Decay Properties: New Possible Analyses in CMS M. Margoni

A couple of measurements still not pursued at CMS
CPV in interference between Mixing and Decay:

- $B_s \rightarrow J/\psi\pi\pi : \Phi_s$
- $B^{\circ} \rightarrow J/\psi K_{s}:\beta$
- Other ideas for the future:
 - B Physics in tt events
 - Ongoing: b mixing (see Paolo talk)
 - Challenge: reconstruct B states in b-jets from top?

CMS B Physics Workshop, Lisboa II April 2016

• Reconstruct B/B decays in the same CP eigenvalue:

$$\begin{aligned} \mathcal{A}_{fCP}(t) &\equiv \frac{d\Gamma/dt \big[\overline{M}_{phys}^{0}(t) \to f_{CP} \big] - d\Gamma/dt \big[M_{phys}^{0}(t) \to f_{CP} \big]}{d\Gamma/dt \big[\overline{M}_{phys}^{0}(t) \to f_{CP} \big] + d\Gamma/dt \big[M_{phys}^{0}(t) \to f_{CP} \big]} \\ \mathcal{A}_{f}(t) &= \frac{S_{f} \sin(\Delta m t) - C_{f} \cos(\Delta m t)}{\cosh(\Delta \Gamma t/2) - A_{f}^{\Delta \Gamma} \sinh(\Delta \Gamma t/2)} \qquad S = -\eta \sin 2\beta \left(\Phi_{s} \right), \quad C = 0 \end{aligned}$$

- Ingredients of the Measurement:
 - Flavor Tagging, FOM: $P_{TAG} \approx \epsilon (1-2\omega)^2$
 - LHCb > 3%; CMS (only OS) ~ 1.3%
 - Time resolution, $\sigma_{_{+}}$
 - LHCb: ~ 40 fs; CMS ~ 75 fs
 - Integrated Statistics... next slide...

"Very difficult" to be competitive with LHCb, but useful excercise to look for possible improvements

CMS B Physics Workshop, Lisboa II April 2016

Run 2 Projections & Challenges

- Back of envelope Run2 projection at CMS: $\sigma_{bb}(Run2) = 2 \sigma_{bb}(Run1); [\sigma_{tt}(Run2) = 4 \sigma_{tt}(Run1)]$ $L(Run2) = 100/120 \text{ fb}^{-1} = 5 L(Run1)$
- Total sample (Run1 + Run2) = 11 x Run1 (5 x Run1 for LHCb)
 Expect factor ~3 improvement in statistical errors wrt Run1 & systematic uncertainties scaling with statistics

But:

- Increased Pile-up: ~ 40 PU @ 13 TeV with L=1.4 10^{34} cm⁻²s⁻¹
- Trigger: stay within the Run1 bandwidth (L1=10 kHz ~ 10% of the total Bandwidth, HLT=100 Hz) despite the increase of a factor 4 in rate.
- Trigger selection defined to reduce the rate without affecting too much the signal, path driven by specific analysis
 CMS B Physics Workshop, Lisboa 11 April 2016
 M.Margoni INFN Padova

$B^{\circ} \rightarrow J/\psi K_{s}$

LHCb (Phys. Rev. D 115, 031601) L=3 fb⁻¹ $S= 0.731 \pm 0.035 \pm 0.020$ $C=-0.038 \pm 0.032 \pm 0.005$ $N_{sig} = 114000 (All) \rightarrow 41500 (Tagged)$ $P_{TAG} = 3.02\% (OS+SSTT)$

Origin	σ_S	σ_C		
Background tagging asymmetry	0.0179(2.5%)	0.0015 (4.5%)		
Tagging calibration	0.0062 (0.9%)	0.0024 (7.2%)		
$\Delta\Gamma$	0.0047 (0.6%)			
Fraction of wrong PV component	0.0021 (0.3%)	0.0011 (3.3%)		
z-scale	0.0012(0.2%)	0.0023 (7.0%)		
Δm		0.0034 (10.3%)		
Upper decay time acceptance	—	0.0012 (3.6%)		
Correlation between mass and decay time		_		
Decay time resolution calibration				
Decay time resolution offset				
Low decay time acceptance	_	—		
Production asymmetry				
Sum	0.020~(2.7%)	0.005~(15.2%)		

Extrapolation for Run2: $N_{sig} = 570000$ $\delta S_{stat} \sim 0.016; \delta C_{stat} \sim 0.014$ Systematic error not significantly reducible with statistics

CMS B Physics Workshop, Lisboa 11 April 2016

$B_{s} \rightarrow J/\Psi\pi\pi$ LHCb (Phys. Lett. B 736, 186-195) L=3 fb⁻¹ $\Phi_{s} = 70 \pm 68 \pm 8 \text{ mrad}$ $N_{sig} = 27100 \text{ (All)} \rightarrow 14800 \text{ (Tagged)}$ $P_{TAG} = 3.89\% \text{ (OS+SSK)}$

Table 2

Systematic uncertainties. The total is the sum in quadrature of each entry.

