

19/pl Measurement

from B° - D*/V

Partial Reconstruction

Martíno Margoní Uníversíta` dí Padova and INFN (on behalf of the BaBar Collaboratíon) íon

- Motivation
- Analysis Method
- •Validation on MC
- •Real Data Results
- Systematic UncertaintiesConclusions
- 7th CKM Workshop, Cincinnati 2012

Motivation

7th CKM Workshop, Cincinnati 2012

CPV in B° mixing

•New Particles in the boxes could modify SM expectations

 $\mathbf{B}_{q}^{\circ} - \mathbf{B}_{q}^{\circ} \text{ oscillations \& decay governed by an Effective Hamiltonian:} \\ i \frac{d}{dt} \begin{pmatrix} B_{q} \\ \overline{B}_{q} \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} M_{11}^{q} & M_{21}^{q *} \\ M_{21}^{q} & M_{11}^{q} \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma_{11}^{q} & \Gamma_{21}^{q *} \\ \Gamma_{21}^{q} & \Gamma_{11}^{q} \end{pmatrix} \end{bmatrix} \begin{pmatrix} B_{q} \\ \overline{B}_{q} \end{pmatrix}$ $\begin{bmatrix} M_{j} \end{bmatrix} = \operatorname{mass matrix} \\ \begin{bmatrix} \Gamma_{j} \end{bmatrix} = \operatorname{decay matrix} \\ \begin{bmatrix} \Gamma_{j} \end{bmatrix} = \operatorname{decay matrix} \end{bmatrix}$

•Physical Eigenstates with defined masses and widths:

$$|B_q^{L,H}\rangle = \frac{1}{\sqrt{1 + |(q/p)_q|^2}} \left(|B_q\rangle \pm (q/p)_q |\overline{B}_q\rangle\right)$$

•Neglecting
$$o(m_b^2/M_w^2)$$
:
 $\Delta m_q = m_H - m_L = 2 \left| M_{12}^q \right|; \Delta \Gamma_q = \Gamma_L - \Gamma_H = 2 \left| \Gamma_{12}^q \right| \cos \phi$
 $\phi = arg(-M_{12}^q/\Gamma_{12}^q)$ CP violating phase

7th CKM Workshop, Cincinnati 2012

CPV in B° mixing

$$A_{CP} = \frac{Prob(\bar{B}^{0} \to B^{0}, t) - Prob(\bar{B}^{0} \to \bar{B}^{0}, t)}{Prob(\bar{B}^{0} \to B^{0}, t) + Prob(\bar{B}^{0} \to \bar{B}^{0}, t)} = \frac{N(\bar{B}^{0} \bar{B}^{0}) - N(\bar{B}^{0} \bar{B}^{0})}{N(\bar{B}^{0} \bar{B}^{0}) + N(\bar{B}^{0} \bar{B}^{0})}$$

•Experimentally: measure charge asymmetry in **mixed** semileptonic B° decays:

$$A_{SL} = \frac{N(\ell^+\ell^+) - N(\ell^-\ell^-)}{N(\ell^+\ell^+) + N(\ell^-\ell^-)} = \frac{1 - |q/p|^4}{1 + |q/p|^4} = \frac{|\Gamma_{12}^q|}{|M_{12}^q|} \sin \phi \qquad \Rightarrow \text{CPV in mixing if:} \\ A_{SL} \neq 0 \leftrightarrow |q/p| \neq 1 \leftrightarrow \Phi \neq 0$$

Standard Model predicts

(Lenz, Nierste, arXiv:1102.4274 (2011)):

•B_d: $A^{d}_{SL} = (-4.1 \pm 0.6) 10^{-4}$ $\Phi_{d} = -4.3^{\circ} \pm 1.4^{\circ}$

•B_s: $A^{s}_{SL} = (1.9 \pm 0.3) 10^{-5}$ $\Phi_{s} = 0.22^{\circ} \pm 0.06^{\circ}$ Beyond Standard Model •New Physics could modify M_{12}^q and A_{SL} leaving Γ_{12}^q unchanged: $M_{12}^{NP,q} = M_{12}^{SM,q} \Delta_q; \Delta_q = |\Delta_q| e^{i\phi_q^{\Delta}}$ $A_{SL}^{NP} = \frac{|\Gamma_{12}^q|}{|M_{12}^{SM,q}|} \frac{\sin(\phi_q^{SM} + \phi_q^{\Delta})}{|\Delta_q|}$ 4

