B⁰ Mixing & A_{sl} in Run 2

M. Margoni, 27/3/2015

- Motivation
- Status & Perspectives
- Expressions of Interest from different Groups

B⁰ Mixing

Motivations

•
$$\bar{\chi} = \frac{N(\mu^{++}) + N(\mu^{--})}{N(\mu\mu)} = f_d \chi_d + f_s \chi_s$$

- Useful to constrain production fractions of different B hadrons
- Mixing in t t events: test of QCD factorization from comparison of $\chi(m_1)$ with $\chi(m_2)$
- Test of the CDF excess ("ghost muons" issue) [Phys. Rev. D 69 012002 (2004)]

$\bar{\chi}\!=\!0.152\!\pm\!0.007\!\pm\!0.011$

 From a fit to Impact Parameter distribution of Same Sign and Opposite Sign dimuons

B⁰ Mixing

Motivations

•
$$\bar{\chi} = \frac{N(\mu^{++}) + N(\mu^{--})}{N(\mu\mu)} = f_d \chi_d + f_s \chi_s$$

- Useful to constrain production fractions of different B hadrons
- Mixing in t t events: test of QCD factorization from comparison of $\chi(m_1)$ with $\chi(m_2)$
- Preliminary result from a fit to dimuons IP using much tighter selection and requiring muon hit in internal Layer 00 [CDF note 10335 (2011)]

CMS Run 2 B-Physics Analyses Jamboree 27/3/2015

$\bar{\chi} = 0.126 \pm 0.008$

B⁰ Mixing

Motivations

•
$$\bar{\chi} = \frac{N(\mu^{++}) + N(\mu^{--})}{N(\mu\mu)} = f_d \chi_d + f_s \chi_s$$

- Useful to constrain production fractions of different B hadrons
- Mixing in t t events: test of QCD factorization from comparison of $\chi(m_1)$ with $\chi(m_2)$
- Fill a LHC column in the PDG table from

[arXiv:1207.1158 (2013)] using preliminary results [CDF note 10335 (2011)]

	in Z decays [8]	at Tevatron [8]	at LHCb $[74]$	
$\overline{\overline{\chi}}$	0.1259 ± 0.0042	0.127 ± 0.008		
$f_u = f_d$	$0.404 \ \pm 0.009$	0.330 ± 0.030		PDG 2014
f_s	$0.103 \ \pm 0.009$	0.103 ± 0.012		
$f_{ m baryon}$	$0.089 \ \pm 0.015$	0.237 ± 0.067		
f_s/f_d	$0.254\ \pm 0.025$	0.311 ± 0.037	0.256 ± 0.020	

CMS Run Z B-Physics Analyses Jamporee Z//3/2015

$$CPV \text{ in } B^{0}_{q} \text{ Mixing}$$

$$A^{q}_{CP} = \frac{Prob(\bar{B}^{0}_{q} \to B^{0}_{q}, t) - Prob(\bar{B}^{0}_{q} \to \bar{B}^{0}_{q}, t)}{Prob(\bar{B}^{0}_{q} \to B^{0}_{q}, t) + Prob(\bar{B}^{0}_{q} \to \bar{B}^{0}_{q}, t)} = \frac{1 - |q/p|^{4}_{q}}{1 + |q/p|^{4}_{q}} = \frac{|\Gamma^{q}_{12}|}{|M^{q}_{12}|} \sin \phi_{q} \qquad [\Phi_{q} = arg(-M^{q}_{12}/\Gamma^{q}_{12})]$$

- $M_{_{12}}$ and $\Gamma_{_{12}}$ off-diagonal elements of the B⁰ mixing Hamiltonian

$$\mathcal{H}_{ ext{eff}} = \mathbf{M} - rac{i oldsymbol{\Gamma}}{2}$$

• CPV can be observed through the Semileptonic Asymmetry:

$$A_{CP}^{q} = A_{sl}^{q} = \frac{N_{B_{q}^{0}}(\mu^{+}\mu^{+}) - N_{B_{q}^{0}}(\mu^{-}\mu^{-})}{N_{B_{q}^{0}}(\mu^{-}\mu^{-}) + N_{B_{q}^{0}}(\mu^{-}\mu^{-})}$$

• Predicted to be very small in the SM [Nierste, arXiv:1212.5805 (2012)]

$$A_{CP}^{d} = (-4.0 \pm 0.6) \times 10^{-4}; \quad \Phi_{d} = -4.9^{\circ} \pm 1.4^{\circ}$$
$$A_{CP}^{s} = (1.8 \pm 0.3) \times 10^{-5}; \quad \Phi_{s} = 0.24^{\circ} \pm 0.06^{\circ}$$

