

B Physics: Status & Perspectives @ CMS

Martino Margoni, Universita` di Padova and INFN

Past: Recent Results

Future: Next Years Strategy
 Analyses Prioritization
 Trigger & Data Parking

CMS Italia, Piacenza 29/11-1/12 2017

This presentation has been developed together with Mario Galanti, BPH co-convener

BPH Organization: Italian Involvement

Conveners: M. Galanti, M. Margoni

 Production (S. Argiro`, A. Sanchez-Hernandez, I. Kratschmer → A. Sanchez-Hernandez, I. Kratschmer)
 Test of perturbative & non-perturbative QCD models of hadron production and fragmentation.
 Possible cross PAG analyses with SMP, FSQ, HIN.

Spectroscopy & Properties (A. Pompili, E. A. Yetkin → R. Chistov, G. Fedi) Study of heavy flavor decays and BRs, mixing and CPV. Study of new resonances. Possible cross PAG analyses with TOP.

■ Rare Decays (S. Lacaprara, U. Langenegger → S. Lacaprara, S. Fiorendi) Precision SM measurements (angular analyses, leptonic B decays, LFV) Possible cross PAG analyses with SMP

Contacts:

Trigger (A. Boletti, S. Polikarpov)

MC (O. Ozcelik)

Muon POG (L. Cristella)

PPD & Tools (P. Ronchese)

- Tracking POG (S. Fiorendi)
- EGM (P. Behera)

CMS Italia, Piacenza 29/11-1/12 2017

M.Margoni Universita` di Padova & INFN

Publication Status

BPH PAG Produced 37 Publications (1 on Run2):

- ✤ 3 Papers with > 100 citations
- ✤7 Papers with > 50 citations
- Submitted results (1 on Run2)

Ongoing Analyses:

- → 3 on 2011 dataset, 12 on 2012, 3 on 2016, 2 on 2017, 1 Run1+Run2
- 6 "Mature" results Preapproved or Approved
- 15 at the AWG discussion stage or just started

CMS Italia, Piacenza 29/11-1/12 2017

M.Margoni Universita` di Padova & INFN

Papers Published/Subm. during 2017

- Measurement of B⁺ production cross section at 13 TeV BPH-15-004, PLB 771, 435
- Observation of Y(1S) pair production at CMS BPH-14-008, JHEP 05, 013
- Observation of $B^+ \rightarrow \Psi(2S)\phi K^+$ BPH-13-009, PLB 764, 66
- Measurement of the P5' angular observable of the decay $B^0 \rightarrow K^* \mu \mu$ from pp collisions at $\sqrt{s}=8$ TeV BPH-15-008, Subm. to PLB
- Quarkonium production cross sections in pp collisions at √s=13 TeV BPH-15-005, Subm. to PLB
- Precision lifetime measurement of B hadrons reconstructed in final states with a J/Ψ meson BPH-13-008, Subm. To EPJC

CMS Italia, Piacenza 29/11-1/12 2017

Next Years Strategy

CMS Italia, Piacenza 29/11-1/12 2017

M.Margoni Universita` di Padova & INFN

Analyses Prioritisation

- Run2 confronts us with different opportunities and challenges depending on the specific analysis (statistical vs systematic errors, competitiveness wrt other collaborations results, manpower limitation)
 - Prioritised list of topics defined according to physics impact, competitors results, time scale, trigger rate consumption
 - Results extrapolated to the full Run2 statistics assuming:

→ L(R2)_{CMS}~150 fb⁻¹ (7 X R1)

- ↓ L(R2)_{LHCb} ~4-5 fb⁻¹ (1.5 X R1)
- Exercise useful towards the definition of the future trigger paths and rate allocation:
 - Some paths, developed for measurements already limited by systematic uncertainties or not sensitive to CM energy, could be limited to save trigger rate.
 - Other measurements could be pursued parasitically using trigger paths developed for other ones (or other PAGs: SMP, TOP).

CMS Italia, Piacenza 29/11-1/12 2017

Trigger & Data Parking

Different classes of measurements according to:

A)Need (or not) all the integrated L

B)Need (or not) to analyze data asap

A1) Rare Decays, CPV: limited by statistical error, need all the available luminosity ($B \rightarrow \mu\mu$, $\tau \rightarrow 3\mu$, $B \rightarrow K^*\mu\mu$, $B_s \rightarrow J/\psi\Phi$,...)