7th CKM Workshop, Cincinnati 2012

Analysis Method

7th CKM Workshop, Cincinnati 2012

Analysis Method

Δz

 $\Delta t = \Delta Z / \beta v c$

 Semileptonic Asymmetry measured from Partially Reconstructed
 B°→ D*lv and K Tag

P.R. B^o flavor from lepton charge
Tag B^o flavor from K charge

Tag K

$$A_{SL} = \frac{N(\ell^+ K_T^+) - N(\ell^- K_T^-)}{N(\ell^+ K_T^+) + N(\ell^- K_T^-)}$$

• Iq/pl obtained using an Extended Maximum Likelihood Binned fit to the $\Delta t \otimes \cos(\theta_{K-Lepton})$ distributions of the 4 subsamples: Unmixed (I⁻K⁺, I⁺K⁻); Mixed (I⁺K⁺, I⁻K⁻) using a BLIND Approach 7th CKM Workshop, Cincinnati 2012 M.Margoni Universita` di Padova & INFN

Partial Reconstruction

•P. R. of B°-D*lv already exploited in several measurements ($\tau B^{\circ}, \Delta m, ...$) •Reconstruct only lepton & π_{soft} with opposite charge •Signal selection using missing squared neutrino mass with the approximation of B at rest in the Y(4s) frame •D* 4-momentum estimated from π_{soft}

$$\mathcal{M}_{\nu}{}^{2} \equiv (E_{\text{beam}} - E_{D^{*}} - E_{\ell})^{2} - (\vec{p}_{D^{*}} + \vec{p}_{\ell})^{2}$$

kinematics

- •Sample composition from a fit to M²v by floating D*, D** and Combinatorial using MC shapes and Continuum shape from Off-Peak events
- Residual Peaking (D*TV, D*DsX, D*h) fixed to simulation
 7th CKM Workshop, Cincinnati 2012
 M.Margoni Universita` di Padova & INFN

Selection and Tagging

•Full BaBar statistics of 425.7 fb⁻¹ analyzed •O.06 GeV/c<P π_{soft} <O.19 GeV/c; 1.40 GeV/c<P $_{e/\mu}$ <2.30 GeV/c

•Best lepton π_{soft} pair per event choosen exploiting Likelihood Ratio η (P₁,P π_{soft} , Vertex Probability)

7th CKM Workshop, Cincinnati 2012

Selection and Tagging

•K selection by means of energy loss & Cherenkov detector information; $P_{_{\rm K}}$ >0.2 GeV/c

•Continuum and Combinatorial BKG suppressed by means of Event Shape variables & Vertex Probability

→14 x 10⁶ events selected with Signal Purity ~30% in the range:
-10 GeV²/c⁴<M²v<2.5 GeV²/c⁴

M.Margoni Universita` di Padova & INFN

7th CKM Workshop, Cincinnati 2012

PDF Description: Btag

•Signal B° Btag PDF for Positive Mixed ($|^{+}K^{+}$) sample, (similar expressions apply for the other ones):

 $\begin{aligned} \mathcal{F}_{signal}(\Delta t, s_t, s_m) &= \frac{\Gamma}{2(1+r'^2)} e^{-\Gamma|\Delta t|} \left| \frac{p}{q} \right|^2 \left[\left(1 + \left| \frac{q}{p} \right|^2 r'^2 \right) \cosh(\Delta \Gamma \Delta t/2) - \\ &- \left(1 - \left| \frac{q}{p} \right|^2 r'^2 \right) \cos(\Delta m_d \Delta t) + \left| \frac{q}{p} \right| (b+c) \sin(\Delta m_d \Delta t) \right] \\ \bullet r', b, c: \text{ parameters resulting from interference} \\ \text{between Cabibbo-Favoured and Doubly} \\ \text{Cabibbo-Suppressed decays on the tag side} \\ \hline r' &= \left| \overline{\mathcal{A}}_{DCS} / \mathcal{A}_{CF} \right| \\ b &= 2r' \sin(2\beta + \gamma) \cos \delta' \\ c &= -2r' \cos(2\beta + \gamma) \sin \delta' \\ c &= -2r' \cos(2\beta + \gamma) \sin \delta' \end{aligned}$

 b, c are treated as effective parameters due to strong correlation with resolution function

