Recent Results on Rare B Decays with BaBar

Martino Margoni
Universita` di Padova and INFN
on behalf of the BaBar Collaboration

Motivation

\[B \rightarrow K^* \, l^+l^- \]
\[B^+ \rightarrow K^+ \, \tau^+\tau^- \]
\[B \rightarrow K \pi\pi\gamma \]

\{ Radiative Penguins \}
Motivation
Rare B decays: New Physics probes

Search for deviations from Standard Model (SM) predictions due to virtual contributions of new heavy particles in loop processes

- Compare experimental results with very precise SM expectations

The most interesting processes are those that are strongly suppressed in the SM: FCNC (X_{s} l^{+} l^{-}) [but also X_{s} \gamma, leptonic decays, LFV, CPV in B^0 mixing, c & \tau]

- New Physics (NP) could increase expectations by orders of magnitude [e.g. A. Buras, arXiv:0910.1032]

Rare B decays can probe high scales potentially sensitive to NP beyond the direct reach of LHC:

\[\Lambda_{NP} \sim \frac{M_{W}}{g^2} \sqrt{\frac{16\pi^2}{|V_{ts}^* V_{tb}|}} \sim 10 \text{ TeV} \]
Rare B decays: New Physics probes

Weak decay of hadron M into final state F described via an Effective Hamiltonian expressed by means of Operator Product Expansion:

$$A(M \rightarrow F) = \langle F | H_{\text{eff}} | M \rangle = \frac{G_F}{\sqrt{2}} \sum_i V^i_{\text{CKM}} C_i(\mu) \langle F | Q_i(\mu) | M \rangle$$

$C_i(\mu)$: Wilson Coefficients (perturbative short distance couplings)

$Q_i(\mu)$: Hadronic Matrix Elements (non-perturbative long distance effects)

- NP could modify Wilson Coefficients $C_i(\mu)$ and/or add new $Q_i(\mu)$ operators

Complementary information from different rare decays:

$B \rightarrow \mu\mu$: Scalar/Pseudoscalar interactions

$B \rightarrow K^{(*)}\mu\mu$: Vector/axial interactions
Measurement of Angular Asymmetries in the Decay
$B \rightarrow K^* \pi^+ \pi^-$

[471 $\Upsilon(4S)$ events]

Phys. Rev. D93, 052015 (2016)
$B \rightarrow \kappa^*/\pm/\mp$

FCNC process forbidden at tree level, BR~10^{-6}: Probe the SM!

- **Sensitive to the effects of NP in photon, vector and axial-vector couplings which can enter at the same order as SM contributions**
- **Complementary information to $B \rightarrow \mu^+\mu^-$**

- **Amplitudes expressed using OPE in terms of:**
 - **Hadronic Form Factors**
 - (accuracy ~20%)
 - [A. Barucha et al. arXiv 1004.3249]
 - **Wilson coefficients** C_{eff}^7, C_{eff}^9, C_{eff}^{10}
 - **Clean theoretical predictions especially at low $q^2=m^2(\mu^+\mu^-)$**
 - **Experimentally clean signature**

Capri 2016, 11-13 June 2016

M. Margonî Università` di Padova & INFN
The decay $B \rightarrow K^* l^+ l^-$ involves observables such as:

- Forward-backward muon asymmetry (A_{FB})
- Fraction of longitudinally polarized K^* (F_L)

Differential Amplitudes:

\[
\frac{1}{\Gamma(q^2)} \frac{d\Gamma}{d(\cos \theta_K)} = \frac{3}{2} F_L(q^2) \cos^2 \theta_K + \frac{3}{4} (1 - F_L(q^2))(1 - \cos^2 \theta_K)
\]

\[
\frac{1}{\Gamma(q^2)} \frac{d\Gamma}{d(\cos \theta_\ell)} = \frac{3}{4} F_L(q^2)(1 - \cos^2 \theta_\ell) + \frac{3}{8} (1 - F_L(q^2))(1 + \cos^2 \theta_\ell) + A_{FE}(q^2) \cos \theta_\ell.
\]

Kinematics of the decay $B \rightarrow V l^+ l^-$ ($V = K^*$, ϕ, ρ) determined by three angles:

- θ_l, θ_K, ϕ

Event Yields reconstructed in bins of $q^2 = m^2(l^+ l^-)$

Observables Include:

- A_{FB} (forward-backward muon asymmetry)
- F_L (fraction of longitudinally polarized K^*)
- $P_2 = -\frac{2}{3} \frac{A_{FB}}{1 - F_L}$ (with lower uncertainty from hadronic Form Factors)
B → K* /+-

Kinematics of the decay B → V /+-

(V=K*, φ, ρ) determined by three angles:

- θl, θK, φ

Event Yields reconstructed in bins of

q²=m²(/+-)

