

Status & Perspectives @ CMS

Martino Margoni Universita` di Padova and INFN

- Past: Recent Results
- Present: Ongoing Analyses
- Future: Run II Strategy
 - → Trigger & Data Taking
 - → Ideas on Physics

Many thanks for contributions to:

- R. Covarelli, S. Fiorendi, M. Innocenti,
- L. Martini, F. Palla, A. Pompili,
- F. Simonetto

BPH Organization: Italian involvement

Conveners: K.-F. Chen, N. Viegas Guerreiro Leonardo, F. Palla

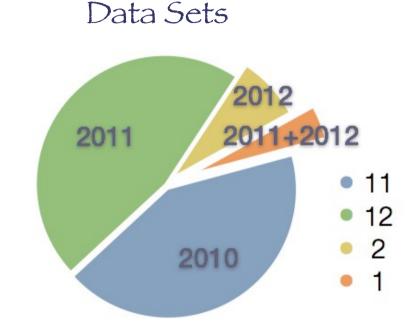
- B Hadrons Production & Decays (R. Covarelli (mandate expires), K. Yi)
 - Test of perturbative & non-perturbative QCD models of hadron production and fragmentation. Study dynamics of heavy quarks inside hadrons, decay models & spectroscopy.
- Conventional & Exotic Quarkonia (P. Faccioli (mandate expires), A. Pompili)

Production cross-sections and polarizations measurements of S- & P-wave states of conventional quarkonium allow to study the hadron formation within the NRQCD framework. Quarkonium spectrum and properties not well understood above the open charm/beauty thresholds: quarkonium-like exotic states with a quark content beyond the ordinary one for hadrons.

- Rare Decays LFV & CPV (S. Kumar Swain, M. Margoni)
 - Search for deviations from SM predictions due to virtual contributions of new particles in loop processes. Most interesting processes are those that are strongly suppressed: Leptonic B decays, FCNC, LFV and CPV in the b, c and τ sectors.
- BPH Trigger (L. Martini)
- BPH Upgrade (M. Galantí moved from Padova to Rochester)

Published Papers

- BPH Group Produced 26 Publications:
 - 3 Paper with > 100 citations
 - 11 Paper with > 50 citations
- First CMS article on B → μμ going to be


published on Nature!

- Ongoing Analyses:
 - ♣ 8 on 2011 dataset, 11 on 2012 dataset
 - 9 "Mature" results (Approved/Preapproved or almost finalized)
 - 10 at the AWG discussion stage or just started

Quarkonía

B hadron production & decays

CPV & Rare decays

Recent Results

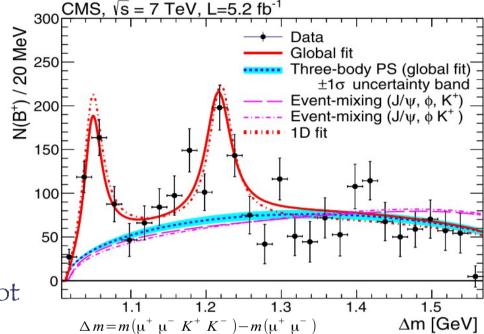
Papers Published/Submitted during 2014

- Observation of a peaking structure in the J/ ψ ϕ mass spectrum from B+ J/ ψ ϕ K+ decays (BPH-11-026), PLB 734 261-281
- Measurement of prompt J/ ψ pair production in pp collisions at $\sqrt{s} \approx 7$ TeV (BPH-11-021), JHEP 09 094
- Measurement of the χ_{b2} and χ_{b1} cross section ratio in pp collisions at $\sqrt{s} \approx 8$ TeV (BPH-13-005), Submitted to PLB
- Measurement of the ratios BR(B \rightarrow J/ ψ 3 π)/BR(B \rightarrow J/ ψ π) and $\sigma(B_c)B \rightarrow$ J/ ψ π / $\sigma(B^+)B^+$ J/ ψ K (BPH-12-011), Subm. JHEP
- Combination of results on B \longrightarrow $\mu\mu$ from the CMS and LHCb experiments (BPH-13-007) Submitted to Nature
- 58 Talks given at International Conferences 22 Italian Speakers! (17 from Italian Institutions)

Peaking structures in the $J/\psi \phi$ mass spectrum

from $B^+ \rightarrow J/\psi \phi K^+ decays$

PLB 734 261-281



Bari

Peaking structure observed in $m(J/\psi \phi)$ with more than 5 σ :

$$M = 4148.0 \pm 2.4 \pm 6.3 \text{ MeV}$$

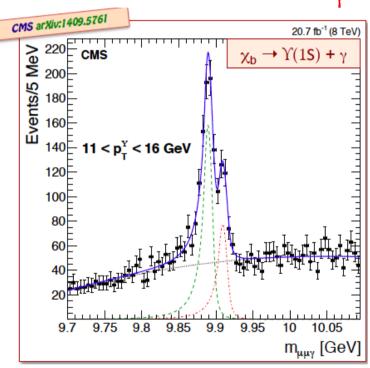
 $\Gamma = 28^{+15}_{-11} \pm 19 \text{ MeV}$

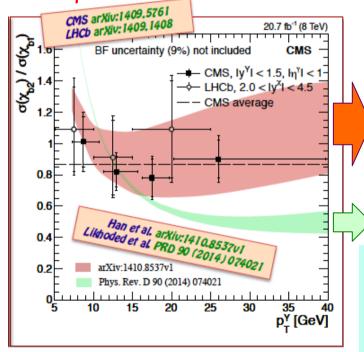
- Consistent with possibly exotic state
 Y(4140) from CDF (evidence from DO, not confirmed by LHCb)
- $N("Y")/N(J/\psi \phi K) = (10\pm 3)\%$ consistent with CDF (and with LHCb's Upper Limit)
- Evidence of additional peak (mass shifted w.r.t CDF) that could be affected by possible φK⁺ resonances

- Conventional charmonium should decay
 in open charm with larger width &
 smaller BR into J/ψ φ
- Understanding the nature of both structures need further investigation and requires a full amplitude analysis

CMS Italia, Napoli 17-21 November 2014

M.Margoni Universita` di Padova & INFN


Measurement of $\sigma(\chi_{b2})/\sigma(\chi_{b1})$



- P-wave measurements crucial to understand quarkonium production :
 - Study feed-down effects into S-wave states
 - Constrain LDMEs of the χ_c and χ_b states in NRQCD fits to S-wave production data

Reconstruction of converted photons provides mass resolution to resolve the 2 peaks

(with 19Mev separation)

CMS & LHCb consistent compared with two different NLO NRQCD calculations (and fits based on different experimental data)

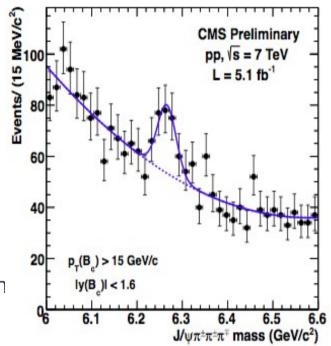
Improve p_T reach and accuracy with Run II!

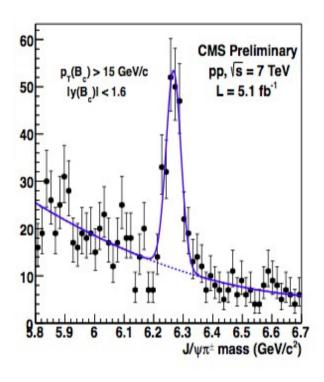
LHC xsection ratio with smaller uncertainties:
$$< R > = \left< \frac{\sigma(pp \to \chi_{b2} + X)}{\sigma(pp \to \chi_{b1} + X)} \right> = 0.85 \pm 0.07 (\text{stat+syst}) \pm 0.08 \left(BF(\chi_{b1,2} \to Y(1S) + \gamma) \right)$$

CMS Italia, Napoli 17-21 November 2014

M.Margoni Universita` di Padova & INFN

Measurement of $B \rightarrow J/\psi 3\pi/B \rightarrow J/\psi \pi$ and


$$\sigma(\mathcal{B}_{c})\mathcal{B}_{c} \longrightarrow J/\psi \pi/\sigma(\mathcal{B}^{+})\mathcal{B}^{+} \longrightarrow J/\psi K$$


Subm. to JHEP

Milano Bicocca

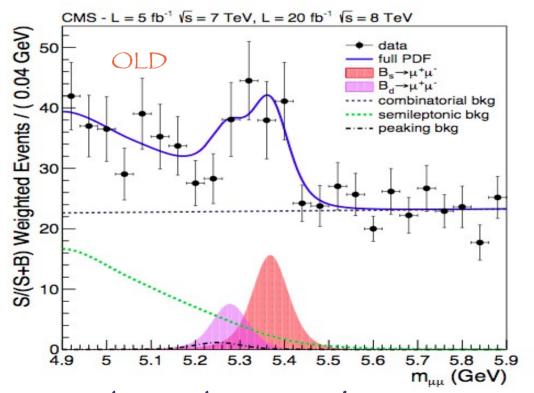
- B_c mesons carry two different heavy flavors: unique laboratory to study heavyquark dynamics
- b & c quarks compete via spectator diagram, annihilation process ~10%.

- $\frac{\sigma(B_c) \times BR(B_c \to J/\psi \pi)}{\sigma(B^+) \times BR(B^+ \to J/\psi K)} = (0.48 \pm 0.05 \pm 0.04^{+0.05}_{-0.03}(\tau_{B_c})) \times 10^{-2}$
- $\frac{\sigma(B_c) \times BR(B_c \to J/\psi \ 3\pi)}{\sigma(B_c) \times BR(B_c \to J/\psi \ \pi)} = 2.43 \pm 0.76^{+0.46}_{-0.44}$

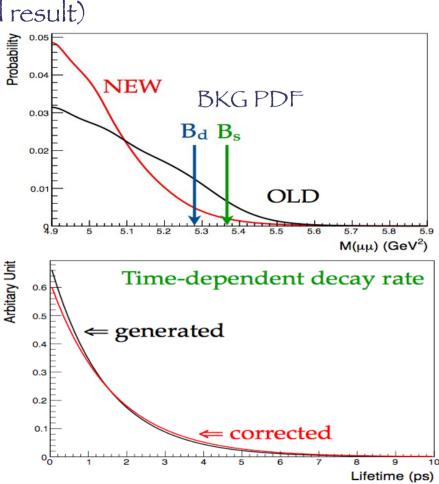
Results in good agreement with LHCb (in a complementary rapidity region)

8

Combination of BR(B \rightarrow $\mu\mu$) from the CMS and


LHC6 experiments

To be Submitted soon



Pisa, Padova (for the CMS Published result)

- CMS Improvements wrt Summer 2013:
 - $_{\bullet}$ Input $_{\tau}(B_{s})$, f_{d}/f_{s} & some BRs from PDG
 - \blacksquare Modeling of the Λ_b \longrightarrow p $\mu\nu$ Background

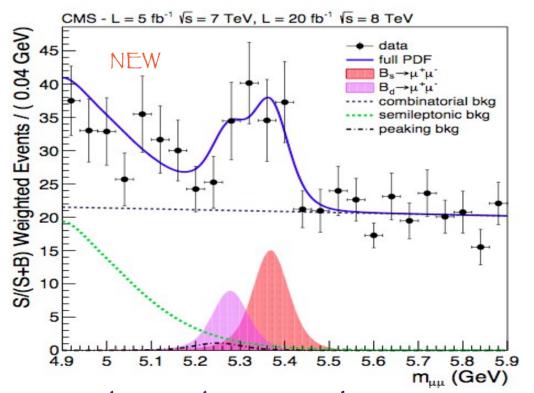
CMS Italia, Napoli 17-21 November 2014

$$BR(B_s) = (2.99^{+1.04}_{-0.88}) \times 10^{-9}$$

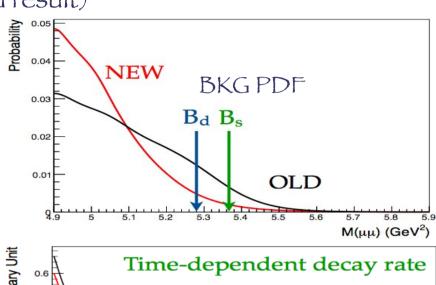
 $BR(B_d) = (3.48^{+2.13}_{-1.81}) \times 10^{-10}$