→ Only |q/p| is measured

 $c = -2r'\cos(2\beta + \gamma)\sin\delta'$ $\delta' = Strong Phase$

7th CKM Workshop, Cincinnati 2012

M.Margoni Universita` di Padova & INFN

PDF Description: Btag

In Real Life Physics & Detector effects have to be taken into account:
Physics

- → Místag, dependíng on P_{K} : $\omega^{+} = \operatorname{Prob}(B^{\circ} \rightarrow K^{-}), \omega^{-} = \operatorname{Prob}(\overline{B^{\circ}} \rightarrow K^{+}), \Delta \omega = \omega^{+} - \omega^{-}, \omega = (\omega^{+} + \omega^{-})/2$
- Detector
 - → Reconstruction Asymmetry: $\rho \approx \epsilon(|^{+}, \pi^{-}), \, \overline{\rho} \approx \epsilon(|^{-}, \pi^{+}) \quad A_{rec} = (\rho \overline{\rho})/(\rho + \overline{\rho})$
 - → Tagging Asymmetry, depending on P_K: $\tau \approx \epsilon(K^+), \overline{\tau} \approx \epsilon(K^-)$ $A_{tag} = (\tau - \overline{\tau})/(\tau + \overline{\tau})$
 - → At Resolution

7th CKM Workshop, Cincinnati 2012

M.Margoni Universita` di Padova & INFN

PDF Description: Btag

•Modified PDF for Positive Mixed ($|^{+}K^{+}$) sample including Mistag & Detector Asymmetries, (similar expressions apply for the other ones):

$$\begin{aligned} \mathcal{F}_{\chi}^{meas}(\Delta t, s_t = 1, s_m = -1) &= \rho \tau \left[(1 - \omega_{\chi}^+) \mathcal{F}_{\chi}(\Delta t, 1, -1) + \omega_{\chi}^- \mathcal{F}_{\chi}(\Delta t, -1, 1) \right] = \\ &= RT(1 + A_{rec})(1 + A_{tag}) \left[(1 - \omega_{\chi}^+) \mathcal{F}_{\chi}(\Delta t, 1, -1) + \omega_{\chi}^- \mathcal{F}_{\chi}(\Delta t, -1, 1) \right] \end{aligned}$$

R = (
ho + ar
ho)/2T = (au + ar au)/2

B_{rec} is a	B_{tag} is a	st	Sm
B^0	B^0	1	-1
$\overline{B}{}^{0}$	B^0	1	1
B^0	$\overline{B}{}^{0}$	-1	1
$\overline{B}{}^{0}$	$\overline{B}{}^{0}$	-1	-1

•Observed PDFs are obtained from the convolution of the modified PDFs with a resolution function (sum of Gaussians convolved with exponentials)

7th CKM Workshop, Cincinnati 2012

PDF Description: Dtag

•Dominant BKG in Mixed events: shows single-tag semileptonic asymmetry

• F_{Dtag} floated by exploiting the different $\Delta t & \theta$ (K-Lepton) distributions wrt Btag events in different P_{K} bins

•Dtag fraction in B⁺ events constrained to B^o using simulation informations:

 $F^{B+}_{Dtag} = R_{MC}(P_{K}) * F^{BO}_{Dtag}$

• $cos(\theta_{K-Lepton})$ PDF from MC

• Δt PDF from a High Purity selection on Real Data (Dtag Purity ~95%)

7th CKM Workshop, Cincinnati 2012

PDF Description: Dtag

PDF Description: BKG Samples

- B° Combinatorial PDF similar to Signal one with effective τB°, Δm, same Asl and Atag, different Arec, mistag and resolution parameters.
 B⁺ decays parameterized by exponential functions and same resolution model as for B° decays.
- •Continuum modeled with an exponential with effective lifetime obtained by a simultaneous fit to Off-peak data.
- •About 1% of selected events originate from B° decays to