Differential Amplitudes:

\[
\frac{1}{\Gamma(q^2)} \frac{d\Gamma}{d(\cos \theta_K)} = \frac{3}{2} F_L(q^2) \cos^2 \theta_K + \frac{3}{4} (1 - F_L(q^2))(1 - \cos^2 \theta_K)
\]

\[
\frac{1}{\Gamma(q^2)} \frac{d\Gamma}{d(\cos \theta_l)} = \frac{3}{4} F_L(q^2)(1 - \cos^2 \theta_l) + \frac{3}{8} (1 - F_L(q^2))(1 + \cos^2 \theta_l) + A_{FE}(q^2) \cos \theta_l.
\]

Non-resonant S-wave B → Kπ /+- contribution neglected

- Reflects in absolute bias ~ 0.01 on F_L & A_{FB} (smaller than statistical & systematic uncertainties)
Measurement performed using 5 modes:

- $B^+ \rightarrow K^{*+} (\rightarrow K_s^+ \pi^+) \mu^+ \mu^-$, $B^+ \rightarrow K^{*+} (\rightarrow K_s^+ \pi^+) e^+ e^-$, $B^+ \rightarrow K^{*+} (\rightarrow K^0 \pi^0) e^+ e^-$
- $B^0 \rightarrow K^{*0} (\rightarrow K^+ \pi^-) \mu^+ \mu^-$, $B^+ \rightarrow K^{*0} (\rightarrow K^+ \pi^-) e^+ e^-$

- $K^* \ J/\psi$ and $K^* \psi(2S)$ regions used as control samples to validate fitting procedure.

<table>
<thead>
<tr>
<th>q^2 bin</th>
<th>q^2 min (GeV2/c4)</th>
<th>q^2 max (GeV2/c4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1^2</td>
<td>0.10</td>
<td>2.00</td>
</tr>
<tr>
<td>q_2^2</td>
<td>2.00</td>
<td>4.30</td>
</tr>
<tr>
<td>q_3^2</td>
<td>4.30</td>
<td>8.12</td>
</tr>
<tr>
<td>q_4^2</td>
<td>10.11</td>
<td>12.89</td>
</tr>
<tr>
<td>q_5^2</td>
<td>14.21</td>
<td>$(m_B - m_{K^*})^2$</td>
</tr>
<tr>
<td>q_6^2</td>
<td>1.00</td>
<td>6.00</td>
</tr>
</tbody>
</table>

Events reconstructed by means of:

- $m_{ES} = \sqrt{E_{Beam}^*} - P_B^* \cdot 2$
- $\Delta E = E_B^* - E_{Beam}^*$

Candidate multiplicity ~ 1.4 (1.1) in dielectron (dimuon) modes.

Best candidate selected based on ΔE
Measurement performed using 5 modes:

\[B^+ \rightarrow K^{*+} (\rightarrow K^+_s \pi^+) \mu^+\mu^- , B^+ \rightarrow K^{*+} (\rightarrow K^+_s \pi^+) e^+\mu^- , B^+ \rightarrow K^{*+} (\rightarrow K^+\pi^0) e^+e^- \]

\[B^0 \rightarrow K^{*0} (\rightarrow K^+\pi^-) \mu^+\mu^- , B^+ \rightarrow K^{*0} (\rightarrow K^+\pi^-) e^+e^- \]

\[K^* J/\psi \text{ and } K^* \psi(2S) \text{ regions used as control samples to validate fitting procedure} \]

<table>
<thead>
<tr>
<th>(q^2) bin</th>
<th>(q^2) min (GeV(^2/c^4))</th>
<th>(q^2) max (GeV(^2/c^4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1^2)</td>
<td>0.10</td>
<td>2.00</td>
</tr>
<tr>
<td>(q_2^2)</td>
<td>2.00</td>
<td>4.30</td>
</tr>
<tr>
<td>(q_3^2)</td>
<td>4.30</td>
<td>8.12</td>
</tr>
<tr>
<td>(q_4^2)</td>
<td>10.11</td>
<td>12.89</td>
</tr>
<tr>
<td>(q_5^2)</td>
<td>14.21</td>
<td>((m_B - m_{K^*})^2)</td>
</tr>
<tr>
<td>(q_6^2)</td>
<td>1.00</td>
<td>6.00</td>
</tr>
</tbody>
</table>

BKG from Continuum and \(B\bar{B} \) reduced using a Likelihood Ratio (\(L_R \)) defined from outputs of eight BDTs exploiting kinematical and topological quantities.
Yields, PDFs shapes & normalizations in the different q^2 bins extracted by a 3D (m_{ES}, $m(K\pi)$, L_R) fit

Example: $q^2 > 14.21$ GeV2

$B^0 \rightarrow K^+\pi^- e^+e^-$

$B^0 \rightarrow K^+\pi^- \mu^+\mu^-$

Capri 2016, 11-13 June 2016

M. Margoni Università di Padova & INFN
$B \rightarrow K^* l^+ l^-$

F_L in the different q^2 bins extracted as only free parameter by a 4D(m_{ES}, $m(K\pi)$, L_R, $\cos(\theta_K)$) fit using PDFs defined in the previous step

Fit model for F_L and A_{FB} validated on $K^* J/\psi$ and $K^* \psi(2S)$

BKG shapes from m_{ES} side bands (checked on LFV $B \rightarrow K^* e\mu$)