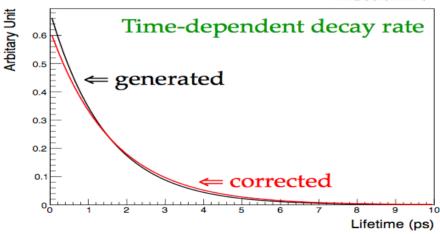
M.Margoni Universita` di Padova & INFN

Combination of BR(B \rightarrow $\mu\mu$) from the CMS and


LHC6 experiments

To be Submitted soon




Písa, Padova (for the CMS Published result)

- CMS Improvements wrt Summer 2013:
 - Input $\tau(B_s)$, f_d/f_s & some BRs from PDG
 - \blacksquare Modeling of the Λ_b \longrightarrow p $\mu\nu$ Background

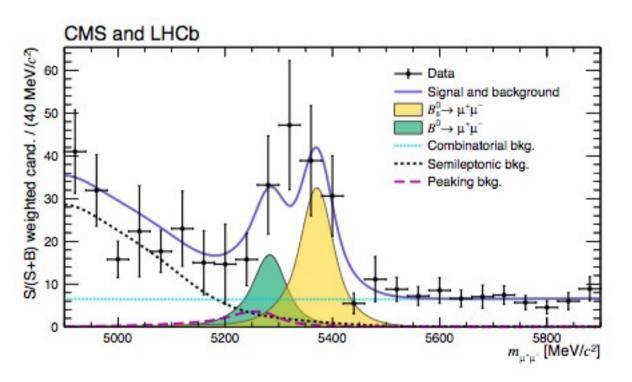
CMS Italia, Napoli 17-21 November 2014

$$BR(B_s) = (2.80^{+0.95}_{-0.81}) \times 10^{-9}$$

 $BR(B_d) = (4.38^{+2.23}_{-1.91}) \times 10^{-10}$

M.Margoni Universita` di Padova & INFN

Combination of BR(B \rightarrow $\mu\mu$) from the CMS and


LHC6 experiments

To be Submitted soon

Pisa, Padova (for the CMS Published result)

- Full Likelihood combination of CMS & LHCb results
 - → Simultaneous unbinned extended maximum likelihood fit to the mass spectra
 - → Take into account correlations/estimate significance

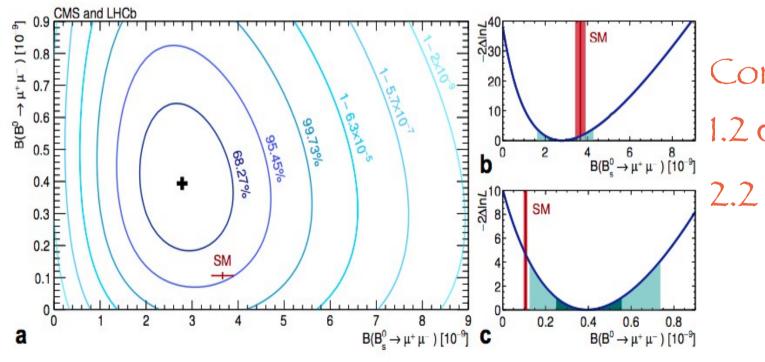
$$BR(B_s) = (2.8^{+0.7}_{-0.6}) \times 10^{-9} (6.2 \,\mathrm{G})$$

Expected SM: 7.4

$$BR(B_d) = (3.9^{+1.6}_{-1.4}) \times 10^{-10} (3.0 \,\mathrm{\sigma})$$

Expected SM: 0.8

Standard Model predicts:


$$BR(B_s) = (3.66 \pm 0.23) \times 10^{-9}$$

$$BR(B_s) = (1.06 \pm 0.09) \times 10^{-10}$$

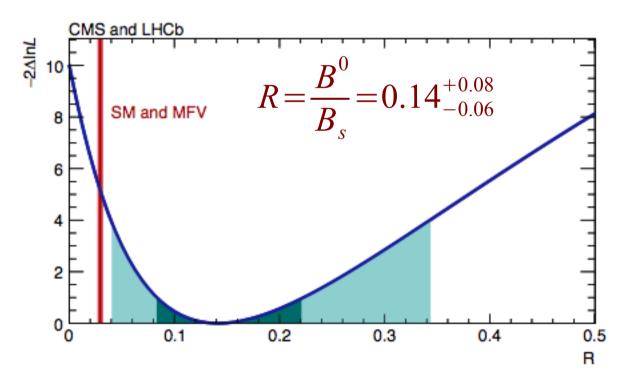
Combination of $BR(B \rightarrow \mu\mu)$ from the CMS and L4/Cb experiments To be Submitted soon

Pisa, Padova (for the CMS Published result)

- Full Likelihood combination of CMS & LHCb results
 - → Simultaneous unbinned extended maximum likelihood fit to the mass spectra
 - → Take into account correlations/estimate significance

Compatibility vs SM:

 1.2σ for B_s


 2.2σ for B°

Combination of $BR(B \rightarrow \mu\mu)$ from the CMS and L4/Cb experiments To be Submitted soon

Pisa, Padova (for the CMS Published result)

- Full Likelihood combination of CMS & LHCb results
 - → Simultaneous unbinned extended maximum likelihood fit to the mass spectra
 - → Take into account correlations/estimate significance

Compatibility vs SM:

 1.2σ for B_s

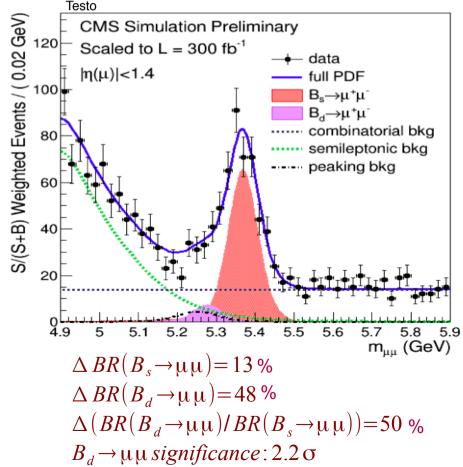
 2.2σ for B°

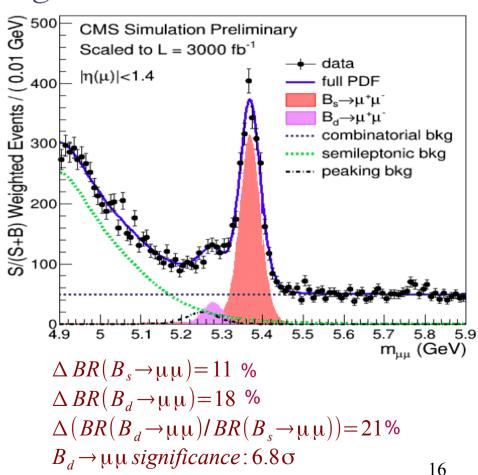
 $2.3 \sigma \text{ for } B^{\circ}/B_{e}$

Approved & Ongoing Analyses

CPV & Rare Decays

- Upgrade Performance for the B→µµ measurement (Necessity of the new L1 Track Trigger) Approved ■
- CP-violating weak phase Φ_s and decay width difference $\Delta\Gamma_s$ using the $B_s \longrightarrow J/\psi \phi$ decay channel (BPH-13-012) Approved Prel. Result
- •Flavor tagging algorithm using Run I data (BPH-14-004)
- •Measurement of the forward-backward asymmetry and other variables in the B°— \blacktriangleright K*° µµ decay (BPH-13-010) Pre-Approved
- B Mixing & dilepton asymmetry A_{\parallel} using di-muon events (BPH-10-016 & BPH-12-003)
- B mixing in tt events (BPH-14-007)
- Search for τ lepton decay to 3 muons (BPH 12-004)

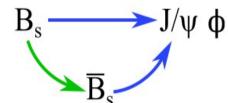

CMS Phase-2 Upgrade performance for B - µµ


Padova

Pisa

- $_{\rm \bullet}$ The focus now is on BR(B $_{\rm d}$) and on the ratio BR(B $_{\rm s}$)/BR(B $_{\rm d}$
- CMS Upgrades more affecting the result:
 - ♣ L1 Trigger: new track trigger (necessary to reduce the rate)
 - → Tracker: reduced material budget & increased resolution

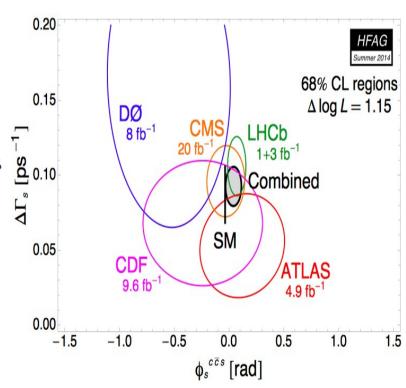
CMS Italia, Napoli 17-21 November 2014


M.Margoni Universita` di Padova & INFN

Measurement of Φ_s and $\Delta\Gamma_s$ with $\mathcal{B}_s \longrightarrow \mathcal{J}/\psi \phi$

Pisa

- $_{\rm s}$ mesons mix via box diagrams with large $\Delta\Gamma s$ between the two mass eigenstates
- $_{\rm o}$ CPV phase $\Phi_{\rm s}$ arises for interference between direct and mixing-mediated decays



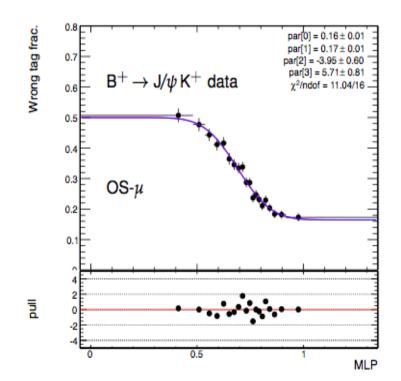
$$\phi_{
m s} \simeq -2 eta_{
m s}$$
 , $eta_{
m s} = {
m arg}(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*)$ $2eta_{
m s} = 0.0363^{+0.0016}_{-0.0015}$ rad in the SM

 Mixture of CP-even & CP-odd eigenstates requires angular analysis

$$\Phi_s = -0.03 \pm 0.11 \pm 0.03 \quad rad$$

 $\Delta \Gamma_s = 0.096 \pm 0.014 \pm 0.007 \quad ps^{-1}$

Competitive with LHCb and consistent with SM predictions



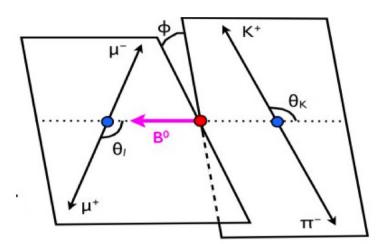
17

Flavor tagging algorithm

- © CPV measurements using neutral mesons require knowledge of the B flavor
 - @ production time: study Opposite-Side assuming bb production
- $\ _{\bullet}$ Flavor obtained from the charge of an OS μ / e
- TMVA analysis to disentangle b → l direct decays from b → c → cascade & BKG
- \bullet Mistag measured on $B^+ \longrightarrow J/K^+$ real data & corrected for B_s/B^+ difference using MC

[%]	μ	е	ℓ
ϵ_{tag}	$\textbf{4.56} \pm \textbf{0.02}$	$\boldsymbol{3.92 \pm 0.02}$	$\textbf{8.31} \pm \textbf{0.03}$
ω	$\textbf{28.6} \pm \textbf{0.3}$	$\textbf{32.5} \pm \textbf{0.3}$	$\textbf{30.2} \pm \textbf{0.2}$
\mathcal{P}_{tag}	$\textbf{0.83} \pm \textbf{0.02}$	$\textbf{0.48} \pm \textbf{0.02}$	$\textbf{1.31} \pm \textbf{0.03}$

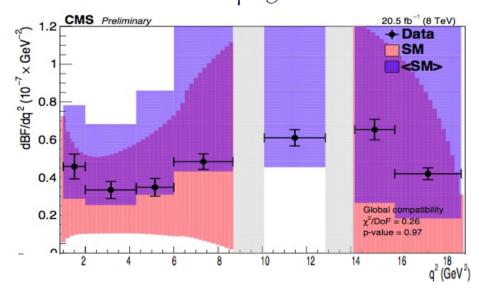
 Tagging power improved by ~ 30% wrt original cutbased strategy


