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INTRODUCTION TO B PHYSICS

MATTHIAS NEUBERT

Newman Laboratory of Nuclear Studies
Cornell University, Ithaca, NY 14853, USA

These lectures provide an introduction to various topics in heavy-flavor physics.
We review the theory and phenomenology of heavy-quark symmetry, exclusive
weak decays of B mesons, inclusive decay rates, and some rare B decays.

1 Introduction

The rich phenomenology of weak decays has always been a source of informa-
tion about the nature of elementary particle interactions. A long time ago, β-
and µ-decay experiments revealed the structure of the effective flavor-changing
interactions at low momentum transfer. Today, weak decays of hadrons con-
taining heavy quarks are employed for tests of the Standard Model and mea-
surements of its parameters. In particular, they offer the most direct way
to determine the weak mixing angles, to test the unitarity of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix, and to explore the physics of CP violation.
Hopefully, this will provide some hints about New Physics beyond the Stan-
dard Model. On the other hand, hadronic weak decays also serve as a probe of
that part of strong-interaction phenomenology which is least understood: the
confinement of quarks and gluons inside hadrons.

The structure of weak interactions in the Standard Model is rather simple.
Flavor-changing decays are mediated by the coupling of the charged current
Jµ

CC to the W -boson field:

LCC = −
g√
2

Jµ
CC W †

µ + h.c., (1)

where

Jµ
CC = (ν̄e, ν̄µ, ν̄τ ) γ

µ




eL

µL

τL



 + (ūL, c̄L, t̄L) γµ VCKM




dL

sL

bL



 (2)

contains the left-handed lepton and quark fields, and

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 (3)
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is the CKM matrix. At low energies, the charged-current interaction gives rise
to local four-fermion couplings of the form

Leff = −2
√

2GF Jµ
CCJ†

CC,µ , (4)

where

GF =
g2

4
√

2M2
W

= 1.16639(2) GeV−2 (5)

is the Fermi constant.

Figure 1: Examples of leptonic (B− → τ−ν̄τ ), semi-leptonic (B̄0 → D+e−ν̄e), and non-
leptonic (B̄0 → D+π−) decays of B mesons.

According to the structure of the charged-current interaction, weak decays
of hadrons can be divided into three classes: leptonic decays, in which the
quarks of the decaying hadron annihilate each other and only leptons appear
in the final state; semi-leptonic decays, in which both leptons and hadrons
appear in the final state; and non-leptonic decays, in which the final state
consists of hadrons only. Representative examples of these three types of decays
are shown in Fig. 1. The simple quark-line graphs shown in this figure are a
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gross oversimplification, however. In the real world, quarks are confined inside
hadrons, bound by the exchange of soft gluons. The simplicity of the weak
interactions is overshadowed by the complexity of the strong interactions. A
complicated interplay between the weak and strong forces characterizes the
phenomenology of hadronic weak decays. As an example, a more realistic
picture of a non-leptonic decay is shown in Fig. 2.

Figure 2: More realistic representation of a non-leptonic decay.

The complexity of strong-interaction effects increases with the number of
quarks appearing in the final state. Bound-state effects in leptonic decays
can be lumped into a single parameter (a “decay constant”), while those in
semi-leptonic decays are described by invariant form factors depending on the
momentum transfer q2 between the hadrons. Approximate symmetries of the
strong interactions help us to constrain the properties of these form factors.
Non-leptonic weak decays, on the other hand, are much more complicated to
deal with theoretically. Only very recently reliable tools have been developed
that allow us to control the complex QCD dynamics in many two-body B
decays using a heavy-quark expansion.

Over the last decade, a lot of information on heavy-quark decays has been
collected in experiments at e+e− storage rings operating at the Υ(4s) reso-
nance, and more recently at high-energy e+e− and hadron colliders. This has
led to a rather detailed knowledge of the flavor sector of the Standard Model
and many of the parameters associated with it. In the years ahead the B fac-
tories at SLAC, KEK, Cornell, and DESY will continue to provide a wealth of
new results, focusing primarily on studies of CP violation and rare decays.
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The experimental progress in heavy-flavor physics has been accompanied
by a significant progress in theory, which was related to the discovery of heavy-
quark symmetry, the development of the heavy-quark effective theory, and
more generally the establishment of various kinds of heavy-quark expansions.
The excitement about these developments rests upon the fact that they allow
model-independent predictions in an area in which “progress” in theory often
meant nothing more than the construction of a new model, which could be
used to estimate some strong-interaction hadronic matrix elements. In Sec. 2,
we review the physical picture behind heavy-quark symmetry and discuss the
construction, as well as simple applications, of the heavy-quark effective theory.
Section 3 deals with applications of these concepts to exclusive weak decays of
B mesons. Applications of the heavy-quark expansion to inclusive B decays
are reviewed in Sec. 4. We then focus on the exciting field of rare hadronic B
decays, concentrating on the example of the decays B → πK. In Sec. 5, we
discuss the theoretical description of these decays and explain various strategies
for constraining and determining the weak, CP-violating phase γ = arg(V ∗

ub) of
the CKM matrix. In Sec. 6, we discuss how rare decays can be used to search
for New Physics beyond the Standard Model.

2 Heavy-Quark Symmetry

This section provides an introduction to the ideas of heavy-quark symmetry1−6

and the heavy-quark effective theory 7−17, which provide the modern theoret-
ical framework for the description of the properties and decays of hadrons
containing a heavy quark. For a more detailed description of this subject, the
reader is referred to the review articles in Refs. 18–24.

2.1 The Physical Picture

There are several reasons why the strong interactions of hadrons containing
heavy quarks are easier to understand than those of hadrons containing only
light quarks. The first is asymptotic freedom, the fact that the effective cou-
pling constant of QCD becomes weak in processes with a large momentum
transfer, corresponding to interactions at short distance scales 25,26. At large
distances, on the other hand, the coupling becomes strong, leading to non-
perturbative phenomena such as the confinement of quarks and gluons on a
length scale Rhad ∼ 1/ΛQCD ∼ 1 fm, which determines the size of hadrons.
Roughly speaking, ΛQCD ∼ 0.2 GeV is the energy scale that separates the
regions of large and small coupling constant. When the mass of a quark Q
is much larger than this scale, mQ % ΛQCD, it is called a heavy quark. The
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quarks of the Standard Model fall naturally into two classes: up, down and
strange are light quarks, whereas charm, bottom and top are heavy quarks.a

For heavy quarks, the effective coupling constant αs(mQ) is small, implying
that on length scales comparable to the Compton wavelength λQ ∼ 1/mQ

the strong interactions are perturbative and much like the electromagnetic
interactions. In fact, the quarkonium systems (Q̄Q), whose size is of order
λQ/αs(mQ) & Rhad, are very much hydrogen-like.

Systems composed of a heavy quark and other light constituents are more
complicated. The size of such systems is determined by Rhad, and the typical
momenta exchanged between the heavy and light constituents are of order
ΛQCD. The heavy quark is surrounded by a complicated, strongly interacting
cloud of light quarks, antiquarks and gluons. In this case it is the fact that
λQ & Rhad, i.e. that the Compton wavelength of the heavy quark is much
smaller than the size of the hadron, which leads to simplifications. To resolve
the quantum numbers of the heavy quark would require a hard probe; the soft
gluons exchanged between the heavy quark and the light constituents can only
resolve distances much larger than λQ. Therefore, the light degrees of freedom
are blind to the flavor (mass) and spin orientation of the heavy quark. They
experience only its color field, which extends over large distances because of
confinement. In the rest frame of the heavy quark, it is in fact only the electric
color field that is important; relativistic effects such as color magnetism vanish
as mQ → ∞. Since the heavy-quark spin participates in interactions only
through such relativistic effects, it decouples.

It follows that, in the limit mQ → ∞, hadronic systems which differ only
in the flavor or spin quantum numbers of the heavy quark have the same con-
figuration of their light degrees of freedom 1−6. Although this observation still
does not allow us to calculate what this configuration is, it provides relations
between the properties of such particles as the heavy mesons B, D, B∗ and D∗,
or the heavy baryons Λb and Λc (to the extent that corrections to the infinite
quark-mass limit are small in these systems). These relations result from some
approximate symmetries of the effective strong interactions of heavy quarks
at low energies. The configuration of light degrees of freedom in a hadron
containing a single heavy quark with velocity v does not change if this quark
is replaced by another heavy quark with different flavor or spin, but with the
same velocity. Both heavy quarks lead to the same static color field. For Nh

heavy-quark flavors, there is thus an SU(2Nh) spin-flavor symmetry group, un-
der which the effective strong interactions are invariant. These symmetries are
in close correspondence to familiar properties of atoms. The flavor symmetry

aIronically, the top quark is of no relevance to our discussion here, since it is too heavy
to form hadronic bound states before it decays.
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is analogous to the fact that different isotopes have the same chemistry, since
to good approximation the wave function of the electrons is independent of
the mass of the nucleus. The electrons only see the total nuclear charge. The
spin symmetry is analogous to the fact that the hyperfine levels in atoms are
nearly degenerate. The nuclear spin decouples in the limit me/mN → 0.

Heavy-quark symmetry is an approximate symmetry, and corrections arise
since the quark masses are not infinite. In many respects, it is complementary
to chiral symmetry, which arises in the opposite limit of small quark masses.
There is an important distinction, however. Whereas chiral symmetry is a
symmetry of the QCD Lagrangian in the limit of vanishing quark masses,
heavy-quark symmetry is not a symmetry of the Lagrangian (not even an ap-
proximate one), but rather a symmetry of an effective theory that is a good
approximation to QCD in a certain kinematic region. It is realized only in sys-
tems in which a heavy quark interacts predominantly by the exchange of soft
gluons. In such systems the heavy quark is almost on-shell; its momentum fluc-
tuates around the mass shell by an amount of order ΛQCD. The corresponding
fluctuations in the velocity of the heavy quark vanish as ΛQCD/mQ → 0. The
velocity becomes a conserved quantity and is no longer a dynamical degree of
freedom 14. Nevertheless, results derived on the basis of heavy-quark symme-
try are model-independent consequences of QCD in a well-defined limit. The
symmetry-breaking corrections can be studied in a systematic way. To this
end, it is however necessary to cast the QCD Lagrangian for a heavy quark,

LQ = Q̄ (i /D − mQ)Q , (6)

into a form suitable for taking the limit mQ → ∞.

2.2 Heavy-Quark Effective Theory

The effects of a very heavy particle often become irrelevant at low energies. It
is then useful to construct a low-energy effective theory, in which this heavy
particle no longer appears. Eventually, this effective theory will be easier to
deal with than the full theory. A familiar example is Fermi’s theory of the
weak interactions. For the description of the weak decays of hadrons, the
weak interactions can be approximated by point-like four-fermion couplings,
governed by a dimensionful coupling constant GF [cf. (4)]. The effects of the
intermediate W bosons can only be resolved at energies much larger than the
hadron masses.

The process of removing the degrees of freedom of a heavy particle in-
volves the following steps 27−29: one first identifies the heavy-particle fields
and “integrates them out” in the generating functional of the Green functions
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of the theory. This is possible since at low energies the heavy particle does not
appear as an external state. However, whereas the action of the full theory
is usually a local one, what results after this first step is a non-local effective
action. The non-locality is related to the fact that in the full theory the heavy
particle with mass M can appear in virtual processes and propagate over a
short but finite distance ∆x ∼ 1/M . Thus, a second step is required to obtain
a local effective Lagrangian: the non-local effective action is rewritten as an
infinite series of local terms in an Operator Product Expansion (OPE) 30,31.
Roughly speaking, this corresponds to an expansion in powers of 1/M . It is
in this step that the short- and long-distance physics is disentangled. The
long-distance physics corresponds to interactions at low energies and is the
same in the full and the effective theory. But short-distance effects arising
from quantum corrections involving large virtual momenta (of order M) are
not described correctly in the effective theory once the heavy particle has been
integrated out. In a third step, they have to be added in a perturbative way
using renormalization-group techniques. These short-distance effects lead to
a renormalization of the coefficients of the local operators in the effective La-
grangian. An example is the effective Lagrangian for non-leptonic weak decays,
in which radiative corrections from hard gluons with virtual momenta in the
range between mW and some low renormalization scale µ give rise to Wilson
coefficients, which renormalize the local four-fermion interactions 32−34.