First $B^+ \rightarrow K^{*+} l^+ l^-$ angular analysis

Example: $1 < q^2 < 6$ GeV2

\[\frac{1}{\Gamma(q^2)} \frac{d\Gamma}{d(\cos\theta_K)} = \frac{3}{2} F_L(q^2) \cos^2\theta_K + \frac{3}{4} (1 - F_L(q^2))(1 - \cos^2\theta_K) \]
$B \rightarrow K^*/l^+l^-$

A_{FB} in the different q^2 bins extracted as only free parameter by a
4D(m_{ES}, $m(K\pi)$, L_R, $\cos(\theta_l)$) fit using PDFs defined in the previous step
F_L fixed to previous result

First $B^+ \rightarrow K^{*+} l^+l^-$ angular analysis

Example: $1 < q^2 < 6 \text{ GeV}^2$

\[
\frac{1}{\Gamma(q^2)} \frac{d\Gamma}{d(\cos\theta_l)} = \frac{3}{4} F_L(q^2)(1 - \cos^2\theta_l) + \frac{3}{8} (1 - F_L(q^2))(1 + \cos^2\theta_l) + A_{FB}(q^2) \cos\theta_l.
\]

Capri 2016, 11-13 June 2016

M.Margoni Universita` di Padova & INFN
Angular Variables Results versus q^2: Tension with SM in $B^+ F_L$ at low q^2
Angular Variable Results for $1 < q^2 < 6 \text{ GeV}^2$

$1 < q^2 < 6 \text{ GeV}^2$: Perturbative window with theory error under good control, away from $q^2 \rightarrow 0$ photon pole and $c\bar{c}$ resonances at higher q^2

Small F_L value for $B^+ \rightarrow K^* l^+ l^-$ (First Angular Analysis)
\[P_2 = \frac{-2}{3} \frac{A_{FB}}{1 - F_L} \]: Reduced theoretical uncertainty & greater sensitivity to non-SM contributions

Theoretical predictions available only at low \(q^2 \) \[\text{JHEP 1412, 125 (2014)} \]

Slight tension observed with SM
$B \rightarrow K^*/\pm/\mp$

$P_2 = -\frac{2}{3} \frac{A_{FB}}{1 - F_L}$: Reduced theoretical uncertainty & greater sensitivity to non-SM contributions

Result dominated by statistical error
Systematics from BKG modeling, signal angular efficiency, PDFs parameterization & cross feed from different signal decays
$B^+ \rightarrow K^+ \tau^+ \tau^-$

“Search for $B^+ \rightarrow K^+ \tau^+ \tau^-$ at the BaBar Experiment”

[471 $\Upsilon(4S)$ events]

arXiv:1605.09637

$B^+ \rightarrow K^+ \tau^+ \tau^-$

Highly suppressed in the SM: $\text{BR} \sim (1-2) \times 10^{-7}$

Provides additional sensitivity to New Physics due to third-generation couplings & large τ mass

$\psi(2S)$

$\tan \beta = 30$

Different Higgs mass scenarios

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m_{h^0} (GeV)</td>
<td>m_{H^\pm} (GeV)</td>
</tr>
<tr>
<td>Mass set-1</td>
<td>80</td>
</tr>
<tr>
<td>Mass set-2</td>
<td>250</td>
</tr>
<tr>
<td>Mass set-3</td>
<td>100</td>
</tr>
</tbody>
</table>

Capri 2016, 11-13 June 2016

M.Margoni Universita` di Padova & INFN
Measurement performed using only leptonic τ decays:

- $B^+ \rightarrow K^+ \tau^+ \tau^-$, $\tau \rightarrow \mu \nu_{\tau} \nu_{\mu}$, $\tau \rightarrow e \nu_{\tau} \nu_e$

- Three signal modes: ee, $\mu\mu$, $e\mu$

Many neutrinos in the final states: lack of kinematic constraints

- Signal events selected on the recoil of fully reconstructed hadronic $B \rightarrow DX$ decays (B_{tag}) ($D = D^{(*)0}, D^{(*)\pm}, D^{(*)}, J/\psi$; $X < 6 h$ ($h=K, \pi$))

\[B^+ \rightarrow K^+ \tau^+ \tau^- \]

Capri 2016, 11-13 June 2016

M. Margoni Università di Padova & INFN
$B^+ \rightarrow K^+ \tau^+ \tau^-$

B\(_{\text{tag}}\) Reconstruction

B hadronic decays selected by means of \(m_{ES} \& \Delta E\)

Best candidate per event retained from the highest purity mode (computed from MC) \& \(\Delta E\)

Only B\(_{\text{tag}}\) candidates with Purity > 40% used \(\rightarrow \varepsilon(B_{\text{tag}}) = (0.2 - 0.4)\%\)

Continuum events suppressed by exploiting a Likelihood Selector consisting of six event-shape variables (e.g. Thrust, missing momentum vector, \(P(B_{\text{tag}})\), angles between them,...)