Measurement of the forward-backward asymmetry and other variables in $B^0 \longrightarrow K^{*0} \mu\mu$

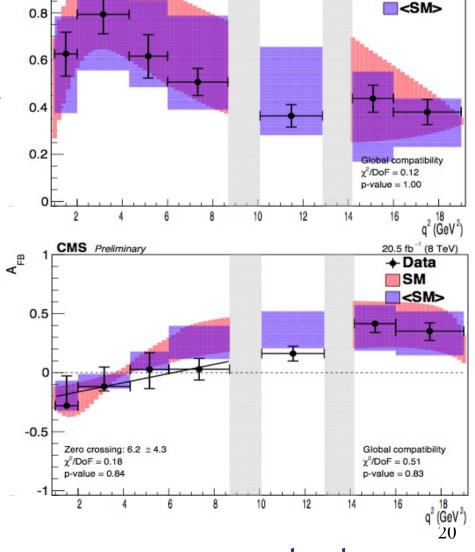
Milano Bicocca

Pre-Approved

- FCNC process forbidden @ tree level, BR~10⁻⁶: Probe the SM
- Sensitive to effects of NP in photon, vector and axial-vector couplings


- Kinematic of the decay determined by three angles
- Events reconstructed in bins of $q^2=m^2(\mu\mu)$
- Observables: dB/dq^2 , A_{FB} (forward-backward muon asymmetry), F_{A} (fraction of longitudinally polarized K^*)

Measurement of the forward-backward asymmetry and other variables in $B^0 \longrightarrow K^{*0} \mu\mu$



Milano Bicocca

- Improvements wrt 2011 analysis:
 - Mistagged events included in the PDF
 - Measure A_{FB} zero crossing point
 - Variable transformation to take into account their physical domain

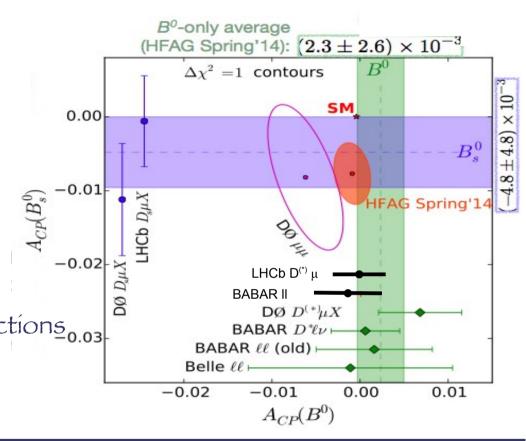
CMS Italia, Napoli 17-21 November 2014

20.5 fb⁻¹ (8 TeV) **→ Data**

SM

M.Margoni Universita` di Padova & INFN

B Mixing and SL asymmetry A_{SL} with di-muons


339

Padova

- Hot topics due to:
- → Discrepancy between LEP & CDF in the integrated mixing rate

$$\bar{\chi} = 0.126 \pm 0.004 \ (LEP)$$

 $\bar{\chi} = 0.147 \pm 0.011 (Tevatron)$

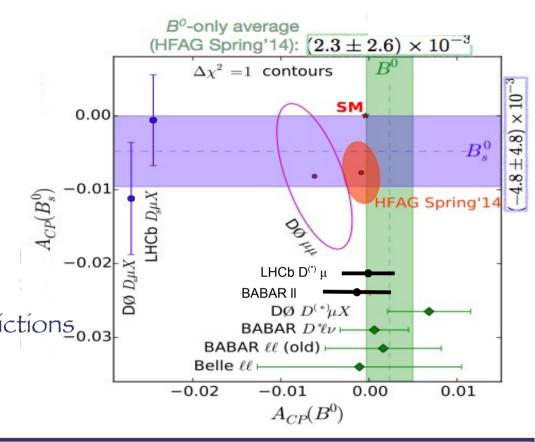
→ DO anomaly @ 3.6 σ in A_{SL} from SM predictions_{0.03} $A_{sl}^{q} = \frac{N_{B_{q}^{0}}(\mu^{+}\mu^{+}) - N_{B_{q}^{0}}(\mu^{-}\mu^{-})}{N_{B_{q}^{0}}(\mu^{-}\mu^{-}) + N_{B_{q}^{0}}(\mu^{-}\mu^{-})}$

- Mixing analysis using 3 10⁵ non-resonant di-muons (2010 dataset)
 - Fraction of events from B decays from a fit to $P_t(\mu)$ relative to jet direction for different charge correlation samples (SS, OS, SS⁺⁺, S⁻⁻)

 $\bar{\chi}$ =0.126±0.002±0.005 (*BLIND*) (data set 2010, $P_t(\mu)$ >3 GeV no prescaling)

→ Issues: fit convergence, fit/data agreement, BKG composition

2


B Mixing and SL asymmetry A_{SL} with di-muons

Padova

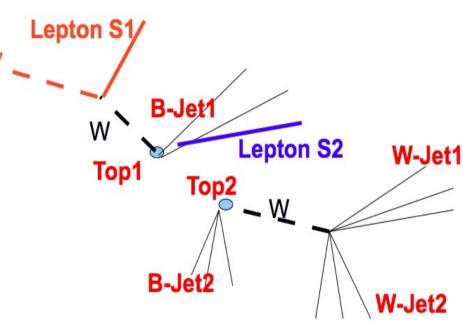
- Hot topics due to:
- → Discrepancy between LEP & CDF in the integrated mixing rate

$$\bar{\chi} = 0.126 \pm 0.004 \ (\textit{LEP})$$

 $\bar{\chi} = 0.147 \pm 0.011 (\textit{Tevatron})$

DO anomaly @ 3.6 σ in A_{SL} from SM predictions_{0.03} $A_{sl}^{q} = \frac{N_{B_{q}^{0}}(\mu^{+}\mu^{+}) - N_{B_{q}^{0}}(\mu^{-}\mu^{-})}{N_{B_{q}^{0}}(\mu^{-}\mu^{-}) + N_{B_{q}^{0}}(\mu^{-}\mu^{-})}$

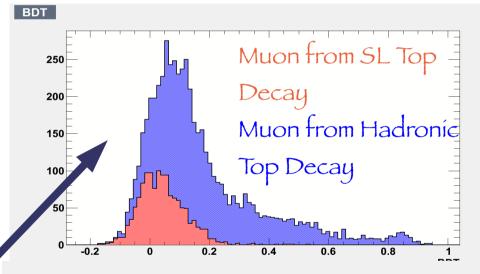
- \bullet A_{SL} analysis still to be started will use 3 10^7 same-sign low P_t di-muons (2012 dataset)
 - No need for further data
 - Needs careful treatment of systematics uncertainties (BKG, charge-dependent muon efficiency, B^o production asymmetry)

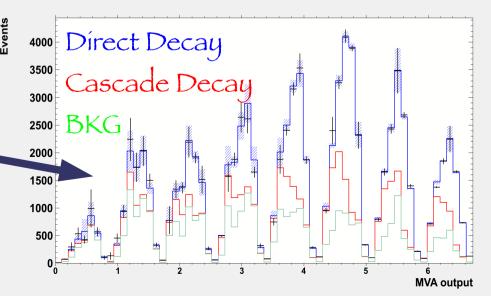

22

B Mixing and A in tt events

Padova

- Semíleptoníc top decays: tt, t blv, t bX
 - Lepton from top decay tags the flavor of both the B jets at the production time
- Test QCD factorization from comparison of $\chi(mt)$ with $\chi(mZ)$
- Expected statistical error 0.003 (0.002 adding electrons) on 2012 dataset
- \bullet Future test of A_{sl} (see Run II strategy)
- Issues:
 - Association of the muon from B decay to the right top
 - ⇒ Separation between direct b → μ and cascade b → c → μ decays
 - Both solved using a MVA


B Mixing and A in tt events



Padova

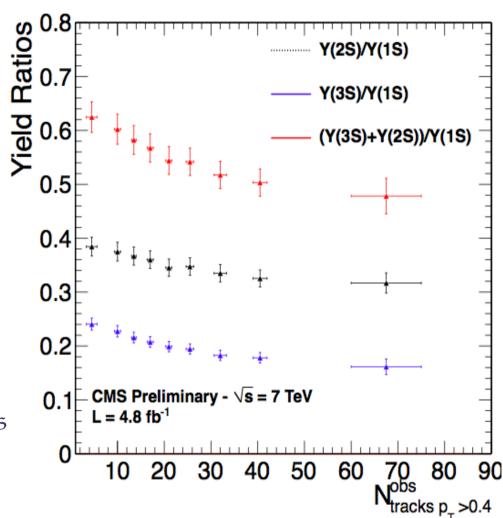
- Semileptonic top decays: tt, t blv, t bX
 - Lepton from top decay tags the flavor of both the B jets at the production time
- Test QCD factorization from comparison of $\chi(mt)$ with $\chi(mZ)$
- Expected statistical error 0.003 (0.002 adding electrons) on 2012 dataset
- \bullet Future test of A_{sl} (see Run II strategy)
- Issues:
 - Association of the muon from B decay to the right top
 - Separation between direct b→μ and cascade b→ c →μ decays

♣ Both solved using a MVACMS Italia, Napoli 17-21 November 2014

Standard & Exotic Quarkonia

- $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ σ measurements in pp collisions at $\sqrt{s} \approx 7$ TeV (BPH-12-006) CWR-ended
- \bullet Prompt J/ ψ and ψ (2S) double-differential production cross sections in pp collisions at 7 TeV (BPH-14-001) Approved
- Y Production vs charge particle multiplicity (BPH-14-009)

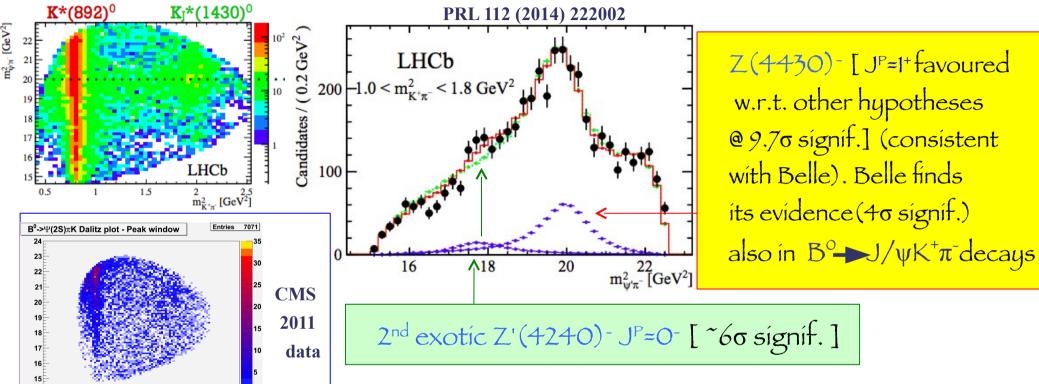
• Inclusive and exclusive search of Z⁺(4430) (BPH-14-003)



Y Production vs charge particle multiplicity

Bologna

- Y(nS) states are standard probes to investigate Quark Gluon Plasma in Heavy Ions collisions (Pb-Pb & p-Pb)
 - → Different deconfinement temperature between different states: Study ratio of production vs track multiplicity
- Preliminary results obtained in pp collisions with larger statistics on 2010+2011 data sets:
 1230k Y(1S), 410k Y(2S), 230k Y(3S)



Exclusive & inclusive search of Z(4430)+

• Exclusive analysis (with 4D amplitude analysis of $B^{\circ} \rightarrow \psi' K^{\dagger} \pi^{-}$)