A2) Production: often already limited by systematics or already pursued in a given phase space region (σ , polarization: B, quarkonium, double quarkonium: J/ ψ J/ ψ)

Prescale / increase thresholds / turn off at high L

 Define L1/HLT paths with different thresholds according to the instantaneous L scenario:
 Low-threshold paths: active at low L
 High-threshold paths: always active

Use low thresholds only for a limited period of data taking to allow comparison / junction with already accomplished measurements (e.g. Differential σ in the lower pT range)

CMS Italia, Piacenza 29/11-1/12 2017

M.Margoni Universita` di Padova & INFN

Trigger & Data Parking

Different classes of measurements according to:

A)Need (or not) all the integrated L

B)Need (or not) to analyze data asap

B1) Groups pursuing "fast" or very hot analyses need data as soon as they are collected (search for new states, $\Upsilon\mu\mu$, $B\rightarrow\mu\mu$)

B2) Groups still analyzing previous data taking periods or pursuing long-term measurements limited by statistics (CPV in B_s?) could opt for Data Parking to:
 Favor other paths while waiting for additional statistics
 Benefit from a possible larger bandwidth reducing thresholds.

- Implementing prescaled & unprescaled streams for the same HLT path will allow to start looking at the data while waiting for the full parked dataset
- Cross PAGs (SMP or TOP) analyses (Z/W $\rightarrow \psi$ (Y) X, BPH in t \rightarrow b decays) will benefit from trigger paths developed for other measurements
- Strategy for next years is going to be discussed at the next CMS Week & Trigger Workshop, Belgrade, December 11-14: <u>https://indico.cern.ch/event/674023/</u>

CMS Italia, Piacenza 29/11-1/12 2017

High Priority Analyses

• Production:

Quarkonium cross sections and ratios, Polarization measurements (Quarkonium, ϕ , $\Lambda_{_{b}}$), $\chi_{_{b}} \rightarrow \Upsilon(nS)\gamma$

Spectroscopy & Properties:

Double quarkonia (including YJ/ ψ): cross sections and resonance searches, Yµµ, $\Phi_s \& \Delta \Gamma_s$ with $B_s \to J/\psi \phi$, BPH measurements using t→ b decays

• Rare Decays:

 $B \to \mu \mu, \, Z/W \to J/\Psi(\Upsilon) \text{+} X$ (cross PAG with SMP), $\tau \to 3 \mu, \, B \to K^{\ast} \, \mu \mu$

Cross Subgroups:

BA resonances (Production & Spectroscopy), $B \rightarrow \tau X$ (Rare & Properties)

CMS Italia, Piacenza 29/11-1/12 2017

M.Margoni Universita` di Padova & INFN

Production

CMS Italia, Piacenza 29/11-1/12 2017

Quarkonium x-sections and ratios

CMS: long history of state-of-art measurements on 7, 8, and 13 TeV
 Differential prompt and non-prompt x-sections and ratios for J/ψ, ψ(2S), Y(nS) (n=1, 2, 3), X_{c1,2}, X_{b1,2}

Main competitor: ATLAS, due to the different phase space wrt LHCb

- Physics implications:
 - Test QCD models underlying heavy flavor production
 - Prepare for double-quarkonium production (DPS effective x-section) and quarkonium polarization measurements (see next slides)

 Analysis ongoing on 2012 dataset: Measurement of J/ψ pair production (Tennessee)

Two CADI lines: BPH-17-001 (thesis endorsement) & BPH-17-002
 Free for Run2 dataset

CMS Italia, Piacenza 29/11-1/12 2017

M.Margoni Universita` di Padova & INFN

Quarkonium polarization

One of the main probes to the processes governing prompt quarkonium production

CMS has a leading history in this field (BPH-11-023, BPH-13-003)

No polarization found for any of the S-wave cc and bb states in the y and pT ranges probed on 2010 and 2011 datasets
 Analysis ongoing on Run1 + Run2 (BPH-13-001)

Open questions:

- Are P-wave states (χ_c , χ_b) behaving in the same way?
- Models predict that non-null polarization may appear at higher pT:
 - To be tested with more luminosity

Main Issue:

Spurious polarization measured in 2012 and 2016 data vs 2011

Origin still unclear despite several efforts

CMS Italia, Piacenza 29/11-1/12 2017

M.Margoni Universita` di Padova & INFN

Quarkonium x-section & polarization

• HLT paths:

- Select the two muons from the quarkonium decay
- Low pT part of the spectrum already systematics-limited
- → Current HLT paths: Dimuon Barrel Φ (6.7 Hz), J/ψ (6.9 Hz), ψ' (4.7 Hz), Υ(7.3Hz)
- Need data in the high pT region: good candidates to increase the trigger thresholds
- Goal: publish on full Run2 dataset
- Manpower: somehow limited (Vienna)

CMS Italia, Piacenza 29/11-1/12 2017

M.Margoni Universita` di Padova & INFN

 $M(\gamma \mu^+ \mu^-)$ [GeV]

Spectroscopy & Properties

CMS Italia, Piacenza 29/11-1/12 2017

M.Margoni Universita` di Padova & INFN

$\Phi_{s} \& \Delta \Gamma_{s} \text{ from } B_{s} \rightarrow J/\psi \Phi$

- Golden channel for CPV measurement in the B_s sector. Probe of possible new sources of CPV.
- BPH-13-012 published result (PLB 757, 97) limited by angular efficiency, DT/MC agreement and fit bias
- Analysis already started on 2016+2017 data
- Sensitivity will be improved by:
 - → Muon identification: dedicated MVA (similarly to $B \rightarrow \mu\mu$, working to turn it into a common BPH tool)
 - New flavor tagging: OS lepton + Jet charge + SS kaon
 - Possible byproducts: Double gluon splitting, mixing, $f_{d} \& f_{s}$, $\sigma(pp \rightarrow bbX)$ on the recoil of $B^{+} \rightarrow J/\psi K^{+}$
 - + Hopefully pixel detector (?): $\sigma(t)$ from 70 fs to 60/45 fs (2018 ?)
- Complementary dedicated HLT paths (since 2017 v2 (Era C)):
 J/ψ displaced + 2 trks (invariant mass cut to select Φ candidates) 10.9 Hz
 J/ψ + μ (No L/σ cut, muon tag strong enhancement)
 13.8 Hz
 Yield of tagging muons roughly doubled by including the J/ψ + μ path

 L1 seed (2017) with dimuon DR range allows lowering of pT cuts CMS Italia, Piacenza 29/11-1/12 2017
 M.Margoni Universita` di Padova & INFN

Goal: publish on full Run2 dataset

Manpower: well covered (Padova, Pisa)

CMS Italia, Piacenza 29/11-1/12 2017

BPH meas. using t \rightarrow b decays

 \bullet pp \rightarrow t t X events: source of b quarks with flavor tagging from the parent-t charge (arXiv:1212.4611)

• For a given $b \rightarrow X$ process to be reconstructed:

Comparison of effective efficiencies for tt vs bb:

 $R = \sigma_{tt} / \sigma_{bb} \times (1-2w_{t})^{2} / (1-2w_{b})^{2} \times 2 \times 2 \times (\epsilon^{*}Acc)_{t} / (\epsilon^{*}Acc)_{b}$ ~ $1/4 \times (\epsilon^* Acc)/(\epsilon^* Acc)_{h}$

• Pros:

Mistagging prob w₁ < 20% vs w₂ > 30%

+ Factor of 2 from tagging lepton: BR(t \rightarrow e, μ) vs BR(b \rightarrow μ) Factor of 2 from opposite side and same side tagging lepton $rac{1}{2} \epsilon_{r} > \epsilon_{h}$ due to harder pT tagging lepton spectrum

Cross PAG with Top: Possibly parasitic use of trigger for SL top decays

• Cons: limited by $\sigma_{tt} << \sigma_{b}$ CMS Italia, Piacenza 29/11-1/12 2017

BPH meas. using t \rightarrow b decays

- With the Run2 statistics interesting for inclusive final states (e.g. $b \rightarrow \mu$)
- Measurement of integrated mixing started on Run1 to be used as a baseline for Run2 (BPH-14-007, now inactive for lack of manpower)
- Goal: Publish mixing and CPV in mixing on full Run2 dataset
 Manpower: strongly inadequate (Padova)

Search for $\Upsilon\Upsilon^* \rightarrow 4\mu$ resonance

Very hot analysis ongoing since a while. Theory paper on possible tetraquark discovery @LHC in YY* available: <u>https://arxiv.org/abs/1709.09605</u>

After a quite long review in the BPAG (trigger matching and BKG issues) now the analysis (BPH-14-006) is near to be finalized on Run1 Dataset, going to start on Run2