\(LS > 0.5\) removes > 75% of BKG retaining 80% of the signal
$B^+ \rightarrow K^{+}\tau^{+}\tau^{-}$

$B \rightarrow K^{+}\tau^{+}\tau^{-}$ Reconstruction

- Signal candidates reconstructed from events with three charged particles, identified as K^{+} two leptons, not belonging to B_{tag}
- Vetos applied against J/ψ, $D^{0} \rightarrow K\pi (\rightarrow \mu)$, $\gamma \rightarrow e^{+}e^{-}$, $\pi^{0} \rightarrow \gamma\gamma$

Dominant BKG from $B \rightarrow D^{(*)} l^{\pm} \nu$, $D^{(*)} \rightarrow K l^{\pm} \nu$ (same final-state) suppressed by a Neural Network using angles between momenta, $m(K^{+}l^{-})$ and missing energy
$\mathcal{B}^+ \to K^+ \tau^+ \tau^-$

BR for each of the signal modes:

$$\mathcal{B}_i = \frac{N_{\text{obs}}^i - N_{\text{bkg}}^i}{\epsilon_{\text{sig}}^i N_{BB}}$$

$N_{BB} = 471 \times 10^6$

<table>
<thead>
<tr>
<th>Mode</th>
<th>$e^+ e^-$</th>
<th>$\mu^+ \mu^-$</th>
<th>$e^+ \mu^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{bkg}</td>
<td>49.4±2.4±2.9</td>
<td>45.8±2.4±3.2</td>
<td>59.2±2.8±3.5</td>
</tr>
<tr>
<td>$\epsilon_{\text{sig}}^i \times 10^{-5}$</td>
<td>1.1±0.2±0.1</td>
<td>1.3±0.2±0.1</td>
<td>2.1±0.2±0.2</td>
</tr>
<tr>
<td>N_{obs}</td>
<td>45</td>
<td>39</td>
<td>92</td>
</tr>
<tr>
<td>Significance (σ)</td>
<td>-0.6</td>
<td>-0.9</td>
<td>3.7</td>
</tr>
</tbody>
</table>

- Signal efficiencies and expected Peaking BKG events (92%) obtained from simulation corrected to reproduce B_{tag} data yield
- Expected combinatorial BKG events (8%) from data m_{ES} Side Band
$B^+ \rightarrow K^+ \tau^+ \tau^-$

BR for each of the signal modes:

$$\mathcal{B}_i = \frac{N_{\text{obs}}^i - N_{\text{bkg}}^i}{\varepsilon_{\text{sig}}^i N_{B\bar{B}}}$$

<table>
<thead>
<tr>
<th></th>
<th>e^+e^-</th>
<th>$\mu^+\mu^-$</th>
<th>$e^+\mu^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{bkg}^i</td>
<td>49.4±2.4±2.9</td>
<td>45.8±2.4 ±3.2</td>
<td>59.2±2.8±3.5</td>
</tr>
<tr>
<td>$\varepsilon_{\text{sig}}^i \times 10^{-5}$</td>
<td>1.1 ±0.2±0.1</td>
<td>1.3±0.2±0.1</td>
<td>2.1±0.2±0.2</td>
</tr>
<tr>
<td>N_{obs}^i</td>
<td>45</td>
<td>39</td>
<td>92</td>
</tr>
<tr>
<td>Significance (σ)</td>
<td>-0.6</td>
<td>-0.9</td>
<td>3.7</td>
</tr>
</tbody>
</table>

$N_{B\bar{B}} = 471 \times 10^6$

e$^+e^-$, $\mu^+\mu^-$ yields show consistency with expected BKG events.

$e\mu$ channel has excess of 3.7 σ:

- No evident signal-like behaviour or systematic problems from kinematic distributions.
$B^+ \rightarrow K^+ \tau^+ \tau^-$

BR for each of the signal modes:

$$\mathcal{B}_i = \frac{N_{\text{obs}}^i - N_{\text{bkg}}^i}{\epsilon_{\text{sig}}^i N_{BB}}$$

<table>
<thead>
<tr>
<th></th>
<th>$e^+ e^-$</th>
<th>$\mu^+ \mu^-$</th>
<th>$e^+ \mu^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{bkg}^i</td>
<td>49.4±2.4±2.9</td>
<td>45.8±2.4±3.2</td>
<td>59.2±2.8±3.5</td>
</tr>
<tr>
<td>$\epsilon_{\text{sig}}^i (\times10^{-5})$</td>
<td>1.1±0.2±0.1</td>
<td>1.3±0.2±0.1</td>
<td>2.1±0.2±0.2</td>
</tr>
<tr>
<td>N_{obs}^i</td>
<td>45</td>
<td>39</td>
<td>92</td>
</tr>
<tr>
<td>Significance (σ)</td>
<td>-0.6</td>
<td>-0.9</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Overall significance < 2σ:

$$\text{BR}(B^+ \rightarrow K^+ \tau^+ \tau^-) < 2.25 \times 10^{-3} \ (90\% \text{ CL})$$ First Measurement

Systematics from B_{tag} yield correction, theoretical models for efficiency determination, PID, and Data/MC agreement
"Time-dependent analysis of $B^0 \rightarrow K_S \pi \pi^+ \gamma$ and studies of the $K^+ \pi^- \pi^+$ system in $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$ decays"