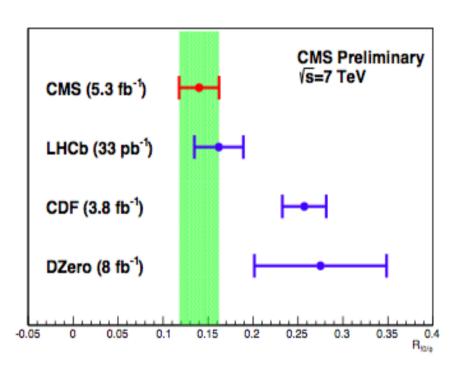
Bari

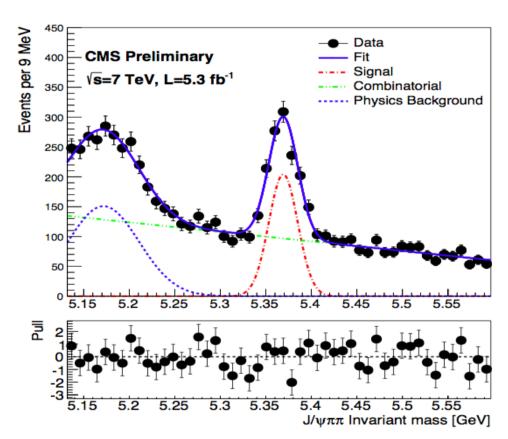
• Inclusive search (in $\psi'\pi$ mass spectrum)

No hints found with 2011+2012 data;

high backgrounds & Z is a large state (Γ from 107 MeV [Belle2009] to 172 MeV [LHCb2014])

27

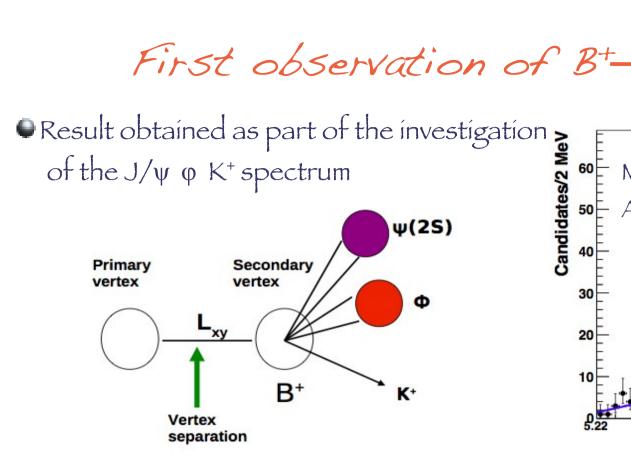

B Production & Spectroscopy

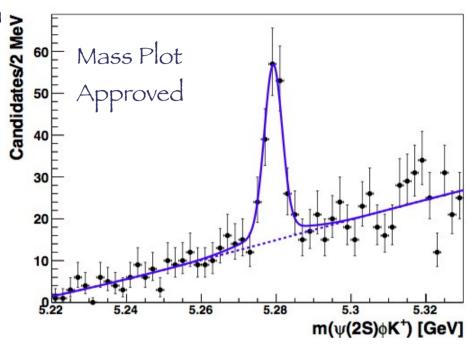

- Measurement of the BR(B $_s$ \longrightarrow J/ ψ f°) (BPH-14-002) CWR
- Measurement of the B_c cross-section in pp collisions at 7 TeV (BPH-13-002) Pre-Approved
- Observation of B⁺ \longrightarrow $\psi(2S)\phi$ K⁺ (BPH-13-009) Approved
- New: Investigation of the 4μ final state (BPH-14-006)
- B lifetime with B \longrightarrow J/ $\psi \pi$ (BPH-13-011)
- Search for B_c (2S) state CMS Italia, Napoli 17-21 November 2014

Measurement of $BR(B_s \rightarrow J/\psi f^0)$

CWR

- $_{\rm \bullet}$ Channel useful to measure mixing-induced CPV Phase $\Phi_{_{\rm S}}$ without angular analysis
- \bullet J/ ψ f^o state is a pure CP-odd eigenstate allowing measurement of the CP-odd lifetime
- New Physics could be spotted by BR measurement





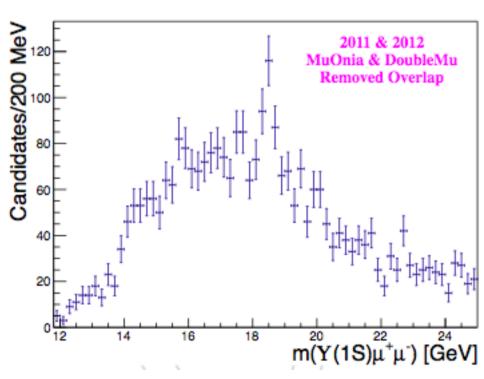
$$\frac{BR(B_s \to J/\psi f_0; f_0 \to \pi^+ \pi^-)}{BR(B_s \to J/\psi \phi; \phi \to K^+ K^-)} = 0.140 \pm 0.013 \pm 0.018$$

Consistent with theoretical prediction ~ 20%

First observation of $B^+ \rightarrow \psi(25) \phi K^+$

S. Malvezzi & A. Pompili are part of the ARC

- Observed yield: $N = 144 \pm 17$ events; significance well exceeding 5 σ
- ullet Ψ B+ ψ (2S) K+ used as a normalization channel for the absolute BR measurement (that will go in the paper in preparation);


very preliminary BR estimate to be approved (systematics still in progress):

$$BR(B^+ \to \psi(2S) \phi K^+) = (4.0 \pm 0.5 \pm 0.5 \pm ?? \times 10^{-6})$$

30

Investigation of the 4µ final state

- Several new charged quarkonium-like structures discovered recently ($Z^+(4430)$, $Z_c(3900)$): existence of four-quarks states?
- Can be four heavy quarks bound together? Predicted masses mostly below VV threshold
 - Search for VV* states decaying in 4μ with $m(V^*) < m(V)$
- Search for exotic particles, BSM Higgs or DM
- •Structure observed in Y(S1)Y*(S1)
- •Several tests performed:
 - μ selection
 - Cuts on $P_t(\mu)$, $P_t(\mu\mu)$, $P_t(4\mu)$, Y(1S) mass window
 - Check of unselected combinations

31

Run II Strategy:

1. Trigger & Data Taking

- BPH trigger focused mainly on muons
- Different features & needs depending on the Physics channel:
 - Rare Decays: almost 100% Background paths ($B_q \rightarrow \mu\mu$)
 - ightharpoonup Quarkonía: almost 100% Sígnal path (J/ ψ , Y)

Issues:

- ♣ L1: Stay within the old Bandwidth (10 kHz~10 % of the total Bandwidth)

 despite the increase of a factor 4 in rate
- Try to reduce the rate without affecting too much the Signal requiring two muons with Opposite Sign @ L1 (first time)

L1 path	Prescale	Rate	Pure rate
		(kHz)	(kHz)
L1_SingleMu20er	1	15.17	2.78
L1_SingleMu25	1	15.83	1.71
L1_DoubleMu0er16_HighQ_WdEta18.OS	1	7.16	5.33
L1_DoubleMu_10_0_HighQ_WdEta18	1	6.06	2.41
L1_QuadMu0_HighQ	1	0.09	0.03
L1_SingleMu5	50000	0.01	0.00
L1_DoubleMu0_HighQ	10000	0.01	0.01
L1_DoubleMu0er16_HighQ_WdEta18	2000	0.02	0.01
L1_TripleMu0_HighQ	100	0.03	0.01
L1_TripleMu_5_5_3_HighQ	1	0.92	0.32

Physics
Seeds
Efficiency
Seeds

CMS Italia, Napoli 17-21 November 2014

M.Margoni Universita` di Padova & INFN

- BPH trigger focused mainly on muons
- Different features & needs depending on the Physics channel:
 - \blacksquare Rare Decays: almost 100% Background paths (B \blacksquare $\mu\mu$)
 - Quarkonía: almost 100% Sígnal path (J/ψ, Υ)

•Issues:

- → HLT: around 100 Hz of Bandwidth @ L≈1.4 10³⁴ without regional reconstruction
 & Data Parking
 - Quarkonía (50% of rate):
- Take the lowest P_t unprescaled L1 seeds (high P_t quarkonia can emit a low P_t muon)
- Purity~100%; to keep the rate low: increase the P_t cut

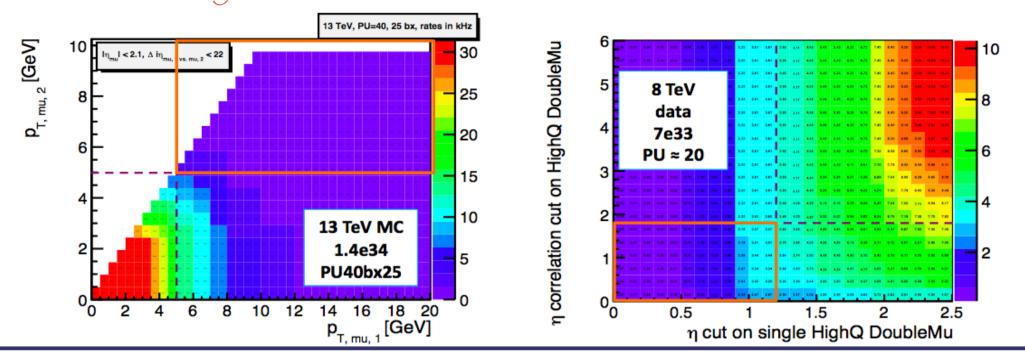
	<u> </u>		
HLT path	L1 seed	rate (Hz)	status
Mu25_TkMu0_dEta18_Onia	L1_SingleMu20er OR L1_SingleMu25	7 (pure)	in GRun
		14 (total)	val. sample
Dimuon20_Jpsi	L1_DoubleMu_10_0_HighQ_WdEta18	20	in GRun
			val. sample
Dimuon13_PsiPrime	L1_DoubleMu_10_0_HighQ_WdEta18	7	in GRun
			val. sample
Dimuon13_Upsilon	L1_DoubleMu_10_0_HighQ_WdEta18	14	in GRun
			val. sample

- BPH trigger focused mainly on muons
- Different features & needs depending on the Physics channel:
 - Rare Decays: almost 100% Background paths ($B_q \rightarrow \mu\mu$)
 - ightharpoonup Quarkonia: almost 100% Signal path (J/ ψ , Y)

Issues:

- → HLT: around 100 Hz of Bandwidth @ L≈1.4 10³⁴ without regional reconstruction
 & Data Parking
 - → Double Quarkonía (5% of rate):
- High Rates & very low-P_t muons: L1 really matters
- 3-muons L1 seeds have too high P_t thresholds or are prescaled
 - 4-muons L1 seed with no P_t requirement

HLT path	L1 seed	rate (Hz)	status
Mu4_Dimuon0_Jpsi	L1_QuadMu0_HighQ	few	in GRun
			val. sample
Mu4_Dimuon0_Upsilon	L1_QuadMu0_HighQ	few	in GRun
			val. sample


- BPH trigger focused mainly on muons
- Different features & needs depending on the Physics channel:
 - Rare Decays: almost 100% Background paths ($B_q \rightarrow \mu\mu$)
 - Quarkonía: almost 100% Sígnal path (J/ψ, Υ)
- Issues:
 - → HLT: around 100 Hz of Bandwidth @ L≈1.4 10³⁴ without regional reconstruction
 & Data Parking
 - → B Production & Decays (20% of rate):
- Very difficult to limit rate without affecting analyses: paths driven by specific analyses
- Add 1 or 2 high-quality tracks to a dimuon high-quality vertex
 - Benefit from Regional Reconstruction and Data Parking

HLT path	L1 seed	rate (Hz)	status
TLI Patii	LI seed	rate (HZ)	status
DoubleMu4_LMNR_Tk_Displaced	L1_DoubleMu0er16_HighQ_WdEta18_OS	42	in GRun
	OR L1_DoubleMu_10_0_HighQ_WdEta18		val. sample
DoubleMu4_Jpsi_Tk_Displaced	L1_DoubleMu0er16_HighQ_WdEta18_OS	23	in GRun ✓
	OR L1_DoubleMu_10_0_HighQ_WdEta18		
DoubleMu4_PsiPrime_Tk_Displaced	L1_DoubleMu0er16_HighQ_WdEta18_OS	2	in GRun
	OR L1_DoubleMu_10_0_HighQ_WdEta18		val. sample

CMS Italia, Napoli 17-21 November 2014

M.Margoni Universita` di Padova & INFN

→ Rare Decays (B→ $\mu\mu$) (20% of rate):