The heavy-quark effective theory (HQET) is constructed to provide a sim-
plified description of processes where a heavy quark interacts with light degrees
of freedom predominantly by the exchange of soft gluons 7−17. Clearly, mQ is
the high-energy scale in this case, and ΛQCD is the scale of the hadronic physics
we are interested in. The situation is illustrated in Fig. 3. At short distances,
i.e. for energy scales larger than the heavy-quark mass, the physics is pertur-
bative and described by conventional QCD. For mass scales much below the
heavy-quark mass, the physics is complicated and non-perturbative because
of confinement. Our goal is to obtain a simplified description in this region
using an effective field theory. To separate short- and long-distance effects, we
introduce a separation scale µ such that ΛQCD & µ & mQ. The HQET will
be constructed in such a way that it is equivalent to QCD in the long-distance
region, i.e. for scales below µ. In the short-distance region, the effective the-
ory is incomplete, since some high-momentum modes have been integrated out
from the full theory. The fact that the physics must be independent of the
arbitrary scale µ allows us to derive renormalization-group equations, which
can be employed to deal with the short-distance effects in an efficient way.

Compared with most effective theories, in which the degrees of freedom
of a heavy particle are removed completely from the low-energy theory, the
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perturbation theory + RGE

non-perturbative techniques
HQET

QCD

EW theory

Figure 3: Philosophy of the heavy-quark effective theory.

HQET is special in that its purpose is to describe the properties and decays of
hadrons which do contain a heavy quark. Hence, it is not possible to remove
the heavy quark completely from the effective theory. What is possible is to
integrate out the “small components” in the full heavy-quark spinor, which
describe the fluctuations around the mass shell.

The starting point in the construction of the HQET is the observation that
a heavy quark bound inside a hadron moves more or less with the hadron’s
velocity v and is almost on-shell. Its momentum can be written as

pµ
Q = mQvµ + kµ , (7)

where the components of the so-called residual momentum k are much smaller
than mQ. Note that v is a four-velocity, so that v2 = 1. Interactions of the
heavy quark with light degrees of freedom change the residual momentum by
an amount of order ∆k ∼ ΛQCD, but the corresponding changes in the heavy-
quark velocity vanish as ΛQCD/mQ → 0. In this situation, it is appropriate to
introduce large- and small-component fields, hv and Hv, by

hv(x) = eimQv·x P+ Q(x) , Hv(x) = eimQv·x P− Q(x) , (8)
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where P+ and P− are projection operators defined as

P± =
1 ± /v

2
. (9)

It follows that
Q(x) = e−imQv·x [hv(x) + Hv(x)] . (10)

Because of the projection operators, the new fields satisfy /v hv = hv and /v Hv =
−Hv. In the rest frame, i.e. for vµ = (1, 0, 0, 0), hv corresponds to the upper
two components of Q, while Hv corresponds to the lower ones. Whereas hv

annihilates a heavy quark with velocity v, Hv creates a heavy antiquark with
velocity v.

In terms of the new fields, the QCD Lagrangian (6) for a heavy quark
takes the form

LQ = h̄v iv ·D hv − H̄v (iv ·D + 2mQ)Hv + h̄v i /D⊥Hv + H̄v i /D⊥hv , (11)

where Dµ
⊥ = Dµ−vµ v ·D is orthogonal to the heavy-quark velocity: v ·D⊥ = 0.

In the rest frame, Dµ
⊥ = (0, (D ) contains the spatial components of the covariant

derivative. From (11), it is apparent that hv describes massless degrees of
freedom, whereas Hv corresponds to fluctuations with twice the heavy-quark
mass. These are the heavy degrees of freedom that will be eliminated in the
construction of the effective theory. The fields are mixed by the presence of the
third and fourth terms, which describe pair creation or annihilation of heavy
quarks and antiquarks. As shown in the first diagram in Fig. 4, in a virtual
process, a heavy quark propagating forward in time can turn into an antiquark
propagating backward in time, and then turn back into a quark. The energy of
the intermediate quantum state hhH̄ is larger than the energy of the incoming
heavy quark by at least 2mQ. Because of this large energy gap, the virtual
quantum fluctuation can only propagate over a short distance ∆x ∼ 1/mQ.
On hadronic scales set by Rhad = 1/ΛQCD, the process essentially looks like a
local interaction of the form

h̄v i /D⊥
1

2mQ
i /D⊥hv , (12)

where we have simply replaced the propagator for Hv by 1/2mQ. A more
correct treatment is to integrate out the small-component field Hv, thereby
deriving a non-local effective action for the large-component field hv, which
can then be expanded in terms of local operators. Before doing this, let us
mention a second type of virtual corrections involving pair creation, namely
heavy-quark loops. An example is shown in the second diagram in Fig. 4.
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Heavy-quark loops cannot be described in terms of the effective fields hv and
Hv, since the quark velocities inside a loop are not conserved and are in no
way related to hadron velocities. However, such short-distance processes are
proportional to the small coupling constant αs(mQ) and can be calculated in
perturbation theory. They lead to corrections that are added onto the low-
energy effective theory in the renormalization procedure.

Figure 4: Virtual fluctuations involving pair creation of heavy quarks. Time flows to the
right.

On a classical level, the heavy degrees of freedom represented by Hv can
be eliminated using the equation of motion. Taking the variation of the La-
grangian with respect to the field H̄v, we obtain

(iv ·D + 2mQ)Hv = i /D⊥hv . (13)

This equation can formally be solved to give

Hv =
1

2mQ + iv ·D
i /D⊥hv , (14)

showing that the small-component field Hv is indeed of order 1/mQ. We can
now insert this solution into (11) to obtain the “non-local effective Lagrangian”

Leff = h̄v iv ·D hv + h̄v i /D⊥
1

2mQ + iv ·D
i /D⊥hv . (15)

Clearly, the second term corresponds to the first class of virtual processes
shown in Fig. 4.

It is possible to derive this Lagrangian in a more elegant way by manipulat-
ing the generating functional for QCD Green functions containing heavy-quark
fields 17. To this end, one starts from the field redefinition (10) and couples
the large-component fields hv to external sources ρv. Green functions with an
arbitrary number of hv fields can be constructed by taking derivatives with
respect to ρv. No sources are needed for the heavy degrees of freedom repre-
sented by Hv. The functional integral over these fields is Gaussian and can be
performed explicitly, leading to the effective action

Seff =

∫
d4xLeff − i ln∆ , (16)
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with Leff as given in (15). The appearance of the logarithm of the determinant

∆ = exp

(
1

2
Tr ln

[
2mQ + iv ·D − iη

])
(17)

is a quantum effect not present in the classical derivation presented above.
However, in this case the determinant can be regulated in a gauge-invariant
way, and by choosing the gauge v · A = 0 one can show that ln∆ is just an
irrelevant constant 17,35.

Because of the phase factor in (10), the x dependence of the effective heavy-
quark field hv is weak. In momentum space, derivatives acting on hv produce
powers of the residual momentum k, which is much smaller than mQ. Hence,
the non-local effective Lagrangian (15) allows for a derivative expansion:

Leff = h̄v iv ·D hv +
1

2mQ

∞∑

n=0

h̄v i /D⊥

(
−

iv · D
2mQ

)n

i /D⊥hv . (18)

Taking into account that hv contains a P+ projection operator, and using the
identity

P+ i /D⊥ i /D⊥P+ = P+

[
(iD⊥)2 +

gs

2
σµν Gµν

]
P+ , (19)

where i[Dµ, Dν ] = gs Gµν is the gluon field-strength tensor, one finds that12,16

Leff = h̄v iv ·D hv +
1

2mQ
h̄v (iD⊥)2 hv +

gs

4mQ
h̄v σµν Gµν hv +O(1/m2

Q) . (20)

In the limit mQ → ∞, only the first term remains:

L∞ = h̄v iv ·D hv . (21)

This is the effective Lagrangian of the HQET. It gives rise to the Feynman
rules shown in Fig. 5.

Let us take a moment to study the symmetries of this Lagrangian14. Since
there appear no Dirac matrices, interactions of the heavy quark with gluons
leave its spin unchanged. Associated with this is an SU(2) symmetry group,
under which L∞ is invariant. The action of this symmetry on the heavy-quark
fields becomes most transparent in the rest frame, where the generators Si of
SU(2) can be chosen as

Si =
1

2

(
σi 0
0 σi

)
; [Si, Sj ] = iεijkSk . (22)
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Figure 5: Feynman rules of the HQET (i, j and a are color indices). A heavy quark with
velocity v is represented by a double line. The residual momentum k is defined in (7).

Here σi are the Pauli matrices. An infinitesimal SU(2) transformation hv →
(1 + i(ε · (S )hv leaves the Lagrangian invariant:

δL∞ = h̄v [iv ·D, i(ε · (S ] hv = 0 . (23)

Another symmetry of the HQET arises since the mass of the heavy quark does
not appear in the effective Lagrangian. For Nh heavy quarks moving at the
same velocity, eq. (21) can be extended by writing

L∞ =
Nh∑

i=1

h̄i
v iv ·D hi

v . (24)

This is invariant under rotations in flavor space. When combined with the
spin symmetry, the symmetry group is promoted to SU(2Nh). This is the
heavy-quark spin-flavor symmetry 6,14. Its physical content is that, in the
limit mQ → ∞, the strong interactions of a heavy quark become independent
of its mass and spin.

Consider now the operators appearing at order 1/mQ in the effective La-
grangian (20). They are easiest to identify in the rest frame. The first operator,

Okin =
1

2mQ
h̄v (iD⊥)2 hv → −

1

2mQ
h̄v (i (D )2 hv , (25)

is the gauge-covariant extension of the kinetic energy arising from the residual
motion of the heavy quark. The second operator is the non-Abelian analogue
of the Pauli interaction, which describes the color-magnetic coupling of the
heavy-quark spin to the gluon field:

Omag =
gs

4mQ
h̄v σµν Gµν hv → −

gs

mQ
h̄v

(S · (Bc hv . (26)

12



Here (S is the spin operator defined in (22), and Bi
c = − 1

2ε
ijkGjk are the

components of the color-magnetic field. The chromo-magnetic interaction is a
relativistic effect, which scales like 1/mQ. This is the origin of the heavy-quark
spin symmetry.