[471 $M\Upsilon(4S)$ events]

Radiative decays and the \(\gamma \) polarization

\(b \to s \gamma \): described in the SM as an interaction between left-handed quarks and right-handed antiquarks:

\[
\lambda = \frac{\vec{S} \cdot \vec{p}}{|\vec{p}|}
\]

\(b \to s \gamma_L \) & \(\bar{b} \to \bar{s} \gamma_R \)

\(B^0 \to f_{CP} \) & \(\bar{B}^0 \to X \)

\(B^0 \to f_{CP} \)

\(b \to s \gamma_{L/R} \) & \(\bar{b} \to \bar{s} \gamma_{R/L} \)

New heavy particles in the loop could enhance opposite helicity \(\gamma \) contribution

\(\Rightarrow \) Mixing induced CP Asymmetry \(= 0 \)

\(\Rightarrow \) Mixing induced CP Asymmetry \(\neq 0 \)
Measurement of \(A_{CP} \) in \(B^0 \rightarrow K_S \rho \gamma \)

\[
A_{CP}(\Delta t) = \frac{\Gamma(B^0(\Delta t) \rightarrow f_{CP}\gamma) - \Gamma(B^0(\Delta t) \rightarrow f_{CP}\gamma)}{\Gamma(B^0(\Delta t) \rightarrow f_{CP}\gamma) + \Gamma(B^0(\Delta t) \rightarrow f_{CP}\gamma)} = S_{f_{CP}} \sin(\Delta m_d\Delta t) - C_{f_{CP}} \cos(\Delta m_d\Delta t)
\]

- SM predicts \(S_{f_{CP}} = m_s/m_b = 0.02 \)
- Look for enhancement due to new-particle exchange

[\(\Delta t = t_{Rec} - t_{Tag} \) from distance between the two \(B^0 \) decay vertices in the event]

Experimentally: perform a time-dependent analysis of \(B^0 \rightarrow K_S \rho \gamma \)

Main Issue: dilution from irreducible BKG from non CP eigenstates:

- CP eigenstate \(B^0 \rightarrow K_S \rho \gamma \)
- Non CP eigenstate \(B^0 \rightarrow K^*(K_S \pi)\pi \gamma \)
Measurement of A_{CP} in $B^0 \rightarrow K_S \rho \gamma$

$$A_{CP} (\Delta t) = \frac{\Gamma (B^0 (\Delta t) \rightarrow f_{CP} \gamma) - \Gamma (B^0 (\Delta t) \rightarrow f_{CP} \gamma)}{\Gamma (B^0 (\Delta t) \rightarrow f_{CP} \gamma) + \Gamma (B^0 (\Delta t) \rightarrow f_{CP} \gamma)} = S_{f_{CP}} \sin (\Delta m_d \Delta t) - C_{f_{CP}} \cos (\Delta m_d \Delta t)$$

SM predicts $S_{f_{CP}} = m_s / m_b = 0.02$

Look for enhancement due to new-particle exchange

Experimentally: perform a time-dependent analysis of $B^0 \rightarrow K_S \rho \gamma$

Main Issue: dilution from irreducible BKG from non CP eigenstates:

$\Delta t = t_{Rec} - t_{Tag}$ from distance between the two B^0 decay vertices in the event

CP eigenstate $B^0 \rightarrow K_S \rho \gamma$
Non CP eigenstate $B^0 \rightarrow K^* (K_S \pi) \pi \gamma$

Dilution: $D_{K_S^0 \rho \gamma} = S_{K_S^0 \pi^+ \pi^- \gamma}$

Effective value on inclusive $K_S \pi \pi \gamma$ sample

Signal value

Capri 2016, 11-13 June 2016

M. Margonì Università di Padova & INFN
Measurement of A_{CP} in $B^0 \rightarrow K^0 \rho \gamma$

Dilution expressed in terms of few resonant decay modes:

$\rho^0 K_S, K^*\pi^-, K^*-\pi^+, (K\pi)^*\pi^-, (K\pi)^*\pi^+\pi^- S$-wave $(K^*_0(1430) + NR \text{ component})$ and their interference:

\[
D_{K^0\rho\gamma} = \frac{S_{K^0\pi\pi\gamma}}{S_{K^0\rho\gamma}} = \frac{\int \left| A_{\rho K^0_S}\right|^2 - \left| A_{K^*\pi^-}\right|^2 - \left| A_{(K\pi)^*\pi^-}\right|^2 + 2\Re(A_{\rho K^0_S}^*A_{K^*\pi^-}) + 2\Im(A_{\rho K^0_S}^*A_{(K\pi)^*\pi^-}) dm^2}{\int \left| A_{\rho K^0_S}\right|^2 + \left| A_{K^*\pi^-}\right|^2 + \left| A_{(K\pi)^*\pi^-}\right|^2 + 2\Re(A_{\rho K^0_S}^*A_{K^*\pi^-}) + 2\Im(A_{\rho K^0_S}^*A_{(K\pi)^*\pi^-}) dm^2}
\]

[LAL-15-75 (2015)]