Take the lowest P_t unprescaled double-muon L1 seeds, keep thresholds as low as possible, use displaced J/ ψ for the normalization channels J/ ψK^+ , J/ $\psi \phi$ (prescaled)

HLT path	L1 seed	rate (Hz)	status
DoubleMu4_3_Bs	L1_DoubleMu0er16_HighQ_WdEta18_OS	12	in GRun
	OR L1_DoubleMu_10_0_HighQ_WdEta18		val. sample
DoubleMu4_3_Jpsi_Displaced	L1_DoubleMu0er16_HighQ_WdEta18_OS	8	in GRun ✓
	OR L1_DoubleMu_10_0_HighQ_WdEta18	(p = 5)	

37

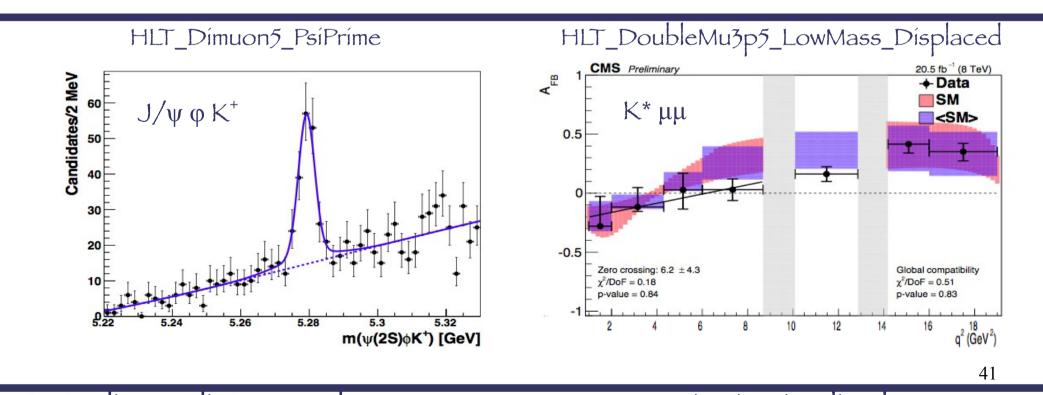
- Efficiency Paths (5% of rate)
- Aiming at ~ 0.5% Hz per path

HLT path	L1 seed	status
HLT_Mu7p5_L2Mu2_Jpsi	DoubleMu0_HighQ	in GRun √
HLT_Mu7p5_L2Mu2_Upsilon	DoubleMu0_HighQ	in GRun
		val. sample
HLT_Mu7p5_Track2_Jpsi	SingleMu5	in GRun √
HLT_Mu7p5_Track3p5_Jpsi	SingleMu5	in GRun ✓
HLT_Mu7p5_Track7_Jpsi	SingleMu5	in GRun ✓
HLT_Mu7p5_Track2_Upsilon	SingleMu5	in GRun
		val. sample
HLT_Mu7p5_Track3p5_Upsilon	SingleMu5	in GRun
		val. sample
HLT_Mu7p5_Track7_Upsilon	SingleMu5	in GRun
		val. sample
HLT_Dimuon6_Jpsi_NoVertexing	DoubleMu0_HighQ	in GRun ✓
HLT_DoubleMu0er16_Jpsi_NoOS_NoVertexing	DoubleMu0_Eta1p6_HighQ_WdEta18	in GRun ✓
HLT_DoubleMu0er16_Jpsi_NoVertexing	DoubleMu0_Eta1p6_HighQ_WdEta18_OS	in GRun ✓
HLT_Dimuon0_Jpsi_Muon	TripleMu0_HighQ	in GRun
		val. sample

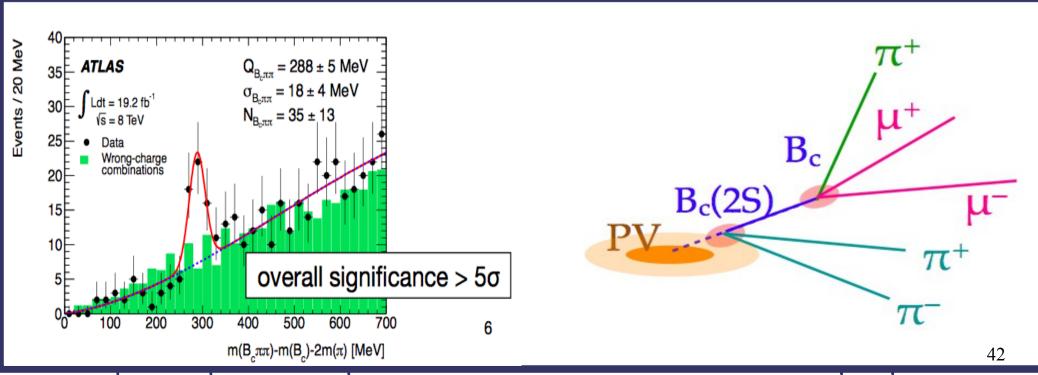
Total HLT BPH Rate 100 Hz @ L≈1.4 10³⁴ (Status @ November 10)

HLT path	L1 seed	rate (Hz)	status
Mu25_TkMu0_dEta18_Onia	L1_SingleMu20er OR L1_SingleMu25	7 (pure)	in GRun
		14 (total)	val. sample
Dimuon20_Jpsi	L1_DoubleMu_10_0_HighQ_WdEta18	20	in GRun
			val. sample
Dimuon13_PsiPrime	L1_DoubleMu_10_0_HighQ_WdEta18	7	in GRun
			val. sample
Dimuon13_Upsilon	L1_DoubleMu_10_0_HighQ_WdEta18	14	in GRun
			val. sample
DoubleMu4_3_Bs	L1_DoubleMu0er16_HighQ_WdEta18_OS	12	in GRun
	OR L1_DoubleMu_10_0_HighQ_WdEta18		val. sample
DoubleMu4_3_Jpsi_Displaced	L1_DoubleMu0er16_HighQ_WdEta18_OS	8	in GRun ✓
	OR L1_DoubleMu_10_0_HighQ_WdEta18	(p = 5)	
DoubleMu4_LMNR_Tk_Displaced	L1_DoubleMu0er16_HighQ_WdEta18_OS	42	in GRun
	OR L1_DoubleMu_10_0_HighQ_WdEta18		val. sample
DoubleMu4_Jpsi_Tk_Displaced	L1_DoubleMu0er16_HighQ_WdEta18_OS	23	in GRun ✓
	OR L1_DoubleMu_10_0_HighQ_WdEta18		
DoubleMu4_PsiPrime_Tk_Displaced	L1_DoubleMu0er16_HighQ_WdEta18_OS	2	in GRun
	OR L1_DoubleMu_10_0_HighQ_WdEta18		val. sample
Mu4_Dimuon0_Jpsi	L1_QuadMu0_HighQ	few	in GRun
			val. sample
Mu4_Dimuon0_Upsilon	L1_QuadMu0_HighQ	few	in GRun
			val. sample
Efficiency paths		few	

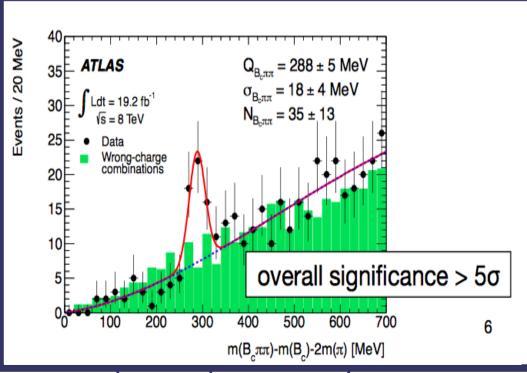
•Help needed from analysts:

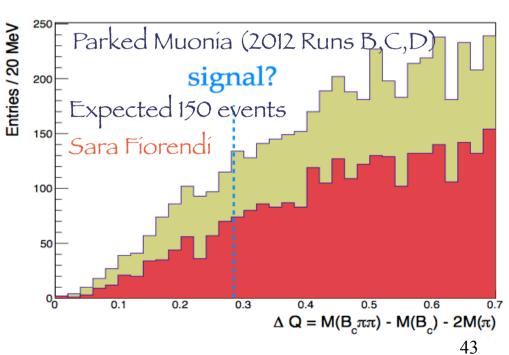

- All the new paths must be studied on expected efficiencies and distributions to check on bugs or unexpected behaviours
- → A first list of samples to be produced in Pythia8:
 - → B° → J/ψ K*
 - \Rightarrow B⁺ \longrightarrow J/ ψ K⁺
 - → B° → μμΚ*
 - \bullet $B_s \rightarrow J/\psi \varphi$
 - \bullet B⁺ \longrightarrow $\psi(2S)$ K*

•Hot studies going on:


- ♣ L1 charge misidentification on data
- μμ + trk(trk) rate reduction
- L1 Triple & Quad muon seeds

•Regional reconstruction workshop this week (see next slides)


- In 2012 we had 120 Hz of additional rate on the top of the Stream A 25-30 Hz
- Important impact on Physics:
 - First observation of $J/\psi \phi K^+$ (BPH-13-009)
 - K* μμ Angular analysis (BPH-13-010)



- In 2012 we had 120 Hz of additional rate on the top of the Stream A 25-30 Hz
- Important impact on Physics:
 - First observation of $J/\psi \phi K^+$ (BPH-13-009)
 - K* μμ Angular analysis (BPH-13-010)
 - → Search for B (2S) state (no confirmation of Atlas result)

- In 2012 we had 120 Hz of additional rate on the top of the Stream A 25-30 Hz
- Important impact on Physics:
 - First observation of $J/\psi \phi K^+$ (BPH-13-009)
 - K* μμ Angular analysis (BPH-13-010)
 - → Search for B (2S) state (no confirmation of Atlas result)

CMS Italia, Napoli 17-21 November 2014

- In 2012 we had 120 Hz of additional rate on the top of the Stream A 25-30 Hz
- Important impact on Physics:
 - First observation of $J/\psi \phi K^+$ (BPH-13-009)
 - K* μμ Angular analysis (BPH-13-010)
 - → Search for B_c (2S) state (no confirmation of Atlas result)
- In Run II it could help in different sectors:
 - Quarkonia/Double Quarkonia: Low-P_t for Polarization (χ_{3b}), φ <math> μμ, Low-P_t 3-muon Trigger
 - B Production and Decays: J/ψ + additional track(s)
 - CPV, Rare Decays: Displaced vertices, $K_s \rightarrow \mu\mu$, charm $\rightarrow \mu\mu$ (+ nπ)

- Regional Reconstruction (Italian Idea)
 - → Issue: Large reconstruction time @ TierO due to pileup limits HLT Bandwidth
 - → Idea: exploit the clear dí-muon (+ n tracks & e.m. clusters) signature
 - Seed only the tracks from the same Primary Vertex as the di-muon in a rectangular (θ, ϕ) region centered in the selected PV (out of 20-40 PVs) taking into account the PV-SV direction of flight
 - Use Reduced P_t thresholds: Increase HLT Physical Rate
- oldea Tested by Po-Hsun Chen, M. Tosi, S. Fiorendi, V. Innocente
 - K* μμ sample with 40 Pileup events
 - Reconstructed average of 36 tracks/event vs 1000 of standard procedure
 - Work going on to check efficiencies, event size, timing
 - Implement it during 2015?
 - → Help needed (also) in cfg validation...