2.3 The Residual Mass Term and the Definition of the Heavy-Quark Mass

The choice of the expansion parameter in the HQET, i.e. the definition of the
heavy-quark mass mQ, deserves some comments. In the derivation presented
earlier in this section, we chose mQ to be the “mass in the Lagrangian”, and
using this parameter in the phase redefinition in (10) we obtained the effective
Lagrangian (21), in which the heavy-quark mass no longer appears. However,
this treatment has its subtleties. The symmetries of the HQET allow a “resid-
ual mass” δm for the heavy quark, provided that δm is of order ΛQCD and
is the same for all heavy-quark flavors. Even if we arrange that such a mass
term is not present at the tree level, it will in general be induced by quantum
corrections. (This is unavoidable if the theory is regulated with a dimensionful
cutoff.) Therefore, instead of (21) we should write the effective Lagrangian in
the more general form 36

L∞ = h̄v iv ·D hv − δm h̄vhv . (27)

If we redefine the expansion parameter according to mQ → mQ + ∆m, the
residual mass changes in the opposite way: δm → δm−∆m. This implies that
there is a unique choice of the expansion parameter mQ such that δm = 0.
Requiring δm = 0, as it is usually done implicitly in the HQET, defines a heavy-
quark mass, which in perturbation theory coincides with the pole mass37. This,
in turn, defines for each heavy hadron HQ a parameter Λ̄ (sometimes called
the “binding energy”) through

Λ̄ = (mHQ − mQ)
∣∣∣
mQ→∞

. (28)

If one prefers to work with another choice of the expansion parameter, the
values of non-perturbative parameters such as Λ̄ change, but at the same time
one has to include the residual mass term in the HQET Lagrangian. It can
be shown that the various parameters depending on the definition of mQ en-
ter the predictions for physical quantities in such a way that the results are
independent of the particular choice adopted 36.

There is one more subtlety hidden in the above discussion. The quantities
mQ, Λ̄ and δm are non-perturbative parameters of the HQET, which have a
similar status as the vacuum condensates in QCD phenomenology 38. These
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parameters cannot be defined unambiguously in perturbation theory. The
reason lies in the divergent behavior of perturbative expansions in large orders,
which is associated with the existence of singularities along the real axis in the
Borel plane, the so-called renormalons 39−47. For instance, the perturbation
series which relates the pole mass mQ of a heavy quark to its bare mass,

mQ = mbare
Q

{
1 + c1 αs(mQ) + c2 α

2
s(mQ) + . . . + cn αn

s (mQ) + . . .
}

, (29)

contains numerical coefficients cn that grow as n! for large n, rendering the
series divergent and not Borel summable 48,49. The best one can achieve is to
truncate the perturbation series at its minimal term, but this leads to an un-
avoidable arbitrariness of order ∆mQ ∼ ΛQCD (the size of the minimal term)
in the value of the pole mass. This observation, which at first sight seems a
serious problem for QCD phenomenology, should not come as a surprise. We
know that because of confinement quarks do not appear as physical states in
nature. Hence, there is no unique way to define their on-shell properties such as
a pole mass. Remarkably, QCD perturbation theory “knows” about its incom-
pleteness and indicates, through the appearance of renormalon singularities,
the presence of non-perturbative effects. One must first specify a scheme how
to truncate the QCD perturbation series before non-perturbative statements
such as δm = 0 become meaningful, and hence before non-perturbative pa-
rameters such as mQ and Λ̄ become well-defined quantities. The actual values
of these parameters will depend on this scheme.

We stress that the “renormalon ambiguities” are not a conceptual problem
for the heavy-quark expansion. In fact, it can be shown quite generally that
these ambiguities cancel in all predictions for physical observables 50−52. The
way the cancellations occur is intricate, however. The generic structure of the
heavy-quark expansion for an observable is of the form:

Observable ∼ C[αs(mQ)]

(
1 +

Λ

mQ
+ . . .

)
, (30)

where C[αs(mQ)] represents a perturbative coefficient function, and Λ is a
dimensionful non-perturbative parameter. The truncation of the perturba-
tion series defining the coefficient function leads to an arbitrariness of order
ΛQCD/mQ, which cancels against a corresponding arbitrariness of order ΛQCD

in the definition of the non-perturbative parameter Λ.
The renormalon problem poses itself when one imagines to apply pertur-

bation theory to very high orders. In practice, the perturbative coefficients are
known to finite order in αs (typically to one- or two-loop accuracy), and to be
consistent one should use them in connection with the pole mass (and Λ̄ etc.)
defined to the same order.
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2.4 Spectroscopic Implications

The spin-flavor symmetry leads to many interesting relations between the prop-
erties of hadrons containing a heavy quark. The most direct consequences
concern the spectroscopy of such states 53,54. In the limit mQ → ∞, the spin
of the heavy quark and the total angular momentum j of the light degrees
of freedom are separately conserved by the strong interactions. Because of
heavy-quark symmetry, the dynamics is independent of the spin and mass of
the heavy quark. Hadronic states can thus be classified by the quantum num-
bers (flavor, spin, parity, etc.) of their light degrees of freedom 55. The spin
symmetry predicts that, for fixed j (= 0, there is a doublet of degenerate states
with total spin J = j± 1

2 . The flavor symmetry relates the properties of states
with different heavy-quark flavor.

In general, the mass of a hadron HQ containing a heavy quark Q obeys an
expansion of the form

mHQ = mQ + Λ̄ +
∆m2

2mQ
+ O(1/m2

Q) . (31)

The parameter Λ̄ represents contributions arising from terms in the Lagrangian
that are independent of the heavy-quark mass 36, whereas the quantity ∆m2

originates from the terms of order 1/mQ in the effective Lagrangian of the
HQET. For the ground-state pseudoscalar and vector mesons, one can parame-
trize the contributions from the kinetic energy and the chromo-magnetic in-
teraction in terms of two quantities λ1 and λ2, in such a way that 56

∆m2 = −λ1 + 2
[
J(J + 1) − 3

2

]
λ2 . (32)

The hadronic parameters Λ̄, λ1 and λ2 are independent of mQ. They charac-
terize the properties of the light constituents.

Consider, as a first example, the SU(3) mass splittings for heavy mesons.
The heavy-quark expansion predicts that

mBS − mBd
= Λ̄s − Λ̄d + O(1/mb) ,

mDS − mDd
= Λ̄s − Λ̄d + O(1/mc) , (33)

where we have indicated that the value of the parameter Λ̄ depends on the
flavor of the light quark. Thus, to the extent that the charm and bottom
quarks can both be considered sufficiently heavy, the mass splittings should be
similar in the two systems. This prediction is confirmed experimentally, since

mBS − mBd
= (90 ± 3) MeV ,

mDS − mDd
= (99 ± 1) MeV . (34)
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As a second example, consider the spin splittings between the ground-state
pseudoscalar (J = 0) and vector (J = 1) mesons, which are the members of
the spin-doublet with j = 1

2 . From (31) and (32), it follows that

m2
B∗ − m2

B = 4λ2 + O(1/mb) ,

m2
D∗ − m2

D = 4λ2 + O(1/mc) . (35)

The data are compatible with this:

m2
B∗ − m2

B ≈ 0.49 GeV2 ,

m2
D∗ − m2

D ≈ 0.55 GeV2 . (36)

Assuming that the B system is close to the heavy-quark limit, we obtain the
value

λ2 ≈ 0.12 GeV2 (37)

for one of the hadronic parameters in (32). This quantity plays an important
role in the phenomenology of inclusive decays of heavy hadrons.

A third example is provided by the mass splittings between the ground-
state mesons and baryons containing a heavy quark. The HQET predicts that

mΛb
− mB = Λ̄baryon − Λ̄meson + O(1/mb) ,

mΛc − mD = Λ̄baryon − Λ̄meson + O(1/mc) . (38)

This is again consistent with the experimental results

mΛb
− mB = (345 ± 9) MeV ,

mΛc − mD = (416 ± 1) MeV , (39)

although in this case the data indicate sizeable symmetry-breaking corrections.
The dominant correction to the relations (38) comes from the contribution of
the chromo-magnetic interaction to the masses of the heavy mesons,b which
adds a term 3λ2/2mQ on the right-hand side. Including this term, we obtain
the refined prediction that the two quantities

mΛb
− mB −

3λ2

2mB
= (311 ± 9) MeV ,

mΛc − mD −
3λ2

2mD
= (320 ± 1) MeV (40)

bBecause of spin symmetry, there is no such contribution to the masses of ΛQ baryons.
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should be close to each other. This is clearly satisfied by the data.
The mass formula (31) can also be used to derive information on the

heavy-quark masses from the observed hadron masses. Introducing the “spin-
averaged” meson masses mB = 1

4 (mB + 3mB∗) ≈ 5.31 GeV and mD =
1
4 (mD + 3mD∗) ≈ 1.97 GeV, we find that

mb − mc = (mB − mD)

{
1 −

λ1

2mBmD
+ O(1/m3

Q)

}
. (41)

Using theoretical estimates for the parameter λ1, which lie in the range 57−66

λ1 = −(0.3 ± 0.2) GeV2 , (42)

this relation leads to

mb − mc = (3.39 ± 0.03 ± 0.03) GeV , (43)

where the first error reflects the uncertainty in the value of λ1, and the second
one takes into account unknown higher-order corrections. The fact that the
difference of the pole masses, mb − mc, is known rather precisely is important
for the analysis of inclusive decays of heavy hadrons.

3 Exclusive Semi-Leptonic Decays

Semi-leptonic decays of B mesons have received a lot of attention in recent
years. The decay channel B̄ → D∗. ν̄ has the largest branching fraction of
all B-meson decay modes. From a theoretical point of view, semi-leptonic
decays are simple enough to allow for a reliable, quantitative description. The
analysis of these decays provides much information about the strong forces
that bind the quarks and gluons into hadrons. Schematically, a semi-leptonic
decay process is shown in Fig. 6. The strength of the b → c transition vertex
is governed by the element Vcb of the CKM matrix. The parameters of this
matrix are fundamental parameters of the Standard Model. A primary goal of
the study of semi-leptonic decays of B mesons is to extract with high precision
the values of |Vcb| and |Vub|. We will now discuss the theoretical basis of such
analyses.

3.1 Weak Decay Form Factors

Heavy-quark symmetry implies relations between the weak decay form factors
of heavy mesons, which are of particular interest. These relations have been
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Figure 6: Semi-leptonic decays of B mesons.

derived by Isgur and Wise 6, generalizing ideas developed by Nussinov and
Wetzel 3, and by Voloshin and Shifman 4,5.

Consider the elastic scattering of a B meson, B̄(v) → B̄(v′), induced by a
vector current coupled to the b quark. Before the action of the current, the light
degrees of freedom inside the B meson orbit around the heavy quark, which
acts as a static source of color. On average, the b quark and the B meson have
the same velocity v. The action of the current is to replace instantaneously
(at time t = t0) the color source by one moving at a velocity v′, as indicated
in Fig. 7. If v = v′, nothing happens; the light degrees of freedom do not
realize that there was a current acting on the heavy quark. If the velocities are
different, however, the light constituents suddenly find themselves interacting
with a moving color source. Soft gluons have to be exchanged to rearrange
them so as to form a B meson moving at velocity v′. This rearrangement leads
to a form-factor suppression, reflecting the fact that, as the velocities become
more and more different, the probability for an elastic transition decreases.
The important observation is that, in the limit mb → ∞, the form factor can
only depend on the Lorentz boost γ = v · v′ connecting the rest frames of the
initial- and final-state mesons. Thus, in this limit a dimensionless probability
function ξ(v ·v′) describes the transition. It is called the Isgur-Wise function6.
In the HQET, which provides the appropriate framework for taking the limit
mb → ∞, the hadronic matrix element describing the scattering process can
thus be written as

1

mB
〈B̄(v′)| b̄v′γµbv |B̄(v)〉 = ξ(v · v′) (v + v′)µ . (44)

Here bv and bv′ are the velocity-dependent heavy-quark fields of the HQET.
It is important that the function ξ(v · v′) does not depend on mb. The factor
1/mB on the left-hand side compensates for a trivial dependence on the heavy-
meson mass caused by the relativistic normalization of meson states, which is
conventionally taken to be

〈B̄(p′)|B̄(p)〉 = 2mBv0 (2π)3 δ3((p − (p ′) . (45)
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Note that there is no term proportional to (v − v′)µ in (44). This can be seen
by contracting the matrix element with (v − v′)µ, which must give zero since
/v bv = bv and b̄v′/v′ = b̄v′ .