Ideal World: Perform a time-dependent Amplitude Analysis

Real World: Not enough statistics, dilution computed from the amplitudes of the intermediate resonances from $B^+ \rightarrow K^+\pi^+\pi^-\gamma$

assuming Isospin Symmetry
$B^+ \rightarrow K^+\pi^+\pi^-\gamma$ Selection

$B^+ \rightarrow K^+\pi^+\pi^-\gamma$ events selected by means of:

- $1.5 < E^*_\gamma < 3.5 \text{ GeV}$
- m_{ES}^*
- ΔE

Continuum BKG suppressed using a Fisher exploiting topological quantities

$e^+e^- \rightarrow \tau(4S) \rightarrow B\bar{B}$
$e^+e^- \rightarrow q\bar{q}$

$p_B^* \sim 340 \text{ MeV/c}$

Capri 2016, 11-13 June 2016

M. Margoni Universita` di Padova & INFN
\[B^+ \rightarrow K^+\pi^+\pi^-\gamma \]

Selection

- \(B^+ \rightarrow K^+\pi^+\pi^-\gamma \) signal yield extracted from an unbinned fit to \(m_{ES}, \Delta E \) and Fisher discriminant:
 - \(N_{\text{sig}} = 2441 \pm 91 \pm 5 \)
 - \(\text{BF}(B^+ \rightarrow K^+\pi^+\pi^-\gamma) = (24.5 \pm 0.9 \pm 1.2) \times 10^{-6} \)

- \(m(K\pi\pi), m(K\pi) \) and \(m(\pi\pi) \) spectra obtained using \(S \) Plot technique

\[[\text{NIM A 555, 356-369 (2005)}] \]
\[B^+ \to K^+\pi^+\pi^- \gamma \] Analysis

B^+s of the various resonances decaying to $K\pi\pi$ extracted from the $m(K\pi\pi)$ spectrum

<table>
<thead>
<tr>
<th>Mode</th>
<th>$B(B^+ \to \text{Mode}) \times 10^{-6}$</th>
<th>Previous world average [18] $\times 10^{-6}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^+ \to K^+\pi^+\pi^- \gamma$</td>
<td>\ldots</td>
<td>27.6 ± 2.2</td>
</tr>
<tr>
<td>$K_1(1270)^+\gamma$</td>
<td>$14.5^{+2.1+1.2}_{-1.4-1.2}$</td>
<td>43 ± 13</td>
</tr>
<tr>
<td>$K_1(1400)^+\gamma$</td>
<td>$4.1^{+1.9+1.2}_{-1.2-1.0}$</td>
<td><15 at 90% C.L.</td>
</tr>
<tr>
<td>$K^*(1410)^+\gamma$</td>
<td>$11.0^{+2.2+2.1}_{-2.0-1.1}$</td>
<td>n/a</td>
</tr>
<tr>
<td>$K_2^*(1430)^+\gamma$</td>
<td>$1.2^{+1.0+1.2}_{-0.7-1.5}$</td>
<td>14 ± 4</td>
</tr>
<tr>
<td>$K^*(1680)^+\gamma$</td>
<td>$15.9^{+2.2+3.2}_{-1.9-2.4}$</td>
<td><1900 at 90% C.L.</td>
</tr>
</tbody>
</table>

$B^+ \to K^+\pi^+\pi^- \gamma$
$B^+ \rightarrow K^{+}\pi^{+}\pi^{-}\gamma$ Analysis

- Extraction of the dilution from amplitudes of intermediate states decaying to $K\pi$ and $\pi\pi$
- Full amplitude analysis in the $m(K\pi)-m(\pi\pi)$ not possible due to small statistics
- Perform a 1D fit to $m(K\pi)$ using as inputs the BRs obtained from the $m(K\pi\pi)$ fit

<table>
<thead>
<tr>
<th>Mode</th>
<th>$\mathcal{B}(B^+ \rightarrow \text{Mode}) \times 10^{-6}$</th>
<th>Previous world average $[18]$ ($\times 10^{-6}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^*(892)^0\pi^+\gamma$</td>
<td>15.6 ± 0.6 ± 0.5</td>
<td>23.4 ± 0.9$^{+0.8}_{-0.7}$</td>
</tr>
<tr>
<td>$K^+\rho(770)^0\gamma$</td>
<td>8.1 ± 0.4$^{+0.8}_{-0.7}$</td>
<td>8.2 ± 0.4 ± 0.8 ± 0.02</td>
</tr>
<tr>
<td>$(K\pi)_0^0\pi^+\gamma$</td>
<td>10.3$^{+0.7}{-0.8}$$^{+1.5}{-2.0}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>$(K\pi)^0_0\pi^+\gamma$ (NR)</td>
<td>\cdots</td>
<td>< 20 at 90% CL</td>
</tr>
<tr>
<td>$K^*_0(1430)^0\pi^+\gamma$</td>
<td>0.82 ± 0.06$^{+0.12}_{-0.16}$</td>
<td>9.9 ± 0.7$^{+1.5}_{-1.9}$</td>
</tr>
<tr>
<td>$K^*_0(1430)^0\pi^+\gamma$ (NR)</td>
<td>\cdots</td>
<td>< 9.2 at 90% CL</td>
</tr>
</tbody>
</table>
Extraction of the dilution from amplitudes of intermediate states decaying to $K\pi$ and $\pi\pi$.