• 17/18 November:

Worshop on Scouting, Parking, and Hotline

https://indico.cern.ch/event/345449/

Tuesday, 18 November 2014

10:00 - 12:20 Session on Data Scouting, Hotline & Local reconstruction

Location: 40-S2-B01 - Salle Bohr

10:00	Local reconstruction: BPH 20'				
	Speakers:	Kai-Feng Chen (National Taiwan University (TW)), Po-Hsun Chen (National Taiwan University (TW))			

- 10:30 Discussion on whether local reconstruction could be useful for other groups 10'
- 10:40 Plans from B2G 15'

Speaker: Devdatta Majumder (University of Kansas (KU))

- 11:00 Plans from EXO 15'
- 11:20 Plans from SUSY 15'

Speaker: Maurizio Pierini (California Institute of Technology (US))

11:40 Inputs and directions from Physics Coordinators 20'

Speakers: Luca Malgeri (CERN), Jim Olsen (Princeton University (US))

Run II Strategy:

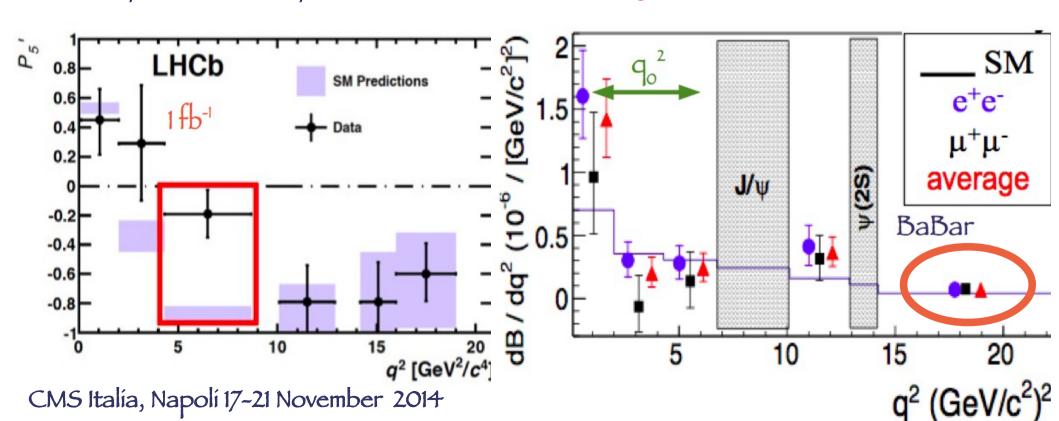
2. Physics

(Prospect for Current Analyses & New Ideas):

- · Rare Decays, LFV & CPV
- · Quarkonia
- B Spectroscopy & Decays
- · Flavor Phys. in Heavy Ions Collisions

•B → μμ:

- Improve Muon Misidentification (limiting factor): New MVA binned in η
- Improve Selection: BDT for isolation, Rare SL BKG study, integrate the Peaking BKG analysis in the mainstream
- Improve Fit: Include BDT Discriminant, B →hµv & B →hh PDFs


• B → K^(*)μμ:

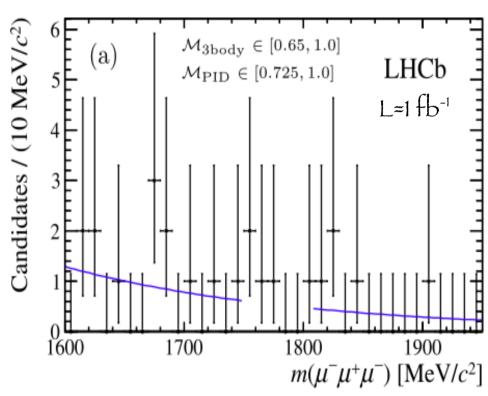
- \blacksquare Extend the analysis to B⁺ \blacksquare K^{*+}μμ (35% ε for K_ε, 53% BR), B⁺ \blacksquare K⁺μμ (65% BR, handed couplings)
- ♣ Include measurement of

$$A_{I} = \frac{\Gamma\left(B^{0} \to K^{(*)0} \mu^{+} \mu^{-}\right) - \Gamma\left(B^{+} \to K^{(*)} + \mu^{+} \mu^{-}\right)}{\Gamma\left(B^{0} \to K^{(*)0} \mu^{+} \mu^{-}\right) + \Gamma\left(B^{+} \to K^{(*)} + \mu^{+} \mu^{-}\right)} \qquad A_{CP} = \frac{\Gamma\left(\bar{B^{0}} \to \bar{K}^{(*)0} \mu^{+} \mu^{-}\right) - \Gamma\left(B^{0} \to K^{(*)0} \mu^{+} \mu^{-}\right) - \Gamma\left(B^{0} \to K^{(*)0} \mu^{+} \mu^{-}\right)}{\Gamma\left(\bar{B^{0}} \to \bar{K}^{(*)0} \mu^{+} \mu^{-}\right) + \Gamma\left(B^{0} \to K^{(*)0} \mu^{+} \mu^{-}\right)}$$

- •B → K^(*)μμ:
 - Use of the angular observables free from Form Factor contributions.
 - \blacksquare LHCb: 3.7 σ discrepancy in P'₅ in 4.3< q^2 < 8.68 GeV² [PRL 111, 191801 (2013)]
 - ightharpoonup Possible interpretation as a NP contribution to Wilson coefficient C_9
 - Resulting C^{NP}_{g} would imply an inclusive BR(B \rightarrow X_s II) suppression of ~25% in $1 < q^2 < 6 \text{ GeV}^2$ and $q^2 > 14.4 \text{ GeV}^2$: not confirmed by BaBar which finds a ~2 σ excess

- B Mixing & A S
- Using the current tagging strategy in tt events:
 - → L_{INIT} =300 fb⁻¹, σ=1 nb (5 time the current value) → δA_{SI} (stat) ~0.3%
- Other Possible Analysis: use self-tagging B⁺→J/Ψ K⁺
 - 2012: 40k events with a μ tag (4 times the top analysis)
 - → L_{INIT} =300 fb⁻¹, σ = 2 time the current value → δA_{SI} (stat) ~0.2%

Flavor Tagging: J/ψ/φ et al.


- Include Opposite-Side vertex charge & jet-charge
- Include the Same-Side cone-charge,...
- Validate the tagging algorithm with a time-dependent measurement of B° mixing

τ → 3μ

Neutrimo mass terms in the SM imply LFV also in the charged sector with BR~10-40

NP could significantly enhance LFV in τ decays

- •LHCb [PLB 724 36-45 (2013)]:
 - Background rejection
 exploiting 3-body topology
 muon id.
 - \rightarrow Yield normalized to $D_s \rightarrow \varphi(\mu\mu) \pi$

LHCb: BR($\tau \rightarrow 3\mu$)<8.010⁻⁸@90%CL

BELLE: BR($\tau \rightarrow 3\mu$)<2.110⁻⁸@ 90% CL

(BEST LIMIT)

τ → 3μ

Main sources of τ -leptons at LHC

Meson (M)	D_S	D^{+}	B^{0}	B_S	B^{+}
$BR(M \to \tau + X)$	7.0%	0.2%	2.7%	1.5%	2.7%
$\sigma(M \to \tau + X)/\sigma(pp \to \tau + X)$	77%	3%	9%	2%	9%

CMS/NOTE 2002/037

$$\sigma(pp \to W \to \tau + \nu_{\tau}) = 19nb$$

 $\sigma(pp \to Z^0 \to \tau \overline{\tau}) = 3nb$

$$\sigma(pp \to B_X \to \tau + \nu_\tau + X) \approx 24\mu b$$

 Expected yields/10 fb⁻¹ using current best limit 2.1 10⁻⁸ from BELLE

■ W: 4 evts

Z: 0.7 evts

→ B: 5039 evts

- CMS: New path since 2012: HLT_Tau2Mu_ltTrack (G. Cerminara, F. Fiori, G. Rolandi)
 - Cut on dimuon Invmass, Prob(vertex), Lxy significance; regional tracking (Iterative 4 steps), Dimuon+Tk Vertex
 - Strong interest in the BPH Group: Manpower needed

52

\bullet $\tau \rightarrow 3\mu$

Main sources of τ -leptons at LHC

Meson (M)	D_S	D^+	B^{0}	B_S	B^{+}	CMS/NOTE
$BR(M \to \tau + X)$	7.0%	0.2%	2.7%	1.5%	2.7%	2002/037
$\sigma(M \to \tau + X)/\sigma(pp \to \tau + X)$	77%	3%	9%	2%	9%	2002/0)/

$$\sigma(pp \to W \to \tau + \nu_{\tau}) = 19nb$$

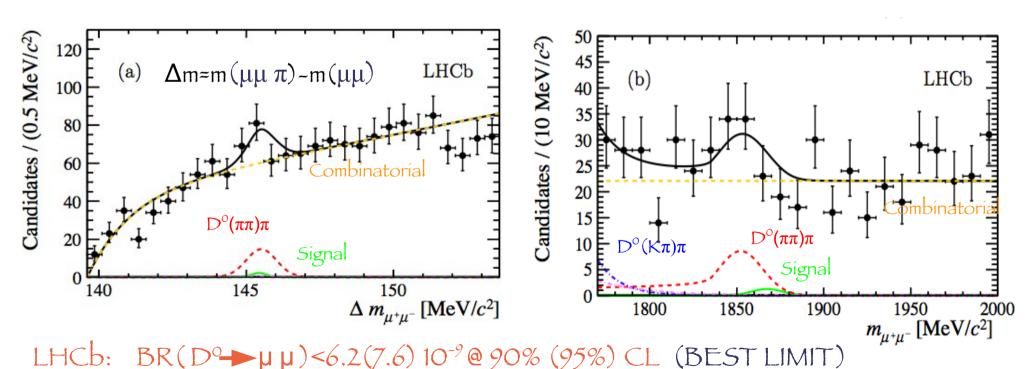
 $\sigma(pp \to Z^0 \to \tau \overline{\tau}) = 3nb$

$$\sigma(pp \to B_X \to \tau + \nu_\tau + X) \approx 24\mu b$$

- Expected yields/10 fb⁻¹ using current best limit 2.1 10⁻⁸ from BELLE
 - W: 4 evts
 - Z: 0.7 evts
 - → B: 5039 evts

■ Exploit W→τV

- \blacksquare Expect 8 events in Run 1: need ε~30% & no BKG to be competitive
- With L≈100 fb⁻¹ we might be competitive
- Need accurate determination of BKG & Efficiency

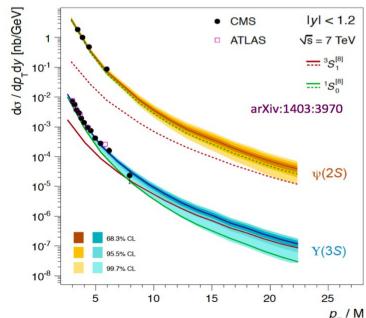

CPV/Rare Decays: Possible Analyses

D° → μμ

→GIM suppression more effective in charm than in b decays. Additional helicity suppression: $BR(SM) < 6 \cdot 10^{-11}$

•LHCb [PLB 725 15-24 (2013)]:

- Reconstruct $D^* \longrightarrow D^\circ(\mu\mu) \pi$
- ♣ Signal Yield normalized to D° → π π

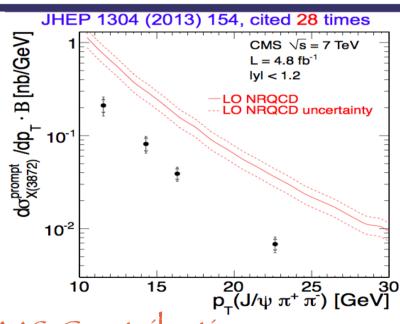

CMS Italia, Napoli 17-21 November 2014

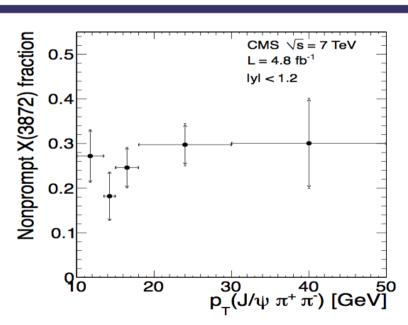
M.Margoni Universita` di Padova & INFN

Conventional Quarkonia

- Considering Run II integr. luminosity, a factor 2 in xsections & the improved trigger, we expect a data sample of high- $p_{\scriptscriptstyle T}$ quarkonia few hundreds times larger than in 2011.
- Potential to become a high precision Physics: extend xsection & polarization measurement to the highest p_T attainable (minimizing effects of non-factorizing contributions)
- Measurements of direct xsections & polarizations in order to avoid feed-down contamination (only Y(2S) can be considered feed-down free)
- Test the dominance of the 3S_1 over 1S_0 CO terms at high p_T suggested by the differential xsection fits of the S-wave states: higher p_T quarkonia should be transversely polarized.