CP-eigenstates (mostly $D^*D^{(*)}$)

→ Described by: $+: P.R. B^{\circ}$ $-: P.R. B^{\circ}$

$$\mathcal{F}_{CP-eigen} = \frac{\Gamma}{4} e^{-\Gamma |\Delta t|} \left[1 \pm S_{eff} \sin(\Delta m_d \Delta t) \pm C_{eff} \cos(\Delta m_d \Delta t) \right]$$

Seff & Ceff obtained from the simulation

7th CKM Workshop, Cincinnati 2012

M.Margoni Universita` di Padova & INFN

Detector Asymmetry determination

•Crucial Issue: discriminate between Physical & Detector charge asymmetry without relying on control samples

•Different sub-samples (B°, B⁺)X(Peaking, BKG)X(Btag, Dtag) share Physical and/or Detector Asymmetries in different combinations.

•Strategy: disentangle the Physical and Detector Asymmetries by exploiting all the available information from different sub-samples.

7th CKM Workshop, Cincinnati 2012

Detector Asymmetry determination

-Observed Asymmetry in the different subsamples: $$\mathbb{B}^{\text{O}}$$

P.R. evts

(Tag+Untag) $Arec + As | * x_d$ Arec

Btag $Arec + Atag(P_{K}) + As$ $Arec + Atag(P_{K})$

Dtag $Arec + Atag(P_{\kappa}) + As^{*}x_{d}$ $Arec + Atag(P_{\kappa})$

 B^+ e Dtag BKG samples are useful in the |q/p| measurement!

7th CKM Workshop, Cincinnati 2012

M.Margoní Universita` di Padova & INFN

19

 B^+

MC Validation

7th CKM Workshop, Cincinnati 2012

Monte Carlo Results

B°+B+Continuum MC Fit

7th CKM Workshop, Cincinnati 2012

Monte Carlo Results

•Continuum generated with a Parameterized MC using as input the Off-Peak data sample relevant distributions and normalized to the MC statistics.

•Resolution parameters obtained using an iterative procedure and fixed in the final step.

• Total of 171 Fitted Parameters.

 $B^{\circ}+B+Continuum MC Fit Result:$ $|q/p|-1=(-0.35\pm0.46) \times 10^{-3}$

No Bias found on MC with |q/p|=1

7th CKM Workshop, Cincinnati 2012

M.Margoni Universita` di Padova & INFN

Results on Modified MC with 19/p1=1

• |q/p| related to Semileptonic Asymmetry:

$$\mathcal{A}_{SL} = \frac{N(B^0 B^0) - N(\overline{B}{}^0 \overline{B}{}^0)}{N(B^0 B^0) + N(\overline{B}{}^0 \overline{B}{}^0)}$$
$$\mathcal{A}_{SL} = \frac{1 - |q/p|^4}{1 + |q/p|^4} \simeq 2\left(1 - \left|\frac{q}{p}\right|\right)$$

23

•MC with $K = |q/p| - 1 \neq 0$ obtained by random rejecting a fraction F=4K/(2K+1) of mixed $B^{\circ}B^{\circ}(K<0)$ or $\overline{B^{\circ}B^{\circ}(K>0)}$ events •Fraction F/2 of Unmixed events ($B^{\circ}B^{\circ}$) rejected to preserve the correct value of $\mathbf{x}_{\mathbf{x}}$

•Rejection performed by exploiting the MC truth on B° flavor

•Checks: correctness of algorithm, mistag, detector asymmetries and Dtag fraction determination 7th CKM Workshop, Cincinnati 2012 M.Margoni Universita` di Padova & INFN

Fitted vs Generated 19/p1-1

Result obtained on B°+B+Continuum Full MC Fit

7th CKM Workshop, Cincinnati 2012

Results

7th CKM Workshop, Cincinnati 2012

Real Data Results

Real Data Results

Blind Result

 $|q/p|-1=(5.56\pm0.84) \times 10^{-3}$

7th CKM Workshop, Cincinnati 2012

•Result checked using a parameterized simulation by generating several pseudo-experiments (Toy MC)