Full amplitude analysis in the $m(K\pi)-m(\pi\pi)$ not possible due to small statistics.

Perform a 1D fit to $m(K\pi)$ using as inputs the BRs obtained from the $m(K\pi\pi)$ fit.

\[D_{K^0_S\rho\gamma} = \Gamma(A_\rho, A_{K^*}, A_{(K\pi)S\text{-wave}}) = -0.78^{+0.19}_{-0.17} \]
Measurement of A_{CP} in $B^0 \rightarrow K_S \gamma$

Time-dependent analysis of $B^0 \rightarrow K_S \gamma$ decays

Event yield and CP parameters C and S extracted from a fit to m_{ES}, ΔE, Fisher and Δt

Sample divided in 6 mutually exclusive tagging categories c

\[P^i_j (m_{ES}, \Delta E, \mathcal{F}, \Delta t, \sigma_{\Delta t}; q_{\text{tag}}, c) = P^i_j (m_{ES}) P^i_j (\Delta E) P^i_j (\mathcal{F}) P^i_j (\Delta t, \sigma_{\Delta t}; q_{\text{tag}}, c) \]

$c = \text{tagging category}$

$q_{\text{tag}} = 1 (B_{\text{tag}} = B^0)$

$q_{\text{tag}} = -1 (B_{\text{tag}} = \overline{B}^0)$
Measurement of A_{CP} in $B^0 \to K_s \rho \gamma$

Time-dependent analysis of $B^0 \to K_s \rho \gamma$ decays

Event yield and CP parameters C and S extracted from a fit to m_{ES}, ΔE, Fisher and Δt

Sample divided in 6 mutually exclusive tagging categories c

Tagging imperfection D, ΔD & Δt Resolution R_{sig} from quarkonium $\sin(2\beta)$ analysis [PRL 99, 171803 (2007)]
Measurement of A_{CP} in $B^0 \rightarrow K_S \rho \gamma$

Results:

$\mathcal{B}(B^0 \rightarrow K_S \pi \pi \gamma) = (20.5 \pm 2.0^{+2.6}_{-2.2}) \times 10^{-6}$

$S_{K_S \pi \pi \gamma} = 0.14 \pm 0.25 \pm 0.03$

$C_{K_S \pi \pi \gamma} = -0.39 \pm 0.20^{+0.03}_{-0.02}$

After correcting for $D_{K^0_S \rho \gamma}$:

$S_{K_S \rho \gamma} = -0.18 \pm 0.32^{+0.06}_{-0.05}$

Systematics from resonance modelling and ΔE, m_{ES} and Fisher distributions shape

Results consistent with Belle [PRL 101, 251601 (2008)]
Conclusions
Conclusions

Rare B decays are an excellent laboratory for the search for physics beyond the SM.

In the last few years several new measurements from LHC & B-Factories experiments released with impressive experimental precision.

Almost all the results are in agreement with expectations but some tension is present in some sectors: BaBar F_{LL} for \(B^+ \to K^{(*)}l^+l^- \) (shown today), \(B \to K^{(*)}\mu\mu \) (P5', \(BR(B \to K\mu\mu) / BR(B \to \text{Kee}) \)),

(but also \(B \to D^{(*)}\tau\nu/B \to D^{(*)}\mu\nu \))

Strong constraints on NP models from flavor measurements.

Rich program of measurements is expected from LHC/Belle II experiments in the coming years.

Could we have chances to discover/understand NP in the flavor sector in the near future?
Backup
Event Yields:

<table>
<thead>
<tr>
<th>Mode</th>
<th>q_0^2</th>
<th>q_1^2</th>
<th>q_2^2</th>
<th>q_3^2</th>
<th>q_4^2</th>
<th>q_5^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B \to K^* \ell^+ \ell^-$</td>
<td>40.8 ± 8.4</td>
<td>31.7 ± 7.1</td>
<td>11.9 ± 5.5</td>
<td>21.3 ± 8.5</td>
<td>31.9 ± 9.2</td>
<td>33.2 ± 7.8</td>
</tr>
<tr>
<td>$B^+ \to K^{**} \ell^+ \ell^-$</td>
<td>17.7 ± 5.2</td>
<td>8.7 ± 4.1</td>
<td>3.8 ± 4.0</td>
<td>7.7 ± 5.6</td>
<td>9.0 ± 4.8</td>
<td>9.4 ± 4.2</td>
</tr>
<tr>
<td>$B^0 \to K^{*0} \ell^+ \ell^-$</td>
<td>23.1 ± 6.6</td>
<td>22.9 ± 5.8</td>
<td>8.1 ± 3.8</td>
<td>13.7 ± 6.4</td>
<td>22.8 ± 7.8</td>
<td>23.8 ± 6.6</td>
</tr>
</tbody>
</table>