CMS Run 2 B-Physics Analyses Jamboree 27/3/2015

Inclusive dilepton A_{si}

D0 Measurement (L=10.4 fb⁻¹) [D0, Phys. Rev. D 89 012002 (2014)]

- A_{sL} measured from inclusive single muon and like-sign dimuon charge asymmetries: A_{sL}=(-0.496 ± 0.153 ± 0.072)% differs from SM expectation by 2.8 σ
- Measurement performed in three different muon Impact Parameter regions to separate $B_{\rm g}$ vs B^0

 X² of the different results vs IP reflects in a 3.6 σ discrepancy from SM expectations

CMS Run 2 B-Physics Analyses Jamboree 27/3/2015

Summary on A^q_{SL}

- World Average from HFAG Fall 2014 using a 2D fit (ρ = 0.158)
- A^d_{SL}:
 - Y(4S): -0.0019 ± 0.0027
 - World Average: -0.0015 ± 0.0017
- A^s_{SL}:
 - World Average: -0.0075 ± 0.0041
- WA of flavor specific measurements agree with SM
- Global WA agrees with SM at ~ 1.5 σ
- Tension wrt expectations only in the inclusive D0 measurement

Projection on A^q_{SL}

Back of envelope Run 2 projection & comparison assuming

- CMS: $\sigma(\text{Run 2}) = 2 \sigma(\text{Run 1})$ $L(\text{Run 2}) = 100 / 120 \text{ fb}^{-1} = 5 L(\text{Run 1})$
 - Increase in statistics = 10 times
 - Total sample = 11 x Run 1
- LHCb:

 $\sigma(\text{Run 2}) = 2 \sigma(\text{Run 1})$ L(Run 2) = 5 / 6 fb⁻¹ = 1.5 / 2 L(Run 1)

- Increase in statistics = 3 / 4 times
- Total sample = 5 x Run 1

Projection on A^q

Most precise Flavor Specific A^q_{SL} measurement from LHCb

• Using exclusive reconstruction of $B^0 \rightarrow D^{(^*)}\mu$, $D \rightarrow K\pi\pi$, $D^* \rightarrow D^0(K\pi)\pi$ (L= 3 fb⁻¹) [LHCb, Phys. Rev. Lett. 114, 041601 (2015)]

 $A_{SL}^{d} = (-0.02 \pm 0.10 \pm 0.30) \times 10^{-2}$

- Limited by systematics on detection asymmetry (0.26 x 10⁻²) from the statistics of the calibration samples (reducible with statistics)
- Projection for Run 2:

 $\delta A_{SL}^d \sim 0.20 \times 10^{-2}$

• Using exclusive reconstruction of $B^0_{\ _s} \rightarrow D^-_{\ _s} X \mu^+ v (D^-_{\ _s} \rightarrow \Phi\pi^-, \Phi \rightarrow KK)$ (L= 1 fb⁻¹) [LHCb, Phys. Lett. B 728 607-615 (2014)]

 $A_{SL}^{s} = (-0.06 \pm 0.50 \pm 0.36) \times 10^{-2}$

- Statistically limited
- Systematics dominated by tracking asymmetry (0.26 x 10⁻² reducible with statistics)
- Projection for Run 2:

 $\delta A_{SL}^s \sim 0.30 \times 10^{-2}$

CMS Run 2 B-Physics Analyses Jamboree 27/3/2015

B⁰ Mixing & A_{SL} in tt events

- Semileptonic top decays: t t, t \rightarrow b l v, t \rightarrow bX
 - Lepton from top decay tags the flavor of both the B hadrons at the production time
 - Dilepton Trigger (2012): HLT_L17_L8 (L=MUO, ELE)
- Analysis of 2012 dataset:
 - N(S1) = 230 k (e, μ)
 - N(S2) = 10 k (µ only), same and opposite top
 - $\delta(\chi) = 0.003$, $\delta(A_{_{SL}}) = 0.03$ (µ only)
 - + $\delta(\chi)$ = 0.002, $\delta(A_{_{\rm SL}})$ = 0.02 (e + μ)

- Run 2 Top-Dileptons Trigger paths
 [S. Beauceron, Padova Trigger workshop 9-12 March 2015]:

 HLT paths: HLT_Mu17_TkIsoVVL_Ele12_WPMedium/
 - HLT_Mu8_TkIsoVVL_Ele17_WPMedium/HLT_Ele17_Ele12_Iso/ HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL
 - Electron S2 threshold increased from 8 GeV to 12 GeV: 40% loss in efficiency CMS Run 2 B-Physics Analyses Jamboree 27/3/2015