Sensitivity will be improved by new additional HLT dedicated trigger paths included in 2017 HLT v4.1:

 \Rightarrow (Y \rightarrow 2µ) + µ with pT>5, 3.5, 2 GeV (previous one) 9.9 Hz

N \Rightarrow (Y → 2µ) + µ with open muons pT>5, 3.5, 2 GeV 5.1 Hz E \Rightarrow (Y → 2µ) + 2e (pT(µ)>5 GeV, pT(e)> 3 GeV) 0.05 Hz

- E ⇒ ($\Upsilon \rightarrow 2\mu$) + 2e (pT(μ)>5 GeV, pT(e)> 3 GeV) W ⇒ ($\Upsilon \rightarrow 2e$) + 2 μ (pT(μ)>3 GeV, pT(e)>7.5 GeV)
- Goal: publish Run1 Data asap (after some preliminary checks on Run2)

Manpower issues solved:

Two new groups going to join Iowa to analyze & publish Run2 Dataset with High Priority

CMS Italia, Piacenza 29/11-1/12 2017

Rare Decays

CMS Italia, Piacenza 29/11-1/12 2017

M.Margoni Universita` di Padova & INFN

$B \rightarrow \mu \mu$

Flagship CMS analysis

 $_{\clubsuit}$ Three iterations on Run1, ended with joint CMS+LHCb observation of B_s $_{\downarrow}$ $_{\downarrow}\mu\mu$ and stringent limit to $B^0 \rightarrow \mu \mu$

- Fourth iteration ongoing (Run1+2016 dataset):
 - → Goals: improve limit on BF(B⁰→µµ) & precision on BF(B →µµ), measure B →µµ effective lifetime
 - Sensitivity improved by: new μ ID BDT, in-situ measurement of f /f , optimization for B^0 , data driven μ fake-rate determination
 - Issues with data (strips HIP problems) and with MC still delaying release
 - Limited manpower: would strongly benefit from additional qualified people/groups joining the effort
- Trigger rates under control with current setup:
 - ➡ L1: Double muon, η<1.5, opposite-charge, single quality, DR<1.4 3.3 kHz</p> = HLT: Double muon (pT> 4 GeV and pT> 3 GeV) @ B₂(9.6 Hz) or J/ ψ (4.9 Hz with

21

prescale 8)

Goal: publish 2016 data and 5th iteration on full Run2 dataset CMS Italia, Piacenza 29/11-1/12 2017 M.Margoni Universita` di Padova & INFN

$B^0 \rightarrow K^* \mu \mu$

- Flagship CMS analysis. Indirect search for New Physics.
- Submitted P5' result BPH-15-008 (arXiv:1604.04042) limited by statistical error and fixed parameters from previous measurement
- Analysis just started on 2016+2017 data
- Sensitivity will be improved by:
 Statistics
 Global fit with all parameters free to float
 Hopefully pixel detector (?)
- HLT paths since v1.1 (Era B):
 Low-mass non-resonant dimuons + 1 trk displaced 22.1 Hz
 J/ψ(ψ) + 1 trk displaced for control/normalization channels 15.1(1.2) Hz
- L1 seed with dimuon DR range allows reduction of pT cuts
- Run2 results will be still dominated by statistical error

CMS Italia, Piacenza 29/11-1/12 2017

M.Margoni Universita` di Padova & INFN

Goal: publish on 2016+2017 or full Run2 (TBD) Manpower: well covered (Milano, Padova)

Extrapolation to full Run2 statistics: → CMS: ~ 11000 evts (assuming ε_{trigger} ~60% Run1) → LHCb: ~7500 evts (assuming stable performaces as during Run1) …but with better S/N ratio and PID

CMS Italia, Piacenza 29/11-1/12 2017

with 70 $evts/fb^{-1}$ in 2012

M.Margoni Universita` di Padova & INFN

$\tau \to 3 \mu$

- Golden channel for LFV
 - Best limit by BELLE: BR<2.1 x 10⁻⁸ (@90% CL) will be sharply improved by BELLE2
 - Window of opportunity not long: publish fast !
- Two Analyses ongoing on Run2 (2016 dataset) using different production channels: • $W \rightarrow \tau v$ (Milano, more advanced) • $D_s \rightarrow \tau X$ (Florida, FNAL, MIT)
- HLT dedicated paths:
 - $_{\clubsuit}2\mu$ + 1trk +good 3-object displaced vertex (developed for $D_{_{S}}^{} \rightarrow \tau X$) 18.6 Hz
 - Improved since 2017 v2.2:
 - 2µ + 1 tracker µ, loose requirements on pT and dZ, isolation on the 3µ object