Figure 7: Elastic transition induced by an external heavy-quark current.

It is more conventional to write the above matrix element in terms of an
elastic form factor Fel(q2) depending on the momentum transfer q2 = (p−p′)2:

〈B̄(v′)| b̄ γµb |B̄(v)〉 = Fel(q
2) (p + p′)µ , (46)

where p(′) = mBv(′). Comparing this with (44), we find that

Fel(q
2) = ξ(v · v′) , q2 = −2m2

B(v · v′ − 1) . (47)

Because of current conservation, the elastic form factor is normalized to unity
at q2 = 0. This condition implies the normalization of the Isgur-Wise function
at the kinematic point v · v′ = 1, i.e. for v = v′:

ξ(1) = 1 . (48)

It is in accordance with the intuitive argument that the probability for an
elastic transition is unity if there is no velocity change. Since for v = v′ the
final-state meson is at rest in the rest frame of the initial meson, the point
v · v′ = 1 is referred to as the zero-recoil limit.

The heavy-quark flavor symmetry can be used to replace the b quark in
the final-state meson by a c quark, thereby turning the B meson into a D
meson. Then the scattering process turns into a weak decay process. In the
infinite-mass limit, the replacement bv′ → cv′ is a symmetry transformation,
under which the effective Lagrangian is invariant. Hence, the matrix element

1
√

mBmD
〈D(v′)| c̄v′γµbv |B̄(v)〉 = ξ(v · v′) (v + v′)µ (49)

is still determined by the same function ξ(v · v′). This is interesting, since
in general the matrix element of a flavor-changing current between two pseu-
doscalar mesons is described by two form factors:

〈D(v′)| c̄ γµb |B̄(v)〉 = f+(q2) (p + p′)µ − f−(q2) (p − p′)µ . (50)
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Comparing the above two equations, we find that

f±(q2) =
mB ± mD

2
√

mBmD
ξ(v · v′) ,

q2 = m2
B + m2

D − 2mBmD v · v′ . (51)

Thus, the heavy-quark flavor symmetry relates two a priori independent form
factors to one and the same function. Moreover, the normalization of the
Isgur-Wise function at v · v′ = 1 now implies a non-trivial normalization of
the form factors f±(q2) at the point of maximum momentum transfer, q2

max =
(mB − mD)2:

f±(q2
max) =

mB ± mD

2
√

mBmD
. (52)

The heavy-quark spin symmetry leads to additional relations among weak
decay form factors. It can be used to relate matrix elements involving vector
mesons to those involving pseudoscalar mesons. A vector meson with longi-
tudinal polarization is related to a pseudoscalar meson by a rotation of the
heavy-quark spin. Hence, the spin-symmetry transformation c⇑v′ → c⇓v′ relates
B̄ → D with B̄ → D∗ transitions. The result of this transformation is 6

1
√

mBmD∗

〈D∗(v′, ε)| c̄v′γµbv |B̄(v)〉 = iεµναβ ε∗ν v′αvβ ξ(v · v′) ,

1
√

mBmD∗

〈D∗(v′, ε)| c̄v′γµγ5 bv |B̄(v)〉 =
[
ε∗µ (v · v′ + 1) − v′µ ε∗ · v

]
ξ(v · v′) ,

(53)

where ε denotes the polarization vector of the D∗ meson. Once again, the
matrix elements are completely described in terms of the Isgur-Wise function.
Now this is even more remarkable, since in general four form factors, V (q2) for
the vector current, and Ai(q2), i = 0, 1, 2, for the axial current, are required to
parameterize these matrix elements. In the heavy-quark limit, they obey the
relations 67

mB + mD∗

2
√

mBmD∗

ξ(v · v′) = V (q2) = A0(q
2) = A1(q

2)

=

[
1 −

q2

(mB + mD)2

]−1

A1(q
2) ,

q2 = m2
B + m2

D∗ − 2mBmD∗ v · v′ . (54)
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Equations (51) and (54) summarize the relations imposed by heavy-quark
symmetry on the weak decay form factors describing the semi-leptonic decay
processes B̄ → D . ν̄ and B̄ → D∗. ν̄. These relations are model-independent
consequences of QCD in the limit where mb, mc % ΛQCD. They play a crucial
role in the determination of the CKM matrix element |Vcb|. In terms of the
recoil variable w = v ·v′, the differential semi-leptonic decay rates in the heavy-
quark limit become 68

dΓ(B̄ → D . ν̄)

dw
=

G2
F

48π3
|Vcb|2 (mB + mD)2 m3

D (w2 − 1)3/2 ξ2(w) ,

dΓ(B̄ → D∗. ν̄)

dw
=

G2
F

48π3
|Vcb|2 (mB − mD∗)2 m3

D∗

√
w2 − 1 (w + 1)2

×

[

1 +
4w

w + 1

m2
B − 2w mBmD∗ + m2

D∗

(mB − mD∗)2

]

ξ2(w) . (55)

These expressions receive symmetry-breaking corrections, since the masses of
the heavy quarks are not infinitely large. Perturbative corrections of order
αn

s (mQ) can be calculated order by order in perturbation theory. A more
difficult task is to control the non-perturbative power corrections of order
(ΛQCD/mQ)n. The HQET provides a systematic framework for analyzing
these corrections. For the case of weak-decay form factors the analysis of
the 1/mQ corrections was performed by Luke 69. Later, Falk and the present
author have analyzed the structure of 1/m2

Q corrections for both meson and
baryon weak decay form factors 56. We shall not discuss these rather technical
issues in detail, but only mention the most important result of Luke’s analy-
sis. It concerns the zero-recoil limit, where an analogue of the Ademollo-Gatto
theorem 70 can be proved. This is Luke’s theorem 69, which states that the
matrix elements describing the leading 1/mQ corrections to weak decay ampli-
tudes vanish at zero recoil. This theorem is valid to all orders in perturbation
theory 56,71,72. Most importantly, it protects the B̄ → D∗. ν̄ decay rate from
receiving first-order 1/mQ corrections at zero recoil 68. [A similar statement is
not true for the decay B̄ → D . ν̄. The reason is simple but somewhat subtle.
Luke’s theorem protects only those form factors not multiplied by kinematic
factors that vanish for v = v′. By angular momentum conservation, the two
pseudoscalar mesons in the decay B̄ → D . ν̄ must be in a relative p wave, and
hence the amplitude is proportional to the velocity |(vD| of the D meson in the
B-meson rest frame. This leads to a factor (w2 − 1) in the decay rate. In such
a situation, kinematically suppressed form factors can contribute 67.]
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3.2 Short-Distance Corrections

In Sec. 2, we have discussed the first two steps in the construction of the
HQET. Integrating out the small components in the heavy-quark fields, a non-
local effective action was derived, which was then expanded in a series of local
operators. The effective Lagrangian obtained that way correctly reproduces
the long-distance physics of the full theory (see Fig. 3). It does not contain
the short-distance physics correctly, however. The reason is obvious: a heavy
quark participates in strong interactions through its coupling to gluons. These
gluons can be soft or hard, i.e. their virtual momenta can be small, of the order
of the confinement scale, or large, of the order of the heavy-quark mass. But
hard gluons can resolve the spin and flavor quantum numbers of a heavy quark.
Their effects lead to a renormalization of the coefficients of the operators in
the HQET. A new feature of such short-distance corrections is that through
the running coupling constant they induce a logarithmic dependence on the
heavy-quark mass 4. Since αs(mQ) is small, these effects can be calculated in
perturbation theory.

Consider, as an example, the matrix elements of the vector current V =
q̄ γµQ. In QCD this current is partially conserved and needs no renormaliza-
tion. Its matrix elements are free of ultraviolet divergences. Still, these matrix
elements have a logarithmic dependence on mQ from the exchange of hard
gluons with virtual momenta of the order of the heavy-quark mass. If one goes
over to the effective theory by taking the limit mQ → ∞, these logarithms
diverge. Consequently, the vector current in the effective theory does require
a renormalization 11. Its matrix elements depend on an arbitrary renormaliza-
tion scale µ, which separates the regions of short- and long-distance physics.
If µ is chosen such that ΛQCD & µ & mQ, the effective coupling constant in
the region between µ and mQ is small, and perturbation theory can be used
to compute the short-distance corrections. These corrections have to be added
to the matrix elements of the effective theory, which contain the long-distance
physics below the scale µ. Schematically, then, the relation between matrix
elements in the full and in the effective theory is

〈V (mQ) 〉QCD = C0(mQ, µ) 〈V0(µ)〉HQET +
C1(mQ, µ)

mQ
〈V1(µ)〉HQET + . . . ,

(56)
where we have indicated that matrix elements in the full theory depend on mQ,
whereas matrix elements in the effective theory are mass-independent, but do
depend on the renormalization scale. The Wilson coefficients Ci(mQ, µ) are
defined by this relation. Order by order in perturbation theory, they can
be computed from a comparison of the matrix elements in the two theories.
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Since the effective theory is constructed to reproduce correctly the low-energy
behavior of the full theory, this “matching” procedure is independent of any
long-distance physics, such as infrared singularities, non-perturbative effects,
and the nature of the external states used in the matrix elements.

The calculation of the coefficient functions in perturbation theory uses the
powerful methods of the renormalization group. It is in principle straightfor-
ward, yet in practice rather tedious. A comprehensive discussion of most of the
existing calculations of short-distance corrections in the HQET can be found
in Ref. 18.

3.3 Model-Independent Determination of |Vcb|

We will now discuss the most important application of the formalism de-
scribed above in the context of semi-leptonic decays of B mesons. A model-
independent determination of the CKM matrix element |Vcb| based on heavy-
quark symmetry can be obtained by measuring the recoil spectrum of D∗

mesons produced in B̄ → D∗. ν̄ decays 68. In the heavy-quark limit, the dif-
ferential decay rate for this process has been given in (55). In order to allow
for corrections to that limit, we write

dΓ

dw
=

G2
F

48π3
(mB − mD∗)2 m3

D∗

√
w2 − 1 (w + 1)2

×

[

1 +
4w

w + 1

m2
B − 2w mBmD∗ + m2

D∗

(mB − mD∗)2

]

|Vcb|2 F2(w) , (57)

where the hadronic form factor F(w) coincides with the Isgur-Wise function
up to symmetry-breaking corrections of order αs(mQ) and ΛQCD/mQ. The
idea is to measure the product |Vcb| F(w) as a function of w, and to extract
|Vcb| from an extrapolation of the data to the zero-recoil point w = 1, where
the B and the D∗ mesons have a common rest frame. At this kinematic point,
heavy-quark symmetry helps us to calculate the normalization F(1) with small
and controlled theoretical errors. Since the range of w values accessible in this
decay is rather small (1 < w < 1.5), the extrapolation can be done using an
expansion around w = 1:

F(w) = F(1)
[
1 − 1̂2 (w − 1) + ĉ (w − 1)2 . . .

]
. (58)

The slope 1̂2 and the curvature ĉ, and indeed more generally the complete
shape of the form factor, are tightly constrained by analyticity and unitarity
requirements 73,74. In the long run, the statistics of the experimental results
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close to zero recoil will be such that these theoretical constraints will not be
crucial to get a precision measurement of |Vcb|. They will, however, enable
strong consistency checks.

1 1.1 1.2 1.3 1.4 1.5
w

0

0.01

0.02

0.03

0.04

0.05

| V
cb

|  
F(

w
)

Figure 8: CLEO data for the product |Vcb| F(w), as extracted from the recoil spectrum in
B̄ → D∗$ ν̄ decays 75. The line shows a linear fit to the data.