→Toy MC Spread in very good agreement with statistical error of the result
→Bias of -3.6 × 10⁻⁴ < 0.5 σ wrt Nominal Fit quoted as systematic error related to analysis bias

M.Margoni Universita` di Padova & INFN

Checks &

Uncertainties

7th CKM Workshop, Cincinnati 2012

19/plvs Detector Asymmetries

• Physical and Detector Asymmetries are strongly correlated

• Test performed to look for possible bias on the Iq/pl determination produced by a not correct description of the interconnection between Physical & Detector Asymmetries in the Fit:

- Modify the data in order to produce an artificial efficiency asymmetry by random rejecting positive or negative leptons/kaons from the selected sample
- → Artificial $|\Delta \epsilon| = |\epsilon(|^+\pi^-) \epsilon(|^-\pi^+)| \otimes |\epsilon(K^+) \epsilon(K^-)| = 1\%, 2\%, 5\%, 10\%$ produced
- + $|\Delta\epsilon|$ range of variation very large as compared to PID studies

7th CKM Workshop, Cincinnati 2012

M.Margoni Universita` di Padova & INFN

 $1q/pI-1V5\Delta\epsilon$

•Real Data Uncorrelated Subsamples

•Stable |q/p| behaviour observed in all the $\Delta\epsilon$ range

The Fit correctly disentangles Physical vs Detector Asymmetries

7th CKM Workshop, Cincinnati 2012

³⁰

Systematic Uncertainties

•Sample Composition determined by an external Fit on M²V by floating D*, D** and Combinatorial using shapes from MC and Off-peak events

- → Statistical error of M²v fit, Uncertainty on Fraction of other Peaking events, CP-eigenstates and B⁺ events in the Combinatorial sample
 - → $\Delta |q/p| = +1.23^{\circ} \times 10^{-3}$ -1.55

Dominant Uncertainty

•At Resolution Model:

- Fit repeated by leaving free all the Resolution Parameters
 - → $\Delta |q/p| \approx +0.6 \times 10^{-3}$

•Analysis Bias:

• MC Statistical error plus bias from Toy MC study • $\Delta |q/p| = \frac{+0.46}{-0.58} \times 10^{-3}$

7th CKM Workshop, Cincinnati 2012

M.Margoni Universita` di Padova & INFN

Systematic Uncertainties

- •Dtag Δt shape:
 - → Semi-difference of the two different strategies (High Purity Sel.)
 - → Δ|q/p|≈±0.65 × 10⁻³
- •Dtag Fraction in the B⁺ sample:
 - → $F_{Dtag}^{B+} = R_{MC}^{*} F_{Dtag}^{B0}; R_{MC}^{*} = BR(D^{*0} \rightarrow K^{-}X)/BR(D^{*+} \rightarrow K^{-}X), \Delta R_{MC}^{*} = 6.8\%$ → $\Delta |q/p| = \pm 0.11 \times 10^{-3}$
 - •Physical Parameters floated or fixed to the world averages
 - → ΔΓ=0/0.02 ps⁻¹; Δm=0.508(Fít)/0.507(PDG)
 - → τB°=1.553(Fít)/1.519(PDG); τB⁺=1.76(Fít)/1.4(PDG)
 - → $\Delta |q/p| \approx +0.28 \times 10^{-3}$

→ Total Systematics:
$$\Delta |q/p| = +1.61 - 1.78 \times 10^{-3}$$

7th CKM Workshop, Cincinnati 2012

M.Margoni Universita` di Padova & INFN

Conclusions

7th CKM Workshop, Cincinnati 2012

Unblinded Preliminary Result

Preliminary Systematic Uncertainties

Source	$\Delta q/p $
Peaking Sample Composition	$^{+1.17}_{-1.50} imes 10^{-3}$
Combinatoric Sample Composition	$\pm 0.39 imes 10^{-3}$
ΔT Resolution Model	$+0.60 \times 10^{-3}$
Dtag fraction	$\pm 0.11 \times 10^{-3}$
Dtag ΔT distribution	$\pm 0.65 imes 10^{-3}$
Fit Bias	$^{+0.46}_{-0.58} \times 10^{-3}$
CP-eigenstate description	_
Physical Parameters	$+0.28 imes 10^{-3}$
Total	$^{+1.61}_{-1.78} imes 10^{-3}$
ter (Inding	
1 Lei Undinding: 1 Li	