Perform precision prod. xsection & polarization measurement for χ_c and χ_b and test if this hierarchy


among CO contributions holds for P-wave states as well CMS Italia, Napoli 17-21 November 2014 M.Margor


M.Margoni Universita` di Padova & INFN

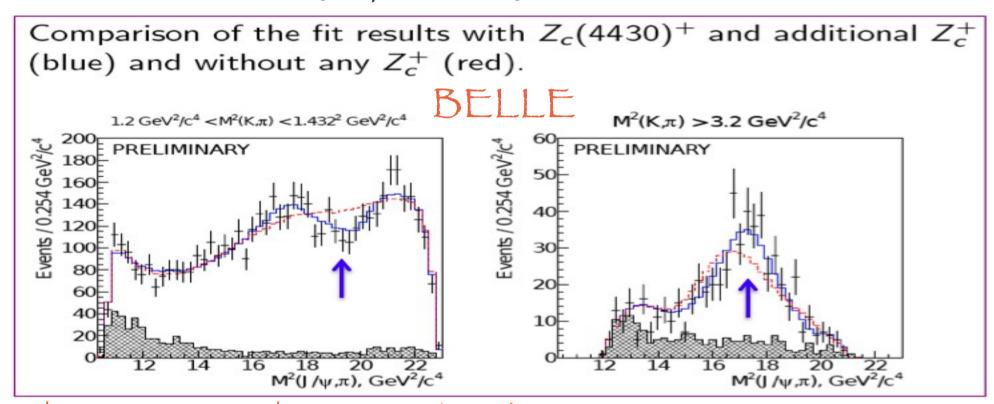
• Understand the nature of X(3872)

Conventional charmonium hypothesis ruled out by equal amounts of isospin components I=0 & I=1 (maximal isospin violation):

$$\frac{B(X \to J/\psi \pi^{+} \pi^{-} \pi^{0})}{B(X \to J/\psi \pi^{+} \pi^{-})} = 1.0 \pm 0.4 \pm 0.3$$
 (BELLE)

• CMS Contributions:

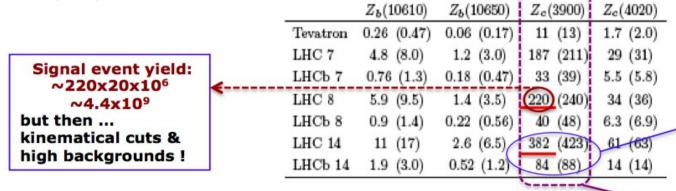
- Differential cross section lower than theoretical prediction
- Non prompt production ~30%


•Understand the nature of X(3872)

Conventional charmonium hypothesis ruled out by equal amounts of isospin components I=0 & I=1 (maximal isospin violation):

$$\frac{B(X \to J/\psi \pi^{+} \pi^{-} \pi^{0})}{B(X \to J/\psi \pi^{+} \pi^{-})} = 1.0 \pm 0.4 \pm 0.3$$
 (BELLE)

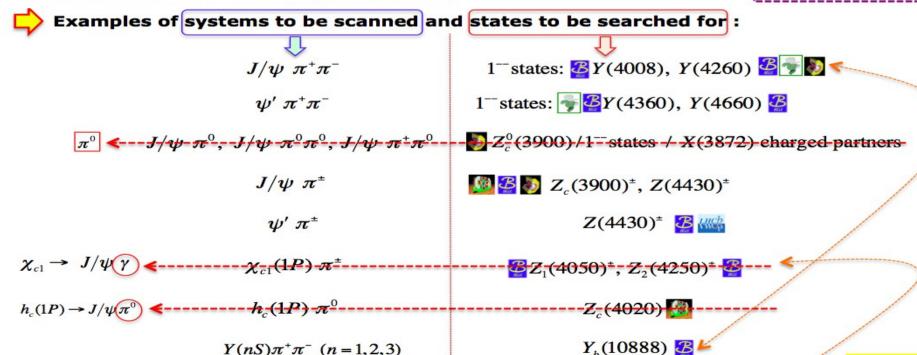
- Analogously to $B^{0(+)} \longrightarrow XK^{0(+)} \longrightarrow (J/\psi\pi^+\pi^-) K^{0(+)}$ study also the decays $B^{0(+)} \longrightarrow \psi'\pi^+\pi^- K^{0(+)}$ (never been studied due to the relatively low yield)
- Could there be the possibility to find a radial excitation of the X?
- Selection rules for the radial quantum number? For instance Y (4360) / Y (4660) decay into $\psi'\pi^+\pi^-$ but not into $J/\psi \pi^+\pi^-$


- •Amplitude Analyses
- - \bullet B° \bullet J/ $\psi \phi K^+$ to understand nature of Y(4140) & Y(4270) [PLB 734 (2014)]
 - $B^{\circ} \rightarrow \psi' \pi^{-} K^{+}$ analysis to confirm Z'(4240) will go on in Bari
 - $B^{\circ} \rightarrow J/\psi \pi^{-}K^{+}$ analysis presented by BELLE @ Moriond QCD 2014:

- Observation $@7.2 \sigma$ of new state Z'(4200)
- Something to be checked @ CMS

Prompt production in inclusive searches:

 $Y(nS)\pi^{+}$ (n = 1, 2, 3)



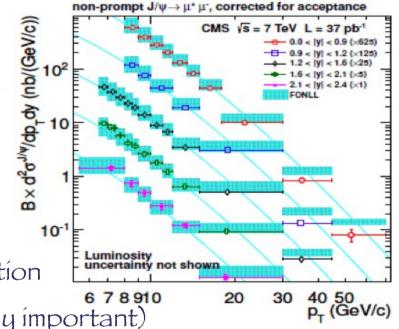
[1] Guo, Meissner, Wang, Commun. Theor. Phys, 61 (2014)

more copiously produced ! (look also 2011+2012 data)

PLB 727 (2013) 57

5 x LHCb

 $\mathbb{Z}_{b}(10610)^{\pm}, Z_{b}(10650)^{\pm} \mathbb{Z}_{b}$


Production & Spectroscopy

- Charm & bottom production are among the most interesting studies of QCD dynamics @ LHC (σ_c 5 mb, σ_b 250 μ b). Tests of QCD calculations & BKG for NP.
- Good agreement @ 7/8 TeV between Data & "Fixed Order + Next to Leading Log"

(FONLL) predictions

- ullet B-hadron cross sections measurements @ 13 TeV will test FONLL at unprecedently $\[\] \$ & P $_{t}$
 - Crucial Issue: Efficiency in fine muon bins
- B_c Spectroscopy: enrich the scenario

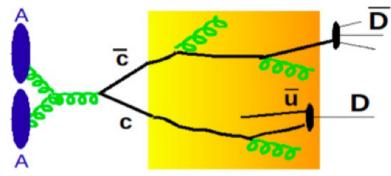
 - \bot X=D, D_s, τ : improve resonances & τ reconstruction
 - \blacksquare Measure of $\sigma(B_c)/\sigma(B^+)$ at high P_t (theoretically important)

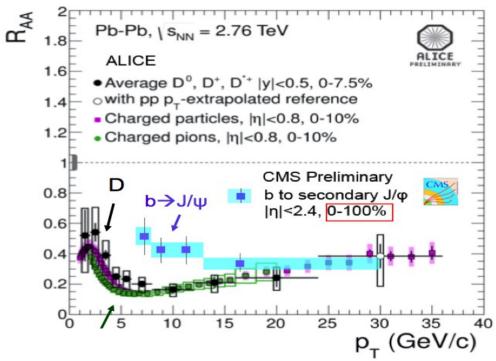
Beauty Baryons

- \blacksquare Improve σ ($\Lambda_{\rm b}$) measurement, $\Lambda_{\rm b}$ \longrightarrow Λ $\mu\mu$
- \bullet $\Omega_{\rm h}$, $\Xi_{\rm h}$,... new discoveries?

60

Flavor Physics in Heavy Ions collisions


- Heavy quarks produced in hard scattering in the early stage of the collision
- Initial state effects: modification of the
 Parton Distribution Functions in nuclei
- Strong interaction with the deconfined medium:
- ♣ Enhanced gluonstrahlung
 - Study in medium energy loss (nuclear modification factor)


$$R_{AA}(p_t) = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA}/dp_t}{dN_{pp}/dp_t}$$

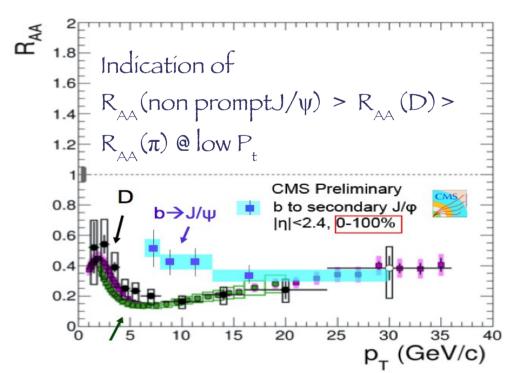
- Predictions:
 - With no medium effects $R_{AA} = 1$
 - \bullet With in medium energy loss $R_{AA} < 1$
 - Gluon radiation suppressed at small angles for massive quarks:

$$R^{B}$$
 > R^{D} > R^{light}

CMS Italia, Napoli 17-21 November 2014

M.Margoni Universita` di Padova & INFN

Flavor Physics in Heavy Ions collisions


- Heavy quarks produced in hard scattering in the early stage of the collision
- Initial state effects: modification of the
 Parton Distribution Functions in nuclei
- Strong interaction with the deconfined medium:
- → Enhanced gluonstrahlung
 - Study in medium energy loss (nuclear modification factor)

$$R_{AA}(p_t) = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA}/dp_t}{dN_{pp}/dp_t}$$

Analysis will go on @ Run 2

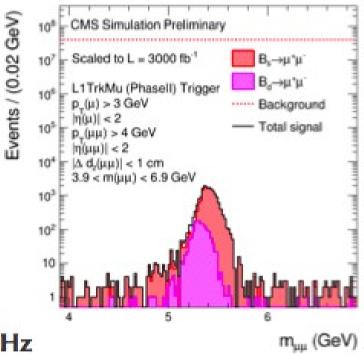
Together with measurements of D mesons Yields in pPb collisions

M.Margoni Universita` di Padova & INFN

CMS Italia, Napoli 17-21 November 2014

Conclusions

Conclusions


- Impressive amount of results, expecially considering the number of people involved
- Number of Publications will increase by 60% taking into account the current analyses (almost twice as Atlas)
- Important relative weight of Italian Institutions in the PAG (analysts and conveners/subconveners)
- RUN II is approaching:
 - Trigger experts at work with analysts to define the final data taking strategy
 - Many ideas on new possible analyses
- Manpower is needed and very welcome!

Backup

L1 trigger for $B^{\circ}_{(s)} \rightarrow \mu\mu$

Mario Galanti

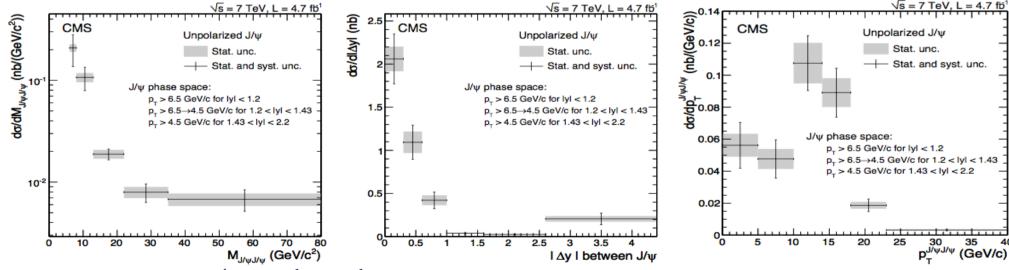
- We simulated a low-p_T di-muon L1 trigger algorithm exploiting the triggering capabilities of the upgraded CMS tracker
 - 2 opposite-charge L1 "Tk muons", reconstructed from a matching of the L1 tracks and L1 standalone muons
 - p_τ(µ) > 3 GeV
 - |η(μ)| < 2
 - p_τ(μμ) > 4 GeV
 - |η(μμ)| < 2
 - Δd_z(μμ) < 1 cm
 - 3.9 < m(μμ) < 6.9 GeV
- Mass resolution at L1 is measured to be ≈ 70 MeV using Gaussian fits to the signal peaks
- Trigger rate in the HL-LHC conditions (average of 140 PU events) is estimated to be a few hundred Hz

- It constitutes only a tiny fraction of the total L1 bandwidth
- This study shows that the expected performances of the upgraded CMS L1 trigger are more than sufficient to implement trigger algorithm for $B{\to}\mu\mu$ having the same acceptance of the L1 trigger used in LHC Run 1

Constraints from B- µ "µ"

[K.A. Petridis, Moriond QCD 2014, SM4: SM with a 4th D.M. Straub, arXiv:1012.3893] CMS+LHCb MSSM-LL generation 1.5 Preliminary MFV: Flavor Violation Combination governed only by 1.0 CKM matrix CDF 95% 0.5 $\rightarrow BR(B_1)/BR(B_2)$ extremely sensitive 0.0 probe of NP

Result in agreement with SM [0.4 σ for B and 1.7 σ for B]


The focus now is on BR(B) and on the ratio BR(B)/BR(B)

■LHCb (after upgrade): measure ratio @ 35% with 50 fb⁻¹

 $10^9 \times \mathrm{BR}(B_s \to \mu^+ \mu^-)$

Measurement of prompt J/W pair production

- ullet Process sensitive to Multiple-parton scattering populating JHEP 09 09-2 the large $|\Delta y|$ region between the two J/ ψ
- Production dominated by gluon-gluon fusion. Color-octet contribution negligible • P_t<15 GeV and low M(J/ ψ J/ ψ), but increasing with P_t. NLO calculations indicate enhanced color-singlet contribution at higher P_t.
 - First time access to the high P_t (J/ ψ) region with no established model predictions. Complementary with LHCb in rapidity.

