary, cascade tag-side, decay-side lepton from the unreconstructed D⁰ from the B_{rec} decay not carrying any useful information

Measurement of Δm_d @ B-Factories Babar Meas. using Partial B⁰ \rightarrow D* I v Reco (L=81 fb⁻¹) [Phys. Rev. D73 012004 (2006)]

Measurement of \Delta m @ B-Factories Babar Meas. using Partial B⁰ \rightarrow D*^d v Reco (L=81 fb⁻¹) [Phys. Rev. D73 012004 (2006)]

- Simultaneous maximum-likelihood fit performed to mixed (same sign leptons) and unmixed (opposite sign leptons)
- Mistag and time resolution determined in the fit

$$\mathcal{F}^{\pm}(\Delta t, \sigma_{\Delta t}, \mathcal{M}^{2}_{\nu} | \tau_{B^{0}}, \Delta m_{d}) = f^{\pm}_{qq}(\mathcal{M}^{2}_{\nu}) \cdot \mathcal{F}^{\pm}_{qq}(\Delta t, \sigma_{\Delta t}) + f^{\pm}_{B\overline{B}}(\mathcal{M}^{2}_{\nu}) \cdot \mathcal{F}^{\pm}_{B\overline{B}}(\Delta t, \sigma_{\Delta t}) + S_{B^{-}}f^{\pm}_{B^{-}}(\mathcal{M}^{2}_{\nu}) \cdot \mathcal{F}^{\pm}_{B^{-}}(\Delta t, \sigma_{\Delta t})$$

$$+ [1 - S_{B^{-}}f^{\pm}_{B^{-}}(\mathcal{M}^{2}_{\nu}) - f^{\pm}_{B\overline{B}}(\mathcal{M}^{2}_{\nu}) - f^{\pm}_{qq}(\mathcal{M}^{2}_{\nu})] \cdot \mathcal{F}^{\pm}_{\overline{B}^{0}}(\Delta t, \sigma_{\Delta t} | \tau_{B^{0}}, \Delta m_{d}),$$

- Total PDF includes contributions from continuum, BB BKG, charged B BKG and signal
- Δt resolution described by a sum of three Gaussians
- Relative normalization between mixed and unmixed signal events constrained based on the time-integrated mixing rate:

$$\chi_d = \frac{x^2}{2(1+x^2)} \qquad x = \Delta m_d \cdot \bar{\tau}_{B^0}$$
²⁷

Measurement of $\Delta m_d \oslash B$ -Factories Babar Meas. using Partial B⁰ \rightarrow D* I v Reco (L=81 fb⁻¹) [Phys. Rev. D73 012004 (2006)]

 $\tau_{B^0} = (1.504 \pm 0.013^{+0.018}_{-0.013}) \, ps; \ \Delta m_d = (0.511 \pm 0.007^{+0.007}_{-0.006}) \, ps^{-1}$

28

Babar Meas. using Partial $B^0 \rightarrow D^* I v \text{Reco} (L=81 \text{ fb}^{-1})$ [Phys. Rev. D73 012004 (2006)]

 $\tau_{B^0} = (1.504 \pm 0.013^{+0.018}_{-0.013}) \, ps; \ \Delta m_d = (0.511 \pm 0.007^{+0.007}_{-0.006}) \, ps^{-1}$

• Systematics from vertex detector alignment, z-scale of the detector, fit range and analysis bias (~1 σ) from the MC statistical error

Source	Variation	δau_{B^0} (ps)	$\delta\Delta m_d~({ m ps}^{-1})$		
(a) Sample Composition(b) Analysis bias	±1.3%	± 0.0003	∓ 0.0002 ± 0.0035	MC statistical error	
(c) τ_{B^-}	1.671 ± 0.018	∓ 0.0014	∓ 0.00033 ∓ 0.0008		
(d) $D_{C\ell}$ (e) Combinatorial BKG	0.05 ± 0.08	± 0.0003 ± 0.0007	± 0.0003 ± 0.0002	From comparison of beampipe dimention	
(f) z scale (g) PEP-II boost		± 0.0070 ± 0.0020	± 0.0020 ± 0.0003	measured using scattered	
(h) Beam-spot position(i) Alignment		± 0.0050 +0.0132	∓0.0010 −0.0038	protons and nominal one	
(j) Decay-side tags		± 0.0038 ± 0.0013	+0.0033	From different sets of	
(k) Binning(l) Outlier parameters		± 0.0021 ± 0.0028	± 0.0006 ± 0.0012	alignment parameters	
(m) Δt and $\sigma_{\Delta t}$ cut (n) GExp model		± 0.0033 -0.0016	∓0.0033 +0.0011	conditions	
Total		$^{+0.0182}_{-0.0131}$	$+0.0068 \\ -0.0064$		

Measurement of Δm_{c}

• From a similar analysis using fully reconstructed hadronic and SL B⁰ decays Belle found [Phys. Rev. D 71 072003 (2005)] $\tau_{B^0} = (1.534 \pm 0.008 \pm 0.010) ps$ $\Delta m_d = (0.511 \pm 0.005 \pm 0.006) ps^{-1}$ • LHCb from B⁰ \rightarrow D⁻ π^+ , J/ Ψ K^{*0} (Most precise) [Phys. Lett. B 719 318-325 (2013)]: $\Delta m_d = (0.5156 \pm 0.0051 \pm 0.0033) ps^{-1}$

Measurement of Δm_d

 $\Delta m_d = (0.510 \pm 0.003) \, ps^{-1}$

31