Systematics:
- PDF shapes and parameter statistical error
- F_L statistical error propagated in A_{FB} fit
- Modeling of BKG PDF shape and Signal efficiency
- Signal crossfeed
- Fit bias
- Stability vs cuts
$B \to K^{*} \ell \ell$ Angular Analysis: P_5' parameter

- **LHCb full statistics result on P_5': discrepancy at 3.4 σ level**
 - [JHEP 02, 104 (2016)]

- **Belle confirms the tension at 2.1 σ level** [arXiv:1604.04042]

- **Need to control the charm penguin to disentangle SM from NP in C_7^{eff} and C_9^{eff}**

Capri 2016, 11-13 June 2016

M. Margonni - Università di Padova & INFN
$B \rightarrow K^* \mu^+ \mu^-$: CMS Results

Results consistent with SM

- Systematics from BKG PDF shapes, efficiency, simulation mismodeling and fit bias.
- Theoretical predictions:
 - Light-cone sum rules at low q^2 and extrapolation at high q^2 [JHEP 09 089 (2010), JHEP 02 010 (2013)]
 - Lattice [Phys. Rev. D89 094501 (2014)]
$B \to K^{*} \mu^{+}\mu^{-}$ Related quantities

$K^{*} \mu^{+}\mu^{-}$ tension motivates studies of differential BRs

All the results are "consistent" with SM at $<2.2 \sigma$

But all of them are lower than the predictions...

Capri 2016, 11-13 June 2016

M.Margoni Universita` di Padova & INFN
Measurements of related $b \rightarrow d\mu\mu$ channels very useful to reveal information on Minimal Flavor Violation nature of New Physics.

LHCb [JHEP 10, 034 (2015)]:

$\text{BR}(B^+ \rightarrow \pi^+\mu^+\mu^-) = (1.83 \pm 0.24 \pm 0.05) \times 10^{-8}$ in agreement with MFV

$\frac{\text{BR}(B^+ \rightarrow \pi^+\mu^+\mu^-)}{\text{BR}(B^+ \rightarrow K^+\mu^+\mu^-)} = 0.037 \pm 0.008 \pm 0.001$

$|V_{td}|/|V_{ts}| = 0.24^{+0.05}_{-0.04}$ in agreement with box processes $(\Delta m_s/\Delta m_d)$ results.
$\mathcal{B}^+ \rightarrow K^+ \tau^+ \tau^-$

Signal efficiencies and expected Peaking BKG events (92%) from simulation corrected according to Data/MC ratio before NN cut:

\[
\left(\frac{N_{\text{Data}}}{N_{\text{MC}}} \right)_{\text{BKG}} = 0.913 \pm 0.020
\]

Expected combinatorial BKG events (8%) from data mEs Side Band

Data/MC B_{tag} yields cross-checked using $B^+ \rightarrow D^0 \ell \nu, D^0 \rightarrow K\pi$ (before NN cut)
\[\mathcal{B}^+ \rightarrow K^+ \tau^+ \tau^- \]

Cross checks to understand the excess:

- Excess present also in the \(\mathcal{B}_{\text{tag}} \) side band

Discriminating variable in the NN:

- \(s_B = \frac{q^2}{m_B^2} = \left(\frac{p_{B_{\text{sig}}} - p_K}{m_B^2} \right)^2 \), \(m(K^+\tau^-) \), \(K-\ell \) angle in the di-tau frame, lepton momentum, missing energy, e.m. energy not associated to \(\mathcal{B}_{\text{tag}} \)
- All of them compatible with BKG statistical fluctuation
\[B^+ \rightarrow K^+ \tau^+ \tau^- \]

Systematics:
- **Theory (signal efficiency):** 3\% from shape of the \(q^2 \) distribution (Lattice QCD vs light cone sum rules)
- **Btag Yield:** 1.5\% from MC correction using \(m_{ES} \) sideband
- **PID:** 5\% from Data/MC comparison
- **\(\pi^0 \) Veto:** 3\%
- **NN cut:** 2.6\% from Data/MC checked on \(B^+ \rightarrow D^0 l \nu \) (\(D^0 \rightarrow K\pi \))
Measurement of A_{CP} in $B^0 \rightarrow K_s \rho \gamma$

Belle [PRL 101, 251601 (2008)],

$S_{K_s \rho \gamma} = 0.11 \pm 0.33^{+0.05}_{-0.09}$

A_{CP} (direct) = $0.05 \pm 0.18 \pm 0.06$

LHCb [PRL 112, 161901 (2014)],

$$A_{ud} \equiv \frac{\int_{-1}^{1} d \cos \theta \frac{d\Gamma}{d \cos \theta} - \int_{-1}^{0} d \cos \theta \frac{d\Gamma}{d \cos \theta}}{\int_{-1}^{1} d \cos \theta \frac{d\Gamma}{d \cos \theta}}$$

θ = angle between photon and $K\pi\pi$ plane normal

$m_{K\pi\pi}$	1.1, 1.3	1.3, 1.4	1.4, 1.6	1.6, 1.9
A_{ud} | 6.9 ± 1.7 | 4.9 ± 2.0 | 5.6 ± 1.8 | -4.5 ± 1.9

5.2 σ significance for nonzero up-down asymmetry

First measurement