Measurements of the recoil spectrum have been performed by several ex-
perimental groups. Figure 8 shows, as an example, the data reported some time
ago by the CLEO Collaboration. The weighted average of the experimental
results is 76

|Vcb| F(1) = (35.2 ± 2.6) × 10−3 . (59)

Heavy-quark symmetry implies that the general structure of the symmetry-
breaking corrections to the form factor at zero recoil is 68

F(1) = ηA

(
1 + 0 ×

ΛQCD

mQ
+ const ×

Λ2
QCD

m2
Q

+ . . .

)
≡ ηA (1 + δ1/m2) , (60)

where ηA is a short-distance correction arising from the finite renormalization
of the flavor-changing axial current at zero recoil, and δ1/m2 parameterizes
second-order (and higher) power corrections. The absence of first-order power
corrections at zero recoil is a consequence of Luke’s theorem 69. The one-loop
expression for ηA has been known for a long time 2,5,77:

ηA = 1 +
αs(M)

π

(
mb + mc

mb − mc
ln

mb

mc
−

8

3

)
≈ 0.96 . (61)
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The scale M in the running coupling constant can be fixed by adopting the
prescription of Brodsky, Lepage and Mackenzie (BLM) 78, where it is iden-
tified with the average virtuality of the gluon in the one-loop diagrams that
contribute to ηA. If αs(M) is defined in the ms scheme, the result is 79 M ≈
0.51

√
mcmb. Several estimates of higher-order corrections to ηA have been

discussed. A renormalization-group resummation of logarithms of the type
(αs lnmb/mc)n, αs(αs lnmb/mc)n and mc/mb(αs lnmb/mc)n leads to 11,80−83

ηA ≈ 0.985. On the other hand, a resummation of “renormalon-chain” con-
tributions of the form βn−1

0 αn
s , where β0 = 11 − 2

3nf is the first coefficient of
the QCD β-function, gives 84 ηA ≈ 0.945. Using these partial resummations
to estimate the uncertainty gives ηA = 0.965 ± 0.020. Recently, Czarnecki
has improved this estimate by calculating ηA at two-loop order 85. His result,
ηA = 0.960 ± 0.007, is in excellent agreement with the BLM-improved one-
loop expression (61). Here the error is taken to be the size of the two-loop
correction.

The analysis of the power corrections is more difficult, since it cannot
rely on perturbation theory. Three approaches have been discussed: in the
“exclusive approach”, all 1/m2

Q operators in the HQET are classified and their
matrix elements estimated, leading to 56,86 δ1/m2 = −(3 ± 2)%; the “inclusive
approach” has been used to derive the bound δ1/m2 < −3%, and to estimate
that 87 δ1/m2 = −(7± 3)%; the “hybrid approach” combines the virtues of the
former two to obtain a more restrictive lower bound on δ1/m2 . This leads to 88

δ1/m2 = −0.055± 0.025.
Combining the above results, adding the theoretical errors linearly to be

conservative, gives
F(1) = 0.91 ± 0.03 (62)

for the normalization of the hadronic form factor at zero recoil. Thus, the
corrections to the heavy-quark limit amount to a moderate decrease of the
form factor of about 10%. This can be used to extract from the experimental
result (59) the model-independent value

|Vcb| = (38.7 ± 2.8exp ± 1.3th) × 10−3 . (63)

3.4 Measurements of B̄ → D∗. ν̄ and B̄ → D . ν̄ Form Factors and Tests of
Heavy-Quark Symmetry

We have discussed earlier in this section that heavy-quark symmetry implies
relations between the semi-leptonic form factors of heavy mesons. They receive
symmetry-breaking corrections, which can be estimated using the HQET. The
extent to which these relations hold can be tested experimentally by comparing
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the different form factors describing the decays B̄ → D(∗). ν̄ at the same value
of w.

When the lepton mass is neglected, the differential decay distributions
in B̄ → D∗. ν̄ decays can be parameterized by three helicity amplitudes, or
equivalently by three independent combinations of form factors. It has been
suggested that a good choice for three such quantities should be inspired by
the heavy-quark limit 18,89. One thus defines a form factor hA1(w), which up
to symmetry-breaking corrections coincides with the Isgur-Wise function, and
two form-factor ratios

R1(w) =

[
1 −

q2

(mB + mD∗)2

]
V (q2)

A1(q2)
,

R2(w) =

[
1 −

q2

(mB + mD∗)2

]
A2(q2)

A1(q2)
. (64)

The relation between w and q2 has been given in (54). This definition is such
that in the heavy-quark limit R1(w) = R2(w) = 1 independently of w.

To extract the functions hA1(w), R1(w) and R2(w) from experimental data
is a complicated task. However, HQET-based calculations suggest that the w
dependence of the form-factor ratios, which is induced by symmetry-breaking
effects, is rather mild89. Moreover, the form factor hA1(w) is expected to have
a nearly linear shape over the accessible w range. This motivates to introduce
three parameters 12

A1, R1 and R2 by

hA1(w) ≈ F(1)
[
1 − 12

A1(w − 1)
]
,

R1(w) ≈ R1 , R2(w) ≈ R2 , (65)

where F(1) = 0.91 ± 0.03 from (62). The CLEO Collaboration has extracted
these three parameters from an analysis of the angular distributions in B̄ →
D∗. ν̄ decays 90. The results are

12
A1 = 0.91 ± 0.16 , R1 = 1.18 ± 0.32 , R2 = 0.71 ± 0.23 . (66)

Using the HQET, one obtains an essentially model-independent prediction for
the symmetry-breaking corrections to R1, whereas the corrections to R2 are
somewhat model dependent. To good approximation18

R1 ≈ 1 +
4αs(mc)

3π
+

Λ̄

2mc
≈ 1.3 ± 0.1 ,

R2 ≈ 1 − κ
Λ̄

2mc
≈ 0.8 ± 0.2 , (67)
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with κ ≈ 1 from QCD sum rules 89. Here Λ̄ is the “binding energy” as defined
in (28). Theoretical calculations91,92 as well as phenomenological analyses62,63

suggest that Λ̄ ≈ 0.45–0.65 GeV is the appropriate value to be used in one-loop
calculations. A quark-model calculation of R1 and R2 gives results similar to
the HQET predictions 93: R1 ≈ 1.15 and R2 ≈ 0.91. The experimental data
confirm the theoretical prediction that R1 > 1 and R2 < 1, although the errors
are still large.

Heavy-quark symmetry has also been tested by comparing the form factor
F(w) in B̄ → D∗. ν̄ decays with the corresponding form factor G(w) governing
B̄ → D . ν̄ decays. The theoretical prediction 74,89

G(1)

F(1)
= 1.08 ± 0.06 (68)

compares well with the experimental results for this ratio: 0.99±0.19 reported
by the CLEO Collaboration94, and 0.87±0.30 reported by the ALEPH Collab-
oration 95. In these analyses, it has also been tested that within experimental
errors the shape of the two form factors agrees over the entire range of w values.

The results of the analyses described above are very encouraging. Within
errors, the experiments confirm the HQET predictions, starting to test them
at the level of symmetry-breaking corrections.

4 Inclusive Decay Rates

Inclusive decay rates determine the probability of the decay of a particle into
the sum of all possible final states with a given set of global quantum num-
bers. An example is provided by the inclusive semi-leptonic decay rate of the
B meson, Γ(B̄ → X . ν̄), where the final state consists of a lepton-neutrino pair
accompanied by any number of hadrons. Here we shall discuss the theoreti-
cal description of inclusive decays of hadrons containing a heavy quark 96−105.
From a theoretical point of view such decays have two advantages: first, bound-
state effects related to the initial state, such as the “Fermi motion” of the heavy
quark inside the hadron 103,104, can be accounted for in a systematic way us-
ing the heavy-quark expansion; secondly, the fact that the final state consists
of a sum over many hadronic channels eliminates bound-state effects related
to the properties of individual hadrons. This second feature is based on the
hypothesis of quark-hadron duality, which is an important concept in QCD
phenomenology. The assumption of duality is that cross sections and decay
rates, which are defined in the physical region (i.e. the region of time-like mo-
menta), are calculable in QCD after a “smearing” or “averaging” procedure
has been applied 106. In semi-leptonic decays, it is the integration over the
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lepton and neutrino phase space that provides a smearing over the invariant
hadronic mass of the final state (so-called global duality). For non-leptonic de-
cays, on the other hand, the total hadronic mass is fixed, and it is only the fact
that one sums over many hadronic states that provides an averaging (so-called
local duality). Clearly, local duality is a stronger assumption than global dual-
ity. It is important to stress that quark-hadron duality cannot yet be derived
from first principles; still, it is a necessary assumption for many applications
of QCD. The validity of global duality has been tested experimentally using
data on hadronic τ decays 107.

Using the optical theorem, the inclusive decay width of a hadron Hb con-
taining a b quark can be written in the form

Γ(Hb → X) =
1

mHb

Im 〈Hb|T |Hb〉 , (69)

where the transition operator T is given by

T = i

∫
d4xT {Leff(x),Leff(0) } . (70)

Inserting a complete set of states inside the time-ordered product, we recover
the standard expression

Γ(Hb → X) =
1

2mHb

∑

X

(2π)4 δ4(pH − pX) |〈X | Leff |Hb〉|2 (71)

for the decay rate. For the case of semi-leptonic and non-leptonic decays, Leff

is the effective weak Lagrangian given in (4), which in practice is corrected
for short-distance effects 32,33,108−110 arising from the exchange of gluons with
virtualities between mW and mb. If some quantum numbers of the final states
X are specified, the sum over intermediate states is to be restricted appropri-
ately. In the case of the inclusive semi-leptonic decay rate, for instance, the
sum would include only those states X containing a lepton-neutrino pair.

In perturbation theory, some contributions to the transition operator are
given by the two-loop diagrams shown on the left-hand side in Fig. 9. Because
of the large mass of the b quark, the momenta flowing through the internal
propagator lines are large. It is thus possible to construct an OPE for the
transition operator, in which T is represented as a series of local operators
containing the heavy-quark fields. The operator with the lowest dimension,
d = 3, is b̄b. It arises by contracting the internal lines of the first diagram.
The only gauge-invariant operator with dimension 4 is b̄ i /D b; however, the
equations of motion imply that between physical states this operator can be
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Figure 9: Perturbative contributions to the transition operator T (left), and the correspond-
ing operators in the OPE (right). The open squares represent a four-fermion interaction of
the effective Lagrangian Leff , while the black circles represent local operators in the OPE.

replaced by mbb̄b. The first operator that is different from b̄b has dimension 5
and contains the gluon field. It is given by b̄ gsσµνGµνb. This operator arises
from diagrams in which a gluon is emitted from one of the internal lines, such
as the second diagram shown in Fig. 9. For dimensional reasons, the matrix
elements of such higher-dimensional operators are suppressed by inverse powers
of the heavy-quark mass. Thus, any inclusive decay rate of a hadron Hb can
be written as 97−99

Γ(Hb → Xf ) =
G2

F m5
b

192π3

{
cf
3 〈b̄b〉H + cf

5

〈b̄ gsσµνGµνb〉H
m2

b

+ . . .