4.8 Hz

- Goal: publish 2016 result asap then move to full Run2 dataset. Milano analysis aiming at Moriond 2018 with final result
 Manpower: well covered
- Expected limit on the 10⁻⁷ level with 2016 data
 Improved trigger paths in 2017+2018: limit will scale better than L
 CMS Italia, Piacenza 29/11-1/12 2017
 M.Margoni Universita` di Padova & INFN

$Z/W \rightarrow V+X$

- High integrated luminosity allows search for Z/W rare decays
 Cross-PAG analyses with SMP
- One Analysis ongoing on 2012 data being approved (BPH-16-001): first observation of $Z \rightarrow J/\psi II \ (I=e, \mu)$
- Other similar measurements within our reach:
 With Run2 data: Z → φII, ψ(2S)II,W → J/ψIv
 With more statistics: Z → Y(1S)II

They can prepare for H decay in the same final states

• Trigger Strategy:

Current analysis: high pT non-resonant leptons (no BPH path needed)

Where needed (e.g. for the W) can use ψ/Υ→µµ

Manpower: just one (Colorado) group: room for more contributions

M.Margoni Universita` di Padova & INFN

25

CMS Italia, Piacenza 29/11-1/12 2017

Cross Supgroups

CMS Italia, Piacenza 29/11-1/12 2017

M.Margoni Universita` di Padova & INFN

$B \rightarrow t + X$

- Probe of New Physics (e.g. 2-Higgs Doublet Model) due to large H⁺-fermion coupling.
- Two classes of possible measurements:
 X=e, μ, τ: search for LFV / non-universality
 X=π, ρ, D^(*), J/ψ: measurement of CKM matrix elements. Some tensions present wrt Standard Model expectations
 (R(D*)=B→D^(*)Tv/B→D^(*)Iv)
- Difficult T reconstruction, BKG reduction and normalization:
 - "New" possible strategy to be studied: analysis on the recoil of another reconstructed B decay to reduce the amount of useful tracks
 - "Untriggered" measurement
- Very challenging measurements not started yet
 - Room for new groups with different expertise
 - Possible increase of importance in the near future

CMS Italia, Piacenza 29/11-1/12 2017

M.Margoni Universita` di Padova & INFN

Conclusions

- Important relative weight of Italian Institutions in the PAG (analysts and conveners / subconveners)
- Still several analyses ongoing on Run1 dataset, however almost 50% (8) are going to be finalized in the next months.
- Prioritization effort finalized: High-Priority and Medium-Priority Analyses selected
- Trigger experts at work with analysts to define the next years data taking strategy:
 - Production paths for x-section & polarization measurements might be good candidates for threshold increase (at least at high instantaneous L)
 - A few measurements can be pursued using trigger paths developed by other PAGs (SMP, TOP)
 - Some measurements limited by statistics are good candidates for Data Parking
- BPH Group is small, several analyses are ongoing or will start soon.
 Some flagship measurements have manpower issues:
 Help is needed and very welcome!

M.Margoni Universita` di Padova & INFN

Backup

CMS Italia, Piacenza 29/11-1/12 2017

M.Margoni Universita` di Padova & INFN

L1 seeds vs analysis (2017 v4.1)