B⁰ Mixing & A_{SL} in tt events

- Semileptonic top decays: t t, t \rightarrow b l v, t \rightarrow bX
 - Lepton from top decay tags the flavor of both the B hadrons at the production time
 - Dilepton Trigger (2012): HLT_L17_L8 (L=MUO, ELE)
- Analysis of 2012 dataset:
 - N(S1) = 230 k (e, μ)
 - N(S2) = 10 k (µ only), same and opposite top
 - + $\delta(\chi)$ = 0.003, $\delta(A_{_{\rm SL}})$ = 0.03 (µ only)
 - + $\delta(\chi)$ = 0.002, $\delta(A_{_{\rm SL}})$ = 0.02 (e + μ)

11

- Projection for 100 fb⁻¹: $\delta_{stat}(\chi) \sim 0.77 \times 10^{-3}$ $\delta_{stat}(A_{SI}) \sim 0.68 \times 10^{-2}$
- Not competitive with LHCb flavor-specific measurements... but first inclusive A_{SL} measurement from LHC esperiments using an innovative technique
 CMS Run 2 B-Physics Analyses Jamboree 27/3/2015

Tagged sample $B^+ \rightarrow J/\psi K^+$

- 2012: DISPLACED_J/Ψ Trigger:
 60 k events with a lepton tag (e, μ):
- Right flavor information fraction: 60% μ (45% e)
 - $\delta(\chi) = 0.0018$, $\delta(A_{_{\rm SL}}) = 0.016$ (e + μ)
- Projection for 100 fb⁻¹:

CMS Run 2 B-Physics Analyses Jamboree 27/3/2015

Tagged sample $B^+ \rightarrow J/\psi K^+$

- 2012: DISPLACED_J/Ψ Trigger:
 60 k events with a lepton tag (e, μ):
- Right flavor information fraction: 60% μ (45% e)
 - $\delta(\chi) = 0.0018$, $\delta(A_{_{\rm SL}}) = 0.016$ (e + μ)
- Combination of the two analyses:

CMS Run 2 B-Physics Analyses Jamboree 27/3/2015

B⁰ Mixing & A_{sl} in Run 2

Expression of Interests for Run 2

• Helsinki Group

Terhi Jarvinen, Paula Eerola Time-dependent analysis of Δm_{d} , sinergy with Flavor-tagging validation

• Goal: physics paper including Flavor-Tagging algorithm description (Reanalysis of $B_s \rightarrow J/\psi/\Phi$ with improved Flavor-Tagging,...?)

CMS Run 2 B-Physics Analyses Jamboree 27/3/2015

B⁰ Mixing & A_{sl} in Run 2

Expression of Interests for Run 2

• Helsinki Group

Terhi Jarvinen, Paula Eerola Time-dependent analysis of Δm_{d} , sinergy with Flavor-tagging validation

• Goal: physics paper including Flavor-Tagging algorithm description (Reanalysis of $B_s \rightarrow J/\psi/\Phi$ with improved Flavor-Tagging,...?)

• Padova Group

Alessio Boletti, Paolo Ronchese, Martino Margoni, Franco Simonetto Time-integrated measurement of $\chi \& A_{s_1}$ using t t events

 Topic identified as one of the eight analyses we plan to deliver within a year (aiming at Moriond 2016), using (also) the 2015 dataset

Measurements with Run 1 dataset

- Mixing with dimuons (Ongoing)
 - Use 3 x 10⁵ non-resonant dimuons (2010 dataset)
 - Fraction of events from B decays from a fit to p_T(μ) relative to jet direction for different charge correlation samples (SS, OS, SS⁺⁺, SS⁻⁻)
 - δ(X)=0.002(stat) ± 0.005(syst)
 - Issues: fit convergence, fit/data agreement, BKG composition
- A_{SL} analysis using dimuons (Not started yet, lack of manpower)
 - Use 3 x 10^7 same-sign low p_{τ} dimuons (2012 dataset)
 - No need for further data
 - Needs careful treatment of systematics uncertainties (BKG, charge-dependent muon efficiency, B⁰ production asymmetry)

BACKUP

Expected Statistics

CMS Analysis with semileptonic top, data 2012, i.e. CMS PAS TOP-13-008 (W helicity):

200 K evts after selection

•50% with W-> μ , the same withit W->e • ϵ HLT(μ)=62%, ϵ HLT(e)=53% • $BR(h_{-}>I)=10\%$ ■BR(b->I)=10% \simeq lepton from b ~40%

with top tag

To be considered also cascade decays $b \rightarrow c \rightarrow I$ (... and $b \rightarrow e$)

 $\Delta \delta \chi \sim 0.002$ (without taking into accont BKG and dilution...)