}
, (72)

where the prefactor arises naturally from the loop integrations, cf
n are calcu-

lable coefficient functions (which also contain the relevant CKM matrix ele-
ments) depending on the quantum numbers f of the final state, and 〈O〉H are
the (normalized) forward matrix elements of local operators, for which we use
the short-hand notation

〈O〉H =
1

2mHb

〈Hb|O |Hb〉 . (73)

In the next step, these matrix elements are systematically expanded in
powers of 1/mb, using the technology of the HQET. The result is 56,97,99

〈b̄b〉H = 1 −
µ2
π(Hb) − µ2

G(Hb)

2m2
b

+ O(1/m3
b) ,

〈b̄ gsσµνG
µνb〉H = 2µ2

G(Hb) + O(1/mb) , (74)
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where we have defined the HQET matrix elements

µ2
π(Hb) =

1

2mHb

〈Hb(v)| b̄v (i (D)2 bv |Hb(v)〉 ,

µ2
G(Hb) =

1

2mHb

〈Hb(v)| b̄v
gs

2
σµνG

µνbv |Hb(v)〉 . (75)

Here (i (D)2 = (iv · D)2 − (iD)2; in the rest frame, this is the square of the
operator for the spatial momentum of the heavy quark. Inserting these results
into (72) yields

Γ(Hb → Xf ) =
G2

F m5
b

192π3

{
cf
3

(
1 −

µ2
π(Hb) − µ2

G(Hb)

2m2
b

)
+ 2cf

5

µ2
G(Hb)

m2
b

+ . . .

}
.

(76)
It is instructive to understand the appearance of the “kinetic energy” contri-
bution µ2

π, which is the gauge-covariant extension of the square of the b-quark
momentum inside the heavy hadron. This contribution is the field-theory ana-
logue of the Lorentz factor (1 − (v 2

b )1/2 . 1 − (k 2/2m2
b , in accordance with the

fact that the lifetime, τ = 1/Γ, for a moving particle increases due to time
dilation.

The main result of the heavy-quark expansion for inclusive decay rates
is the observation that the free quark decay (i.e. the parton model) provides
the first term in a systematic 1/mb expansion 96. For dimensional reasons,
the corresponding rate is proportional to the fifth power of the b-quark mass.
The non-perturbative corrections, which arise from bound-state effects inside
the B meson, are suppressed by at least two powers of the heavy-quark mass,
i.e. they are of relative order (ΛQCD/mb)2. Note that the absence of first-
order power corrections is a consequence of the equations of motion, as there
is no independent gauge-invariant operator of dimension 4 that could appear
in the OPE. The fact that bound-state effects in inclusive decays are strongly
suppressed explains a posteriori the success of the parton model in describing
such processes 111,112.

The hadronic matrix elements appearing in the heavy-quark expansion
(76) can be determined to some extent from the known masses of heavy hadron
states. For the B meson, one finds that

µ2
π(B) = −λ1 = (0.3 ± 0.2) GeV2 ,

µ2
G(B) = 3λ2 ≈ 0.36 GeV2 , (77)

where λ1 and λ2 are the parameters appearing in the mass formula (32). For
the ground-state baryon Λb, in which the light constituents have total spin
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zero, it follows that
µ2

G(Λb) = 0 , (78)

while the matrix element µ2
π(Λb) obeys the relation

(mΛb
− mΛc) − (mB − mD) =

[
µ2
π(B) − µ2

π(Λb)
](

1

2mc
−

1

2mb

)
+ O(1/m2

Q) ,

(79)
where mB and mD denote the spin-averaged masses introduced in connection
with (41). The above relation implies

µ2
π(B) − µ2

π(Λb) = (0.01 ± 0.03) GeV2 . (80)

What remains to be calculated, then, is the coefficient functions cf
n for a given

inclusive decay channel.
To illustrate this general formalism, we discuss as an example the de-

termination of |Vcb| from inclusive semi-leptonic B decays. In this case the
short-distance coefficients in the general expression (76) are given by 97−99

cSL
3 = |Vcb|2

[
1 − 8x2 + 8x6 − x8 − 12x4 lnx2 + O(αs)

]
,

cSL
5 = −6|Vcb|2(1 − x2)4 . (81)

Here x = mc/mb, and mb and mc are the masses of the b and c quarks,
defined to a given order in perturbation theory37. The O(αs) terms in cSL

3 are
known exactly 113, and reliable estimates exist for the O(α2

s) corrections 114.
The theoretical uncertainties in this determination of |Vcb| are quite different
from those entering the analysis of exclusive decays. The main sources are the
dependence on the heavy-quark masses, higher-order perturbative corrections,
and above all the assumption of global quark-hadron duality. A conservative
estimate of the total theoretical error on the extracted value of |Vcb| yields 115

|Vcb| = (0.040±0.003)

[
BSL

10.5%

]1/2[1.6 ps

τB

]1/2

= (40±1exp±3th)×10−3 . (82)

The value of |Vcb| extracted from the inclusive semi-leptonic width is in ex-
cellent agreement with the value in (63) obtained from the analysis of the
exclusive decay B̄ → D∗. ν̄. This agreement is gratifying given the differences
of the methods used, and it provides an indirect test of global quark-hadron
duality. Combining the two measurements gives the final result

|Vcb| = 0.039± 0.002 . (83)

After Vud and Vus, this is the third-best known entry in the CKM matrix.
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5 Rare B Decays and Determination of the Weak Phase γ

The main objectives of the B factories are to explore the physics of CP vio-
lation, to determine the flavor parameters of the electroweak theory, and to
probe for physics beyond the Standard Model. This will test the CKM mecha-
nism, which predicts that all CP violation results from a single complex phase
in the quark mixing matrix. Facing the announcement of evidence for a CP
asymmetry in the decays B → J/ψKS by the CDF Collaboration 116, the
confirmation of direct CP violation in K → ππ decays by the KTeV and NA48
groups 117,118, and the successful start of the B factories at SLAC and KEK,
the year 1999 has been an important step towards achieving this goal.

td~V
ub
*~V

βγ

(ρ,η)

(1,0)(0,0)

CP  Violation

α

Figure 10: The rescaled unitarity triangle representing the relation 1+
V ∗

ub
Vud

V ∗

cb
Vcd

+
V ∗

tb
Vtd

V ∗

cb
Vcd

= 0.

The apex is determined by the Wolfenstein parameters (ρ̄, η̄). The area of the triangle is
proportional to the strength of CP violation in the Standard Model.

The determination of the sides and angles of the “unitarity triangle”
V ∗

ubVud+V ∗
cbVcd+V ∗

tbVtd = 0 depicted in Fig. 10 plays a central role in the B fac-
tory program. Adopting the standard phase conventions for the CKM matrix,
only the two smallest elements in this relation, V ∗

ub and Vtd, have non-vanishing
imaginary parts (to an excellent approximation). In the Standard Model the
angle β = −arg(Vtd) can be determined in a theoretically clean way by mea-
suring the mixing-induced CP asymmetry in the decays B → J/ψ KS . The
preliminary CDF result implies116 sin 2β = 0.79+0.41

−0.44. The angle γ = arg(V ∗
ub),

or equivalently the combination α = 180◦ − β − γ, is much harder to deter-
mine115. Recently, there has been significant progress in the theoretical under-
standing of the hadronic decays B → πK, and methods have been developed
to extract information on γ from rate measurements for these processes. Here
we discuss the charged modes B± → πK, which from a theoretical perspective
are particularly clean.
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In the Standard Model, the main contributions to the decay amplitudes
for the rare processes B → πK are due to the penguin-induced flavor-changing
neutral current (FCNC) transitions b̄ → s̄qq̄, which exceed a small, Cabibbo-
suppressed b̄ → ūus̄ contribution from W -boson exchange. The weak phase γ
enters through the interference of these two (“penguin” and “tree”) contribu-
tions. Because of a fortunate interplay of isospin, Fierz and flavor symmetries,
the theoretical description of the charged modes B± → πK is very clean de-
spite the fact that these are exclusive non-leptonic decays119−121. Without any
dynamical assumption, the hadronic uncertainties in the description of the in-
terference terms relevant to the determination of γ are of relative magnitude
O(λ2) or O(εSU(3)/Nc), where λ = sin θC ≈ 0.22 is a measure of Cabibbo sup-
pression, εSU(3) ∼ 20% is the typical size of SU(3) breaking, and the factor 1/Nc

indicates that the corresponding terms vanish in the factorization approxima-
tion. Factorizable SU(3) breaking can be accounted for in a straightforward
way.

Recently, the accuracy of this description has been further improved when
it was shown that non-leptonic B decays into two light mesons, such as B →
πK and B → ππ, admit a systematic heavy-quark expansion 122. To lead-
ing order in 1/mb, but to all orders in perturbation theory, the decay am-
plitudes for these processes can be calculated from first principles without
recourse to phenomenological models. The QCD factorization theorem proved
in Ref. 122 improves upon the phenomenological approach of “generalized fac-
torization” 123, which emerges as the leading term in the heavy-quark limit.
With the help of this theorem, the irreducible theoretical uncertainties in the
description of the B± → πK decay amplitudes can be reduced by an extra
factor of O(1/mb), rendering their analysis essentially model independent. As
a consequence of this fact, and because they are dominated by FCNC tran-
sitions, the decays B± → πK offer a sensitive probe to physics beyond the
Standard Model 121,124−127, much in the same way as the “classical” FCNC
processes B → Xsγ or B → Xs .+.−.

5.1 Theory of B± → πK Decays

The hadronic decays B → πK are mediated by a low-energy effective weak
Hamiltonian 128, whose operators allow for three different classes of flavor
topologies: QCD penguins, trees, and electroweak penguins. In the Standard
Model the weak couplings associated with these topologies are known. From
the measured branching ratios one can deduce that QCD penguins dominate
the B → πK decay amplitudes129, whereas trees and electroweak penguins are
subleading and of a similar strength130. The theoretical description of the two
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charged modes B± → π±K0 and B± → π0K± exploits the fact that the am-
plitudes for these processes differ in a pure isospin amplitude, A3/2, defined as
the matrix element of the isovector part of the effective Hamiltonian between a
B meson and the πK isospin eigenstate with I = 3

2 . In the Standard Model the
parameters of this amplitude are determined, up to an overall strong phase φ,
in the limit of SU(3) flavor symmetry119. Using the QCD factorization theorem
the SU(3)-breaking corrections can be calculated in a model-independent way
up to non-factorizable terms that are power-suppressed in 1/mb and vanish in
the heavy-quark limit.

A convenient parameterization of the non-leptonic decay amplitudes A+0 ≡
A(B+ → π+K0) and A0+ ≡ −

√
2A(B+ → π0K+) is 121

A+0 = P (1 − εa eiγeiη) ,

A0+ = P
[
1 − εa eiγeiη − ε3/2 eiφ(eiγ − δEW)

]
, (84)

where P is the dominant penguin amplitude defined as the sum of all terms in
the B+ → π+K0 amplitude not proportional to eiγ , η and φ are strong phases,
and εa, ε3/2 and δEW are real hadronic parameters. The weak phase γ changes
sign under a CP transformation, whereas all other parameters stay invariant.

Based on a naive quark-diagram analysis one would not expect the B+ →
π+K0 amplitude to receive a contribution from b̄ → ūus̄ tree topologies; how-
ever, such a contribution can be induced through final-state rescattering or
annihilation contributions 131−136. They are parameterized by εa = O(λ2). In
the heavy-quark limit this parameter can be calculated and is found to be very
small 137: εa ≈ −2%. In the future, it will be possible to put upper and lower
bounds on εa by comparing the CP-averaged branching ratios for the decays135

B± → π±K0 and B± → K±K̄0. Below we assume |εa| ≤ 0.1; however, our
results will be almost insensitive to this assumption.