Assuming unpolarized production:

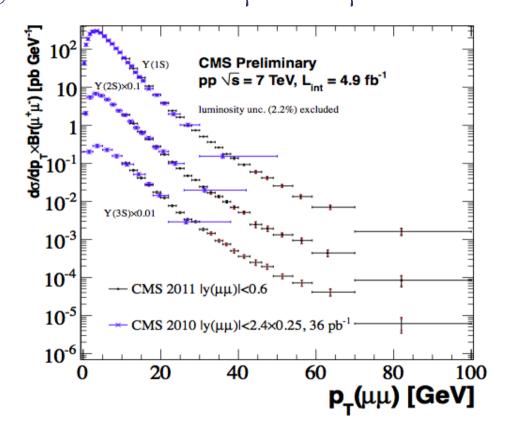
 $\sigma(pp - J/\psi J/\psi + X) \approx 1.49 \pm 0.07 \pm 0.13 \text{ nb}$

CMS Italia, Napoli 17-21 November 2014

M.Margoni Universita` di Padova & INFN

$\Upsilon(15), \Upsilon(25)$ and $\Upsilon(35)$ o measurements

• Different Υ production models predict different $\frac{d\sigma}{dP_t}$ shapes in the high P_t region. NRQCD parameters can be determined by fit on data, which impact the polarization


predictions at all P₊.

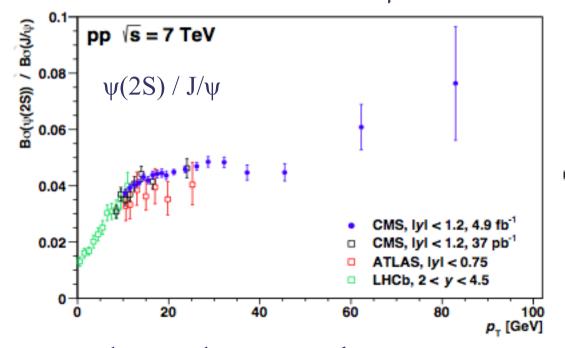
Large statistics allow to study the shape up to 100 GeV:

 $\frac{d\sigma}{dP_t}$ peaks at P_t =4 GeV

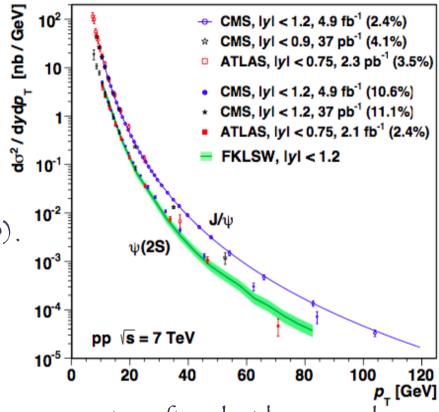
■Exponential behaviour for 10 GeV< P₊ < 20 GeV

- →Power-law shape for P_t >20 GeV for all the Y states
- Suggestion of a change in the nature of the production process

•Need of a model to explain the small polarization and power-law behaviour at high P_t


Prompt J/ψ and $\psi(25)$ double-differential cross

Sections in pp collisions at 7 TeV


• LDME parameters not calculable need to be

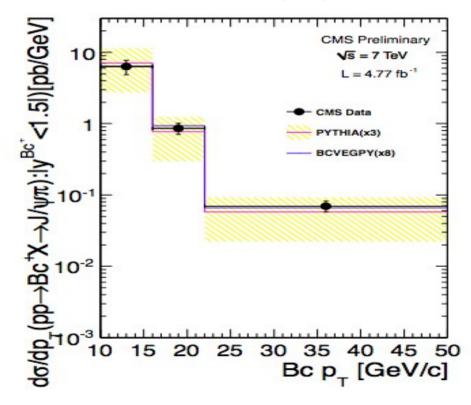
LDME parameters not calculable need to be determined by fit to data. Differential cross sections very similar for singlet & octet contributions

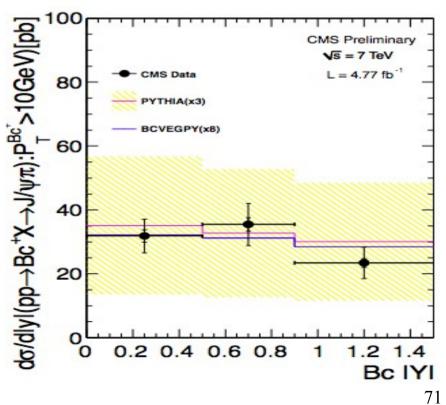
Very important to extend the measurements towards high P_t values (most reliable theory calculations at fixed order in perturbative QCD).

CMS Italia, Napoli 17-21 November 2014

 Cross sections fitted with power-law function

70


M.Margoni Universita` di Padova & INFN

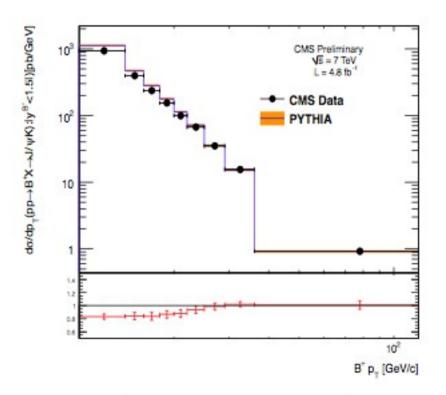

Measurement of the B & B+ cross-sections

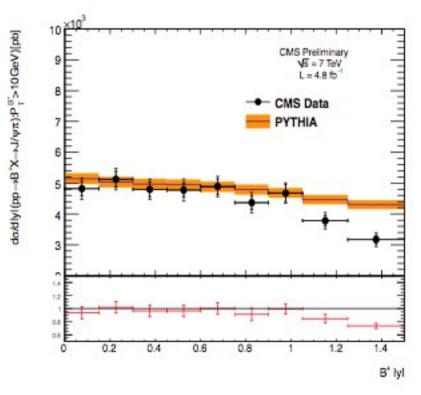
Pre-Approved

- B_c mesurements: test for the theoretical predictions on heavy flavor production complementary to quarkonia
- Used decay $B_{\epsilon} \rightarrow J/\psi \pi$, $P_{t}(B_{\epsilon}) > 10$ GeV, |y| < 1.5
- Theoretical predictions are less by a factor 3 (PYTHIA) or 8 (BCEGPY) than data

$$\sigma(B_c) = 45.17 \pm 5.25 \pm 2.85 \ pb$$

CMS Italia, Napoli 17-21 November 2014

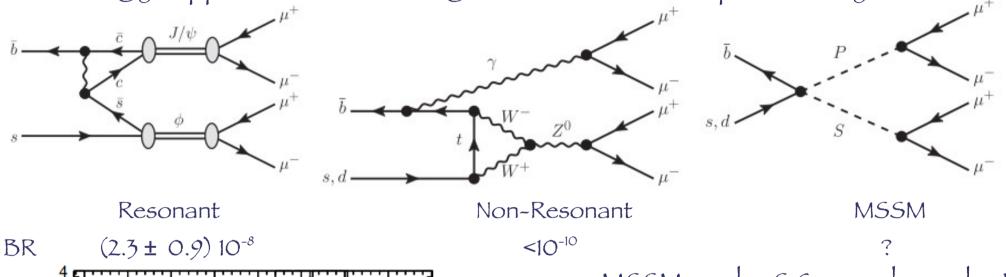

M.Margoni Universita` di Padova & INFN

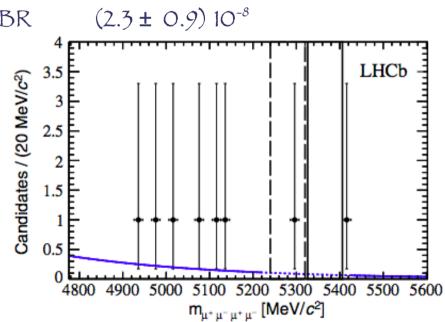

Measurement of the B & B+ cross-sections

Pre-Approved

- Use decay $B^+ \rightarrow J/\psi K^+$, $P_t(B^+) > 10$ GeV, |y| < 1.5
- Theoretical predictions for integrated cross section are in agreement with data at 1 σ level

$$\sigma(B^+) = 6503.18 \pm 122.43 \pm 448.72 \ pb$$




A. Malvezzi, M. Margoni & S. Paoletti are part of the ARC

CPV/Rare Decays: Possible Analyses

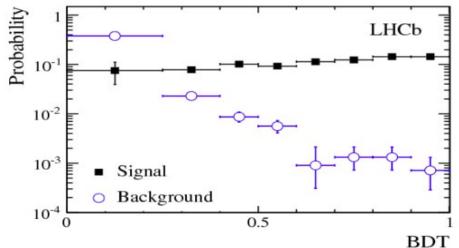
•B°→ 4µ

*Strongly suppressed in the SM, significant enhancement predicted by MSSM

MSSM: scalar S & pseudo-scalar P sgoldstinos or light Higgs

LHCb: [PRL 110, 211801 (2013)]

BR(B 0 \rightarrow 4 μ) < 6.6 10 $^{-9}$ @ 95% CL


BR(B - 4 µ) < 1.6 10⁻⁸ @ 95% CL

CMS Italia, Napoli 17-21 November 2014

M.Margoni Universita` di Padova & INFN

CPV/Rare Decays: Possible Analyses

- ■LFV process allowed in NP models via exchange of spin-1 gauge bosons carrying color & lepton quantum numbers (Patí-Salam Leptoquark)
- ■Current limits from direct search in the range [0.4-0.9] TeV
- Indirect search probe also LQ coupling quarks and leptons of different generations

■BKG dominated by B semileptonic decays & peaking B → hh' ($h^{(i)} \approx K, \pi$) suppressed using a BDT discriminant

Using L=1 fb-1 LHCb [PRL 111, 141801 (2013)]

- \Rightarrow BR(B⁰→eµ)<3.710⁻⁹@95% CL M_{LQ} >126 TeV@95% CL
- → BR(B→eμ)<1.4 10⁻⁸ @ 95% CL M_{LQ}>101 TeV @ 95% CL
- → Limits 2 orders of magnitude higher than direct searches

- BPH trigger focused mainly on muons
- Different features & needs depending on the Physics channel:
 - Rare Decays: almost 100% Background paths (Β μμ)
 - Quarkonía: almost 100% Signal path (J/ψ, Υ)

Issues:

- HLT: around 100 Hz of Bandwidth @ L≈1.4 10³⁴ without regional reconstruction
 & Data Parking
 - Quarkonía (50% of rate):
- 50% rate is the current goal.
 - It could be in principle reduced in favor of other paths:

 - Increase the rate for dimuon + track triggers (expecially low mass not resonant)