Sources	ϕ_s (mrad)
Decay time acceptance	±0.6
Mass acceptance	± 0.3
Background time PDF	± 0.2
Background mass distribution PDF	± 0.6
Resonance model	± 6.0
Resonance parameters	± 0.7
Other fixed parameters	± 0.4
Production asymmetry	± 5.8
Total	±8.4

CMS B Physics Workshop, Lisboa 11 April 2016

Thanks to Jhovanny & Sara

Runi Reconstructed Yields in CINVESTAV Lifetime analyses:

 N_{sig} (No Tag) = 35188

Run1 HLT used Paths:

HLT_Dimuon7_Jpsi_Displaced

HLT_DoubleMu4_Jpsi_Displaced

Run2 HLT available Paths:

7e33 HLT pres cale	1e34 HLT presc ales	Path	Modified L1 seed	1e34 L1 prescales	Total (7e33 column	ו)	
2	5	HLT_DoubleMu4_3_Jpsi_Displaced_v2	Prescaled: control channel for $B \rightarrow \mu\mu$ Not needs full statistics	120 1 1	26.9	±	1.92
1	1	HLT_DoubleMu4_JpsiTrk_Displaced_v2	L1_DoubleMu0_Eta1p6_WdEta18 OR L1_DoubleMu0_Eta1p6_WdEta18_OS OR L1_DoubleMu_10_0_WdEta18	120 1 1	41.48	±	2.71
1	0	HLT_Dimuon16_Jpsi_v2	L1_DoubleMu_10_0_WdEta18	1	17.33	±	1.03

CMS B Physics Workshop, Lisboa 11 April 2016

M.Margoní INFN Padova

6

Thanks to Jhovanny & Sara

Run1 Reconstructed Yields in CINVESTAV Lifetime analyses:

- N_{sig} (No Tag) = 35188
- Run2 Extrapolation:
 - N_{sig} (No Tag) = 330000

(assuming 15% ϵ reduction)

L1 seed (2015) was L1_DOubleMu0er1p6_dEta_Max1p8 or L1_DOubleMu_10_0dEta_Max1p8 (prescaled by factor 10) probably will move to L1_DoubleMu_10_3p5 \rightarrow Endcap Efficiency reduction

 $\delta_{\text{stat}}(\text{CMS})/\delta_{\text{stat}}(\text{LHCb})$ = Statistics x Tagging x Resolution = Total 1.2 x 1.5 (1.4) x 1.4 = 2.5 (2.3)

Very naive evaluation $\rightarrow \delta_{stat} S \sim 0.037$; $\delta_{stat} C \sim 0.032$ 7CMS B Physics Workshop, Lisboa II April 2016M.Margoni INFN Padova

Thanks to Jhovanny & Sara

8

Run1 Reconstructed Yields in CINVESTAV Lifetime analyses:

 N_{sig} (No Tag) = 4010

Run2 Extrapolation
 N_{sig} (No Tag)=37500
 (assuming 15% ε reduction)

 $\delta_{\text{stat}}(\text{CMS})/\delta_{\text{stat}}(\text{LHCb})$ = Statistics x Tagging x Resolution = Total 1.9 x 1.7 (1.5) x 1.4 = 4.5 (4.0)

Very naíve evaluation: $\rightarrow \delta_{stat} \Phi s \sim 120 \text{ mrad}$

CMS B Physics Workshop, Lisboa 11 April 2016 M.Margoni INFN Padova

B Physics in tt events?

- Pros:
 - \bullet High $\mathsf{P}_{_{\mathsf{T}}}\mathsf{P}\mathsf{hysics}$ will not be penalized by trigger paths
 - $\sigma_{_{\rm tt}}$ increases by a factor 4 from 8 TeV to 13 TeV
 - Expertise in the group on Flavor Tagging both at low $P_{_{\rm T}}$ (Jacopo Pazzini) and high $P_{_{\rm T}}$ (Alessio Boletti)
 - Leptons from semileptonic t \rightarrow lvb decays tag the b flavor at production time

 $σ_{tt}(Run2) = 4σ_{tt}(Run1)$ L(Run2) = 5L(Run1) → Expect ~4.510⁶ tt, t → lvb evts

CMS B Physics Workshop, Lisboa II April 2016

B Physics in tt events?

- Pros:
 - \bullet High $\mathsf{P}_{_{\mathsf{T}}}\mathsf{P}\mathsf{hysics}$ will not be penalized by trigger paths
 - $\sigma_{_{\rm tt}}$ increases by a factor 4 from 8 TeV to 13 TeV
 - Expertise in the group on Flavor Tagging both at low $P_{\rm T}$ (Jacopo Pazzini) and high $P_{\rm T}$ (Alessio Boletti)

Stacked

Right tag

Wrong tag

• Leptons from semileptonic t \rightarrow lvb decays tag the b flavor at production time

1200

1000

800

600

400

- B flavor assignment from lepton charge in t → lvb :
 <ω>=25.40 ± 0.14%
- Improvement by fitting
 BDT output
- CMS B Physics Workshop, Lisboa II April 2016

M.Margoní INFN Padova

Mean

B Physics in tt events?

- Pros:
 - \bullet High $\mathsf{P}_{_{\mathsf{T}}}\mathsf{P}\mathsf{hysics}$ will not be penalized by trigger paths
 - $\sigma_{\rm tt}$ increases by a factor 4 from 8 TeV to 13 TeV
 - Expertise in the group on Flavor Tagging both at low $P_{\rm T}$ (Jacopo Pazzini) and high $P_{\rm T}$ (Alessio Boletti)
 - Leptons from semileptonic t \rightarrow IX decays tag the b flavor at production time
- Challenges:
 - What kind of measurements could we do?
 - Inclusive: use additional lepton from b \rightarrow l (as for B-mixing, already ongoing) or b \rightarrow K

11

• Exclusive B reconstruction in boosted environment?

CMS B Physics Workshop, Lisboa II April 2016 M.Margoni INFN Padova

Backup

Thanks to Sara

Trigger Efficiency and Rates comparison between "old" HLT_DoubleMu4_Jpsi_DIsplaced and new HLT_DoubleMu4_JpsiTrk_DIsplaced Signal: $B^{\circ} \rightarrow J/\psi K^*$

Trk $P_{T} > 0.5/3.4$ GeV in steps of 0.1 GeV

Trk IP Significance wrt BS d0>0/5.8 in steps of 0.2

CMS B Physics Workshop, Lisboa II April 2016