The terms proportional to ε3/2 in (84) parameterize the isospin amplitude
A3/2. The weak phase eiγ enters through the tree process b̄ → ūus̄, whereas
the quantity δEW describes the effects of electroweak penguins. The parame-
ter ε3/2 measures the relative strength of tree and QCD penguin contributions.
Information about it can be derived by using SU(3) flavor symmetry to relate
the tree contribution to the isospin amplitude A3/2 to the corresponding con-
tribution in the decay B+ → π+π0. Since the final state π+π0 has isospin
I = 2, the amplitude for this process does not receive any contribution from
QCD penguins. Moreover, electroweak penguins in b̄ → d̄qq̄ transitions are
negligibly small. We define a related parameter ε̄3/2 by writing

ε3/2 = ε̄3/2

√
1 − 2εa cos η cos γ + ε2

a , (85)
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so that the two quantities agree in the limit εa → 0. In the SU(3) limit this
new parameter can be determined experimentally form the relation 119

ε̄3/2 = R1

∣∣∣∣
Vus

Vud

∣∣∣∣

[
2B(B± → π±π0)

B(B± → π±K0)

]1/2

. (86)

SU(3)-breaking corrections are described by the factor R1 = 1.22±0.05, which
can be calculated in a model-independent way using the QCD factorization
theorem for non-leptonic decays137. The quoted error is an estimate of the the-
oretical uncertainty due to corrections of O( 1

Nc

ms

mb
). Using preliminary data re-

ported by the CLEO Collaboration138 to evaluate the ratio of the CP-averaged
branching ratios in (86), we obtain

ε̄3/2 = 0.21 ± 0.06exp ± 0.01th . (87)

With a better measurement of the branching ratios the uncertainty in ε̄3/2 will
be reduced significantly.

Finally, the parameter

δEW = R2

∣∣∣∣
V ∗

cbVcs

V ∗
ubVus

∣∣∣∣
α

8π

xt

sin2θW

(
1 +

3 lnxt

xt − 1

)

= (0.64 ± 0.09) ×
0.085

|Vub/Vcb|
, (88)

with xt = (mt/mW )2, describes the ratio of electroweak penguin and tree
contributions to the isospin amplitude A3/2. In the SU(3) limit it is calculable
in terms of Standard Model parameters119,139. SU(3)-breaking as well as small
electromagnetic corrections are accounted for by the quantity 121,137 R2 =
0.92±0.09. The error quoted in (88) includes the uncertainty in the top-quark
mass.

Important observables in the study of the weak phase γ are the ratio of
the CP-averaged branching ratios in the two B± → πK decay modes,

R∗ =
B(B± → π±K0)

2B(B± → π0K±)
= 0.75 ± 0.28 , (89)

and a particular combination of the direct CP asymmetries,

Ã =
ACP(B± → π0K±)

R∗
− ACP(B± → π±K0) = −0.52 ± 0.42 . (90)

The experimental values of these quantities are derived using preliminary data
reported by the CLEO Collaboration 138. The theoretical expressions for R∗
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and Ã obtained using the parameterization in (84) are

R−1
∗ = 1 + 2ε̄3/2 cosφ (δEW − cos γ)

+ ε̄2
3/2(1 − 2δEW cos γ + δ2

EW)+O(ε̄3/2εa) ,

Ã = 2ε̄3/2 sin γ sinφ + O(ε̄3/2εa) . (91)

Note that the rescattering effects described by εa are suppressed by a factor
of ε̄3/2 and thus reduced to the percent level. Explicit expressions for these
contributions can be found in Ref. 121.

5.2 Lower Bound on γ and Constraint in the (ρ̄, η̄) Plane

There are several strategies for exploiting the above relations. From a mea-
surement of the ratio R∗ alone a bound on cosγ can be derived, implying a
non-trivial constraint on the Wolfenstein parameters ρ̄ and η̄ defining the apex
of the unitarity triangle 119. Only CP-averaged branching ratios are needed
for this purpose. Varying the strong phases φ and η independently we first
obtain an upper bound on the inverse of R∗. Keeping terms of linear order in
εa yields 121

R−1
∗ ≤

(
1 + ε̄3/2 |δEW − cos γ|

)2
+ ε̄2

3/2 sin2γ + 2ε̄3/2|εa| sin2γ . (92)

Provided R∗ is significantly smaller than 1, this bound implies an exclusion
region for cos γ which becomes larger the smaller the values of R∗ and ε̄3/2

are. It is convenient to consider instead of R∗ the related quantity 127

XR =

√
R−1

∗ − 1

ε̄3/2
= 0.72 ± 0.98exp ± 0.03th . (93)

Because of the theoretical factor R1 entering the definition of ε̄3/2 in (86) this
is, strictly speaking, not an observable. However, the theoretical uncertainty
in XR is so much smaller than the present experimental error that it can be
ignored for all practical purposes. The advantage of presenting our results in
terms of XR rather than R∗ is that the leading dependence on ε̄3/2 cancels
out, leading to the simple bound |XR| ≤ |δEW − cos γ| + O(ε̄3/2, εa).

In Fig. 11 we show the upper bound on XR as a function of |γ|, obtained
by varying the input parameters in the intervals 0.15 ≤ ε̄3/2 ≤ 0.27 and 0.49 ≤
δEW ≤ 0.79 (corresponding to using |Vub/Vcb| = 0.085 ± 0.015 in (88)). Note
that the effect of the rescattering contribution parameterized by εa is very
small. The gray band shows the current value of XR, which still has too large
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Figure 11: Theoretical upper bound on the ratio XR versus |γ| for εa = 0.1 (solid line)
and εa = 0 (dashed line). The horizontal line and band show the current experimental value

with its 1σ variation.

an error to provide any useful information on γ. The situation may change,
however, once a more precise measurement of XR will become available. For
instance, if the current central value XR = 0.72 were confirmed, it would imply
the bound |γ| > 75◦, marking a significant improvement over the indirect limit
|γ| > 37◦ inferred from the global analysis of the unitarity triangle including
information from K–K̄ mixing 115.

So far, we have used the inequality (92) to derive a lower bound on |γ|.
However, a large part of the uncertainty in the value of δEW, and thus in the
resulting bound on |γ|, comes from the present large error on |Vub|. Since this
is not a hadronic uncertainty, it is appropriate to separate it and turn (92) into
a constraint on the Wolfenstein parameters ρ̄ and η̄. To this end, we use that
cos γ = ρ̄/

√
ρ̄2 + η̄2 by definition, and δEW = (0.24 ± 0.03)/

√
ρ̄2 + η̄2 from

(88). The solid lines in Fig. 12 show the resulting constraint in the (ρ̄, η̄) plane
obtained for the representative values XR = 0.5, 0.75, 1.0, 1.25 (from right to
left), which for ε̄3/2 = 0.21 would correspond to R∗ = 0.82, 0.75, 0.68, 0.63,
respectively. Values to the right of these lines are excluded. For comparison,
the dashed circles show the constraint arising from the measurement of the ratio
|Vub/Vcb| = 0.085 ± 0.015 in semi-leptonic B decays, and the dashed-dotted
line shows the bound implied by the present experimental limit on the mass
difference ∆ms in the Bs system115. Values to the left of this line are excluded.
It is evident from the figure that the bound resulting from a measurement of
the ratio XR in B± → πK decays may be very non-trivial and, in particular,
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Figure 12: Theoretical constraints on the Wolfenstein parameters (ρ̄, η̄) implied by a mea-
surement of the ratio XR in B± → πK decays (solid lines), semi-leptonic B decays (dashed

circles), and Bd,s–B̄d,s mixing (dashed-dotted line).

may eliminate the possibility that γ = 0. The combination of this bound
with information from semi-leptonic decays and B–B̄ mixing alone would then
determine the Wolfenstein parameters ρ̄ and η̄ within narrow ranges,c and in
the context of the CKM model would prove the existence of direct CP violation
in B decays. If one is more optimistic, one may even hope that in the future
the constraint from B → πK decays may become incompatible with the bound
from Bs–B̄s mixing, thus indicating New Physics beyond the Standard Model.d

5.3 Extraction of γ

Ultimately, the goal is of course not only to derive a bound on γ but to de-
termine this parameter directly from the data. This requires to fix the strong
phase φ in (91), which can be achieved either through the measurement of a
CP asymmetry or with the help of theory. A strategy for an experimental
determination of γ from B± → πK decays has been suggested in Ref. 120. It
generalizes a method proposed by Gronau, Rosner and London 140 to include
the effects of electroweak penguins. The approach has later been refined to ac-
count for rescattering contributions to the B± → π±K0 decay amplitudes 121.
Before discussing this method, we will first illustrate an easier strategy for a
theory-guided determination of γ based on the QCD factorization theorem for

cAn observation of CP violation, such as the measurement of εK in K–K̄ mixing or sin 2β
in B → J/ψ KS decays, is however needed to fix the sign of η̄.

dAt the time of writing, the bound from Bs–B̄s mixing is being pushed further to the
right, making such a scenario a tantalizing possibility.
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non-leptonic decays 122. This method does not require any measurement of a
CP asymmetry.

Theory-guided determination:
In the previous section the theoretical predictions for the non-leptonic B → πK
decay amplitudes obtained using the QCD factorization theorem were used in
a minimal way, i.e. only to calculate the size of the SU(3)-breaking effects
parameterized by R1 and R2 in (86) and (88). The resulting bound on γ and
the corresponding constraint in the (ρ̄, η̄) plane are therefore theoretically very
clean. However, they are only useful if the value of XR is found to be larger
than about 0.5 (see Fig. 11), in which case values of |γ| below 65◦ are excluded.
If it would turn out that XR < 0.5, then it is possible to satisfy the inequality
(92) also for small values of γ, however, at the price of having a very large
strong phase, φ ≈ 180◦. But this possibility can be discarded based on the
model-independent prediction that 122

φ = O[αs(mb),ΛQCD/mb] . (94)

A direct calculation of this phase to leading power in 1/mb yields137 φ ≈ −11◦.
Using the fact that φ is parametrically small, we can exploit a measurement
of the ratio XR to obtain a determination of |γ| – corresponding to an allowed
region in the (ρ̄, η̄) plane – rather than just a bound. This determination is
unique up to a sign. Note that for small values of φ the impact of the strong
phase in the expression for R∗ in (91) is a second-order effect. As long as
|φ| &

√
2∆ε̄3/2/ε̄3/2, the uncertainty in cosφ has a much smaller effect than

the uncertainty in ε̄3/2. With the present value of ε̄3/2 this is the case as long
as |φ| & 43◦. We believe it is a safe assumption to take |φ| < 25◦ (i.e. more
than twice the value obtained to leading order in 1/mb), so that cosφ > 0.9.

Solving the equation for R∗ in (91) for cosγ, and including the corrections
of O(εa), we find

cos γ = δEW −
XR + 1

2 ε̄3/2(X
2
R − 1 + δ2

EW)

cosφ + ε̄3/2δEW
+

εa cos η sin2γ

cosφ + ε̄3/2δEW
, (95)

where we have set cosφ = 1 in the numerator of the O(εa) term. Using the
QCD factorization theorem one finds that εa cos η ≈ −0.02 in the heavy-quark
limit 137, and we assign a 100% uncertainty to this estimate. In evaluating the
result (95) we scan the parameters in the ranges 0.15 ≤ ε̄3/2 ≤ 0.27, 0.55 ≤
δEW ≤ 0.73, −25◦ ≤ φ ≤ 25◦, and −0.04 ≤ εa cos η sin2γ ≤ 0. Figure 13 shows
the allowed regions in the (ρ̄, η̄) plane for the representative values XR = 0.25,
0.75, and 1.25 (from right to left). We stress that with this method a useful
constraint on the Wolfenstein parameters is obtained for any value of XR.
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Figure 13: Allowed regions in the (ρ̄, η̄) plane for fixed values of XR, obtained by varying
all theoretical parameters inside their respective ranges of uncertainty, as specified in the

text. The sign of η̄ is not determined.