L1 menu	Unprescaled rate [1.5e34]	Prescale value [column 1]										
			Quarkonium cross sections and polarization	Chi_b->Y(nS) gamma	Double quarkonia (including J/Psi Y)	Ymumu	CPV with Bs -> J/Psi Phi	Bmm	Z -> J/Psi X	tau->3Mu search	P5' angular analysis	B Lambda resonance search
L1_DoubleMu0er1p5_SQ_OS_dR_Max1p4	3,286	1	x	x			x	x		x	x	x
L1_DoubleMu4p5er2p0_SQ_OS_Mass7to18	1,752	1	x	x								
L1_DoubleMu5_SQ_OS_Mass7to18	1,275	1	x	x								
L1_DoubleMu8_SQ	1,080	1	x	x								
L1_DoubleMu4_SQ_OS_dR_Max1p2	3,506	1		x			x			x	x	x
L1_TripleMu_5_3p5_2p5_DoubleMu_5_2p5_OS_Mass_5to17	1,313	1			x	x						
L1_TripleMu_5SQ_3SQ_0OQ_DoubleMu_5_3_SQ_OS_Mass_Max9	1,488	1			x		x			x		
L1_DoubleMu5Upsilon_OS_DoubleEG3	543	1				x						
L1_DoubleMu3_OS_DoubleEG7p5Upsilon	432	1				x						
L1_TripleMu_5OQ_3p5OQ_2p5OQ_DoubleMu_5_2p5_OQ_OS_Mass_8to14	954	1				x						
L1_TripleMu_5OQ_3p5OQ_2p5OQ_DoubleMu_5_2p5_OQ_OS_Mass_5to17	1,627	only for L<1.45				x						
SMP High pT triggers									x			

M.Margoni Universita` di Padova & INFN

HLT paths vs analysis (2017 v4.1)

HLT menu	Prescaled rate [@ 1.5e34]											
			Quarkonium cross sections and polarization	s Chi_b->Y(nS) gamma	Double quarkonia (including J/Psi Y)	Ymumu	CPV with Bs -> J/Psi Phi	Bmm	Z -> J/Psi X	tau->3Mu search	P5' angular analysis	B Lambda resonance search
HLT_Dimuon10_PsiPrime_Barrel_Seagulls	4.7	1 1	1 x									
HLT_Dimuon20_Jpsi_Barrel_Seagulls	6.9	9 1	1 x									
HLT_Dimuon10_Upsilon_Barrel_Seagulls	7.3	3 1	1 x	x								
HLT_Dimuon14_Phi_Barrel_Seagulls	6.7	1 1	1 x									
HLT_Dimuon12_Upsilon_eta1p5	8.6	ô 1	1	x								
HLT_Dimuon0_Jpsi3p5_Muon2	13.8	8 1	1		x		x					
HLT_Trimuon5_3p5_2_Upsilon_Muon	9.9	9 1	1		x	x						
HLT_TrimuonOpen_5_3p5_2_Upsilon_Muon	v4 5.1		1			x						
HLT_DoubleMu5_Upsilon_DoubleEle3_CaloIdL_TrackIdL	v4 0.05	1 1	1			×						
HLT_DoubleMu3_DoubleEle7p5_CaloIdL_TrackIdL_Upsilon	v4 0.3	1	1			×						
HLT_DoubleMu4_JpsiTrkTrk_Displaced	10.9	.9 *	1				x					
HLT_DoubleMu4_3_Bs	9.6	ô 1	1					×				
HLT_DoubleMu4_3_Jpsi_Displaced	4.9	.9 8	3					×				
SMP High pT triggers									x			
HLT_DoubleMu3_Trk_Tau3mu	18.6	6 1	1							x		
HLT_Tau3Mu_Mu7_Mu1_TkMu1_IsoTau15_Charge1	4.7	1 1	1							x		
HLT_Tau3Mu_Mu7_Mu1_TkMu1_IsoTau15	4.8	8 1	1							x		
HLT_Tau3Mu_Mu7_Mu1_TkMu1_Tau15_Charge1	0.7	.7 20	3							x		
HLT_Tau3Mu_Mu7_Mu1_TkMu1_Tau15	0.7	.7 20	3							x		
HLT_DoubleMu4_LowMassNonResonantTrk_Displaced	22.1	.1 *	1								x	
HLT_DoubleMu4_JpsiTrk_Displaced	15.1	.1 *	1								x	x
HLT_DoubleMu4_PsiPrimeTrk_Displaced	1.2	.2 '	1								x	

CMS Italia, Piacenza 29/11-1/12 2017

M.Margoni Universita` di Padova & INFN

Medium-Priority Analyses

Production:

 $\rm f_{_d},\, f_{_s}$ fragmentation functions, B and $\rm B_{_c}$ cross sections

Spectroscopy & Properties:

Y(4140) in B⁺ \rightarrow J/ $\psi\phi$ K, J/ $\psi\phi$ resonances, X_b, B_s \rightarrow J/ $\psi\phi$ byproducts from flavor tagging studies: χ , g splitting, σ_{bb}

• Rare Decays:

Associated production of $ZJ/\psi(\Upsilon)$, $WJ/\psi(\Upsilon)$ (cross PAG with SMP)