 $\frac{|q/p|-1=(-0.76\pm0.84}{-1.78}) \times 10^{-3}$ After Bias Correction: $\frac{|q/p|-1=(-0.29\pm0.84}{-1.78}) \times 10^{-3}$ In agreement with SM 34

7th CKM Workshop, Cincinnati 2012

Conclusions

•We present a new precise measurement of the parameter governing CP violation in B° mixing based on the full BaBar statistics and using a technique exploiting a Partial Reconstruction of $B^{\circ} \rightarrow D^* | v$ decays and K Tag.

We obtain the preliminary result: $|q/p|-1=(-0.29^{+1.82}_{-1.97}) \times 10^{-3}$ $Asl=(0.06^{+0.39}_{-0.36})\%$ -0.36To be compared with the current average from B-factories:

$|q/p| - 1 = (0.2 \pm 2.8) \times 10^{-3}$ As $|= (-0.05 \pm 0.56)\%$

7th CKM Workshop, Cincinnati 2012

Backup

Analysis Strategy

•Hypothesis: same Detector Asymmetries shared by different samples

• Verified on simulation:

 $A_{\ell K} = \frac{N(\ell^+ K^+) - N(\ell^- K^-)}{N(\ell^+ K^+) + N(\ell^- K^-)}$

	Electrons	Muons
$A_{\ell K}(B_{tag})$	0.0149 ± 0.0013	0.0196 ± 0.0016
$A_{\ell K}(D_{tag})$	0.0152 ± 0.0009	0.0205 ± 0.0010
$A_{\ell K}(B_{tag})$ - $A_{\ell K}(D_{tag})$	-0.0003 ± 0.0016	-0.0009 ± 0.0019

Likelihood Constraints

•Best statistical accuracy on Physical/Detector Asymmetries and mistag obtained by applying to the Likelihood some multiplicative Binomial Constraints

•For every P_{K} bin of Signal B° Btag events, (similar expressions apply for the other samples):

$$C(\omega, Arec, Atag, |q/p|) = {\binom{N}{N_{M}}} p_{M}^{N_{M}} (1 - p_{M})^{N_{U}} \times {\binom{N_{M}}{N_{MK^{+}}}} p_{MK^{+}, M}^{N_{MK^{+}}} (1 - p_{MK^{+}, M})^{N_{MK^{-}}} {\binom{N_{U}}{N_{UK^{+}}}} p_{UK, U}^{N_{UK^{+}}} (1 - p_{UK^{+}, U})^{N_{UK^{-}}}$$

N=N_{Mixed} + N_{Unmixed}; N_{Mixed} = N_{Mixed} K+ + N_{Mixed K-}; N_{Unmixed} = N_{Unmixed K+} + N_{Unmixed K-}
 Probabilities p_{XY} obtained from integrals of the relevant observed
 PDF(Δt) in terms of mistag, Physical and Detector Asymmetries
 8 Detector-Asymmetry parameters floated in the fit

CP-eigenstates

B° Combinatorial: Effective

•Due to charge correlation between Lepton & π_{soft} , B° Combinatorial Sample shows a higher fraction of mixed events wrt Signal •In BKG events it's possible to pick up Lepton & π_{soft} from the two different B° decays (more probable in "Mixed" events).