Model-independent determination:
It is important that, once more precise data on B± → πK decays will become
available, it will be possible to test the prediction of a small strong phase
φ experimentally. To this end, one must determine the CP asymmetry Ã
defined in (90) in addition to the ratio R∗. From (91) it follows that for fixed
values of ε̄3/2 and δEW the quantities R∗ and Ã define contours in the (γ,φ)
plane, whose intersections determine the two phases up to possible discrete
ambiguities 120,121. Figure 14 shows these contours for some representative
values, assuming ε̄3/2 = 0.21, δEW = 0.64, and εa = 0. In practice, including
the uncertainties in the values of these parameters changes the contour lines
into contour bands. Typically, the spread of the bands induces an error in the
determination of γ of about 121 10◦. In the most general case there are up
to eight discrete solutions for the two phases, four of which are related to the
other four by a sign change (γ,φ) → (−γ,−φ). However, for typical values of
R∗ it turns out that often only four solutions exist, two of which are related
to the other two by a sign change. The theoretical prediction that φ is small
implies that solutions should exist where the contours intersect close to the
lower portion in the plot. Other solutions with large φ are strongly disfavored.
Note that according to (91) the sign of the CP asymmetry Ã fixes the relative
sign between the two phases γ and φ. If we trust the theoretical prediction
that φ is negative 137, it follows that in most cases there remains only a unique
solution for γ, i.e. the CP-violating phase γ can be determined without any
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discrete ambiguity.

Consider, as an example, the hypothetical case where R∗ = 0.8 and Ã =
−15%. Figure 14 then allows the four solutions where (γ,φ) ≈ (±82◦,∓21◦)
or (±158◦,∓78◦). The second pair of solutions is strongly disfavored because
of the large values of the strong phase φ. From the first pair of solutions, the
one with φ ≈ −21◦ is closest to our theoretical expectation that φ ≈ −11◦,
hence leaving γ ≈ 82◦ as the unique solution.

6 Sensitivity to New Physics

In the presence of New Physics the theoretical description of B± → πK decays
becomes more complicated. In particular, new CP-violating contributions to
the decay amplitudes may be induced. A detailed analysis of such effects has
been presented in 127. A convenient and completely general parameterization
of the two amplitudes in (84) is obtained by replacing

P → P ′ , εa eiγeiη → iρ eiφρ , δEW → a eiφa + ib eiφb , (96)
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where ρ, a, b are real hadronic parameters, and φρ, φa, φb are strong phases.
The terms iρ and ib change sign under a CP transformation. New Physics
effects parameterized by P ′ and ρ are isospin conserving, while those described
by a and b violate isospin symmetry. Note that the parameter P ′ cancels in all
ratios of branching ratios and thus does not affect the quantities R∗ and XR

as well as any CP asymmetry. Because the ratio R∗ in (89) would be 1 in the
limit of isospin symmetry, it is particularly sensitive to isospin-violating New
Physics contributions.

New Physics can affect the bound on γ derived from (92) as well as the
extraction of γ using the strategies discussed above. We will discuss these two
possibilities in turn.

6.1 Effects on the Bound on γ

The upper bound on R−1
∗ in (92) and the corresponding bound on XR shown

in Fig. 11 are model-independent results valid in the Standard Model. Note
that the extremal value of R−1

∗ is such that |XR| ≤ (1 + δEW) irrespective
of γ. A value of |XR| exceeding this bound would be a clear signal for New
Physics 121,124,127.

Consider first the case where New Physics may induce arbitrary CP-
violating contributions to the B → πK decay amplitudes, while preserving
isospin symmetry. Then the only change with respect to the Standard Model
is that the parameter ρ may no longer be as small as O(εa). Varying the
strong phases φ and φρ independently, and allowing for an arbitrarily large
New Physics contribution to ρ, one can derive the bound 127

|XR| ≤
√

1 − 2δEW cos γ + δ2
EW ≤ 1 + δEW . (97)

The extremal value is the same as in the Standard Model, i.e. isospin-conserving
New Physics effects cannot lead to a value of |XR| exceeding (1+δEW). For in-
termediate values of γ the Standard Model bound on XR is weakened; but even
for large ρ = O(1), corresponding to a significant New Physics contribution to
the decay amplitudes, the effect is small.

If both isospin-violating and isospin-conserving New Physics contributions
are present and involve new CP-violating phases, the analysis becomes more
complicated. Still, it is possible to derive model-independent bounds on XR.
Allowing for arbitrary values of ρ and all strong phases, one obtains 127

|XR| ≤
√

(|a| + | cos γ|)2 + (|b| + | sinγ|)2

≤ 1 +
√

a2 + b2 ≤
2

ε̄3/2
+ XR , (98)
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where the last inequality is relevant only in cases where
√

a2 + b2 % 1. The
important point to note is that with isospin-violating New Physics contribu-
tions the value of |XR| can exceed the upper bound in the Standard Model by
a potentially large amount. For instance, if

√
a2 + b2 is twice as large as in the

Standard Model, corresponding to a New Physics contribution to the decay
amplitudes of only 10–15%, then |XR| could be as large as 2.6 as compared
with the maximal value 1.8 allowed (for arbitrary γ) in the Standard Model.
Also, in the most general case where b and ρ are non-zero, the maximal value
|XR| can take is no longer restricted to occur at the endpoints γ = 0◦ or 180◦,
which are disfavored by the global analysis of the unitarity triangle115. Rather,
|XR| would take its maximal value if | tan γ| = |ρ| = |b/a|.

The present experimental value of XR in (93) has too large an error to
determine whether there is any deviation from the Standard Model. If XR

turns out to be larger than 1 (i.e. at least one third of a standard deviation
above its current central value), then an interpretation of this result in the
Standard Model would require a large value |γ| > 91◦ (see Fig. 11), which
would be difficult to accommodate in view of the upper bound implied by the
experimental constraint on Bs–B̄s mixing, thus providing evidence for New
Physics. If XR > 1.3, one could go a step further and conclude that the New
Physics must necessarily violate isospin 127.

6.2 Effects on the Determination of γ

A value of the observable R∗ violating the bound (92) would be an exciting
hint for New Physics. However, even if a future precise measurement will give
a value that is consistent with the Standard Model bound, B± → πK decays
provide an excellent testing ground for physics beyond the Standard Model.
This is so because New Physics may cause a significant shift in the value of γ
extracted using the strategies discussed earlier, leading to inconsistencies when
this value is compared with other determinations of γ.

A global fit of the unitarity triangle combining information from semi-
leptonic B decays, B–B̄ mixing, CP violation in the kaon system, and mixing-
induced CP violation in B → J/ψ KS decays provides information on γ which
in a few years will determine its value within a rather narrow range 115. Such
an indirect determination could be complemented by direct measurements of γ
using, e.g., B → DK(∗) decays, or using the triangle relation γ = 180◦−α−β
combined with a measurement of α. We will assume that a discrepancy of
more than 25◦ between the “true” γ = arg(V ∗

ub) and the value γπK extracted
in B± → πK decays will be observable after a few years of operation at the B
factories. This sets the benchmark for sensitivity to New Physics effects.
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In order to illustrate how big an effect New Physics could have on the
extracted value of γ, we consider the simplest case where there are no new
CP-violating couplings. Then all New Physics contributions in (96) are param-
eterized by the single parameter aNP ≡ a − δEW. A more general discussion
can be found in Ref. 127. We also assume for simplicity that the strong phase
φ is small, as suggested by (94). In this case the difference between the value
γπK extracted from B± → πK decays and the “true” value of γ is to a good
approximation given by

cos γπK . cos γ − aNP . (99)

In Fig. 15 we show contours of constant XR versus γ and a, assuming without
loss of generality that γ > 0. Obviously, even a moderate New Physics contri-
bution to the parameter a can induce a large shift in γ. Note that the present
central value of XR ≈ 0.7 is such that values of a less than the Standard Model
result a ≈ 0.64 are disfavored, since they would require values of γ exceeding
100◦, in conflict with the global analysis of the unitarity triangle 115.

6.3 Survey of New Physics models

In Ref. 127, we have explored how New Physics could affect purely hadronic
FCNC transitions of the type b̄ → s̄qq̄ focusing, in particular, on isospin vio-
lation. Unlike in the Standard Model, where isospin-violating effects in these
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Table 1: Maximal contributions to aNP and shifts in γ in extensions of the Standard Model.
For the case of supersymmetric models with R-parity the first (second) row corresponds
to maximal right-handed (left-handed) strange-bottom squark mixing. For the two-Higgs-

doublet models we take mH+ > 100 GeV and tan β > 1.

Model |aNP| |γπK − γ|

FCNC Z exchange 2.0 180◦

extra Z ′ boson 14 180◦

SUSY without R-parity 14 180◦

SUSY with R-parity 0.4 25◦

1.3 180◦

two-Higgs-doublet models 0.15 10◦

anomalous gauge-boson couplings 0.3 20◦

processes are suppressed by electroweak gauge couplings or small CKM matrix
elements, in many New Physics scenarios these effects are not parametrically
suppressed relative to isospin-conserving FCNC processes. In the language of
effective weak Hamiltonians this implies that the Wilson coefficients of QCD
and electroweak penguin operators are of a similar magnitude. For a large
class of New Physics models we found that the coefficients of the electroweak
penguin operators are, in fact, due to “trojan” penguins, which are neither
related to penguin diagrams nor of electroweak origin.

Specifically, we have considered: (a) models with tree-level FCNC cou-
plings of the Z boson, extended gauge models with an extra Z ′ boson, su-
persymmetric models with broken R-parity; (b) supersymmetric models with
R-parity conservation; (c) two-Higgs-doublet models, and models with anoma-
lous gauge-boson couplings. Some of these models have also been investigated
in Refs. 125 and 126. In case (a), the electroweak penguin coefficients can be
much larger than in the Standard Model because they are due to tree-level pro-
cesses. In case (b), these coefficients can compete with the ones of the Standard
Model because they arise from strong-interaction box diagrams, which scale
relative to the Standard Model like (αs/α)(m2

W /m2
SUSY). In models (c), on

the other hand, isospin-violating New Physics effects are not parametrically
enhanced and are generally smaller than in the Standard Model.

For each New Physics model we have explored which region of parame-
ter space can be probed by the B± → πK observables, and how big a de-
parture from the Standard Model predictions one can expect under realistic
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circumstances, taking into account all constraints on the model parameters
implied by other processes. Table 1 summarizes our estimates of the maximal
isospin-violating contributions to the decay amplitudes, as parameterized by
|aNP|. They are the potentially most important source of New Physics effects
in B± → πK decays. For comparison, we recall that in the Standard Model
a ≈ 0.64. Also shown are the corresponding maximal values of the difference
|γπK − γ|. As noted above, in models with tree-level FCNC couplings New
Physics effects can be dramatic, whereas in supersymmetric models with R-
parity conservation isospin-violating loop effects can be competitive with the
Standard Model. In the case of supersymmetric models with R-parity viola-
tion the bound (98) implies interesting limits on certain combinations of the
trilinear couplings λ′

ijk and λ′′
ijk , as discussed in Ref. 127.

7 Concluding Remarks

We have presented an introduction to recent developments in the theory and
phenomenology of B physics, focusing on heavy-quark symmetry, exclusive
and inclusive weak decays of B mesons, and rare B decays that are sensitive
to CP-violating weak phases of the Standard Model. The theoretical tools that
allow us to perform quantitative calculations are various forms of heavy-quark
expansions, i.e. expansions in logarithms and inverse powers of the large scale
provided by the heavy-quark mass, mb % ΛQCD.

Heavy-flavor physics is a rich and diverse area of current research, which
is characterized by a fruitful interplay between theory and experiments. This
has led to many significant discoveries and developments. B physics has the
potential to determine many important parameters of the electroweak theory
and to test the Standard Model at low energies. At the same time, through
the study of CP violation it provides a window to physics beyond the Standard
Model. Indeed, there is a fair chance that such New Physics will first be seen
at the B factories, before it can be explored in future collider experiments at
the Tevatron and the Large Hadron Collider.
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