 $\rightarrow \langle X_d(BKG) \rangle^{-1.4} X_d(SIG)$ depending on P_{K}

•B° BKG Observed PDF modified to include this effect

•27 mistag & effective mixing parameters floated

B° Combinatorial: Mistag vs

Effective X

•Combinatorial BKG B° Btag PDF for Positive Mixed ($|^{+}K^{+}$) sample, (similar expressions apply for the other ones):

$$\begin{aligned} \mathcal{F}_{\chi}^{meas}(\Delta t, s_{t} = 1, s_{m} = -1) &= \rho \tau \left[(1 - \omega_{\chi}^{+}) \frac{\chi_{d}^{Bkg}}{\chi_{0}^{Bkg}} \mathcal{F}_{\chi}(\Delta t, 1, -1) + \omega_{\chi}^{-} \frac{1 - \chi_{d}^{Bkg}}{1 - \chi_{0}^{Bkg}} \mathcal{F}_{\chi}(\Delta t, -1, 1) \right] &= \\ &= RT(1 + A_{rec})(1 + A_{tag}) \left[(1 - \omega_{\chi}^{+}) \frac{\chi_{d}^{Bkg}}{\chi_{0}^{Bkg}} \mathcal{F}_{\chi}(\Delta t, 1, -1) + \omega_{\chi}^{-} \frac{1 - \chi_{d}^{Bkg}}{1 - \chi_{0}^{Bkg}} \mathcal{F}_{\chi}(\Delta t, -1, 1) \right] \end{aligned}$$

 $\chi^{Bkg}_d(P_K) = \chi^{Bkg}_0 imes (a+bP_K)$

$$\chi_0^{Bkg}=\frac{x_{Bkg}^2}{2(1+x_{Bkg}^2)},$$
 where $x_{Bkg}=\tau_{B^0}^{Bkg}\Delta m_d^{Bkg}$

Dtag selection:

•Look for same charge (L^+_{Reco}, K^+) pairs

•Opposite charge Tag Lepton L⁻ required to suppress Btag Mixed events B->K⁺

- •(L^+_{Reco} , L^-_{Tag} , K^+) sample has Dtag-Purity=87%
- •13% Residual Btag contamination from Tag Side B->D->K⁺, Tag Side B->D->L⁻, Reco Side B->D->L⁻

•Purity can be increased from 87% to 94% ($\epsilon \sim 5\%$) by requiring K tracks to be assigned to Reco Side according to some angular variables included in a likelihood ratio

Δt Dtag PDF Determination on Real Data Strategy:

•High-Purity Dtag selection optimized with Purity =94%, ε~5%

•Perform the same Dtag selection on MC & Real Data (OnPeak & OffPeak)

- •Subtract residual Continuum BKG from OnPeak using Luminosityrescaled selected OffPeak events
- •Subtract residual Btag events (~6%) using MC predictions

•Compute Real Data PDFs for the four different Dtag classes (B⁰, B⁺)X(Peaking, BKG):

PDF^{DATA} =PDF^{MC} *(PDF^{DATA}/PDF^{MC})_{High Purity Selection}

Method checked on MC using Standard vs High Purity Selection PDFs

MC Dtag Δt PDF: Standard vs High Purity Selection Comparison of MC Fit results using the Standard or High Purity PDFs:

MC Results on different B° subsamples

Likelihood Profiles with Arbitrary Offsets

Fitted VS Generated 19/p1-1

Sample Composition

Sample Composition determined by an external Fit on M² by floating D*, D** and Combinatorial using shapes from MC •Dominant systematic uncertainty

- •Peaking Sample Uncertainty
 - → Statistical error of external fit $\pm 1.09 \ 10^{-3}$
 - → Isospin symmetry breaking: B°/B^{+} in the $D^{**}=(50\pm 25)\%\pm 0.2010^{-3}$
 - → CP-eigenstates yield varied by ±50% ±0.31 10-3
 - → Remnant Peaking yield (D* , D*DsX, D*h) varied by ±20% +0.22/-0.96 10⁻³

$$\Delta |q/p| = \frac{+1.17}{-1.50} \times 10^{-3}$$

Sample Composition

Combinatorial Sample Uncertainty

• Fraction of B^+ and B° in the Combinatorial fixed to MC expectations

- Difference between B° and B⁺ is expected when mixing takes place and the lepton is coupled with a slow pion from the tag side:
 B°→D*X, D*→ *D°
- → B°BKG has 40% more mixed events than B° Peaking
- → Other BKG events have same probability between B° and B⁺
- → Fraction of B⁺ conservatively varied by ±4.5% which corresponds to the error on inclusive BR(B^o→ D^{*+}X) (from PDG)

 $\Delta |q/p| = \pm 0.39 \times 10^{-3}$