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Chapter 1

Introduction

Due to the large b-quark production cross section, high statistics data samples
are available soon after the LHC startup. This makes the CMS experiment an
excellent facility for the study of heavy flavor physics. Even though the CMS
detector is primarily designed for high transverse momentum physics, it is very
well suited for heavy flavor physics thanks to the muon system capable to identify
low transverse momentum muons and the excellent tracking detectors.

This thesis consists in a preliminary study for a measurement of the B-mixing
with the CMS experiment at the LHC. In particular it is divided in two studies.
First one is the analysis of the pile-up: here we evaluate the pile up effect for
the dimuonic analysis in data 2010 and 2011; the aim is to subtract this effect in
the subsequent measurement of the B-mixing . In the second analysis we want to
determine the angular resolution in the measurement of the B-direction. In this
case we take not only muons but also jets. Here we compare real data (2010) with
a Monte Carlo simulation to evaluate the smearing in resolution between them.
These measures are among the possible cause of systematic error in a measure of
the average time integrated mixing probability, χ̄.

The contents are organised as follows.
In Chapter 2 a brief summary on the Standard Model is reported, with par-

ticular attention for the B-mixing and the measurements of χ̄ at the end of the
chapter. In Chapter 3 is presented the CMS detector at LHC, here an overview
of the Monte Carlo event generators used in the analysis and the selections on
the data are briefly presented. In Chapter 4 the analysis of pile up is presented
and in Chapter 5 the studies on the angular resolution in the measurement of the
B-direction. Conclusions are outlined in Chapter 6.

Throughout this thesis, natural units are used in which c = h̄ = 1.

1



2



Chapter 2

Introduction to the Standard
Model

In this chapter we review the Standard Model (SM) of particle phisycs. Since its
introduction in the early 1970’s by Sheldon Glashow [1], Steven Weinberg [?]
and Abdus Salam [3], it has successfully explained a wide range of experimental
results and precisely predicted a large variety of phenomena from the elementary
world to the universe.

SM is the theory describing the elementary particles and their interactions. It
was conceived after more than 50 years of theoretical works and is based on the
fundamental concepts of quantum field theory and on the experimental observa-
tions. Quantum field theory is based on concepts of special relativity and quantum
mechanics. Particles are represented by relativistic fields obeying to specific prop-
agation equations. In particular a field theory introduces creation and annihilation
operators to take into account the possible creation and annihilation of particles.

SM consists of 12 spin-1
2

fermions and 12 spin-1 gauge bosons which act as
carrier of the fundamental forces1. Three of the four fundamental forces, namely
electromagnetism, weak interaction and strong interaction, are included in the
SM. The gravitational force which is dominant at macroscopic distances is omitted
since its effects are small on microscopic scales2. The 12 fermions are divided into
6 quarks (u, d, s, c, b, t) and 6 leptons (e, µ, τ , νe, νµ, ντ ), all of which possess
charge conjugate states, called anti-particles.

All quarks and leptons are subject to the weak force, while only quarks and
charged leptons (e, µ, τ) undergo electromagnetic interactions. A major achieve-
ment of the SM is the unification of the electromagnetic and the weak force into an
electroweak force embedded in the theory of Quantum Electrodynamics (QED).
In QED the photon is the gauge boson of the electromagnetism and the W- and
Z-bosons are the mediators of the weak interaction. The strong force is responsible
for the interaction between color charged quarks (red, green and blue) and gluons
(g, there are 8 gluons) where the latter are the mediators in the theory of Quantum

1Fermions have semi-integer spin values and follow the Fermi-Dirac statistics while bosons
have integer ones and are described by the Bose-Einstein statistics.

2The coupling constant of the gravitational interactions is about forty order of magnitude
smaller than the coupling constant of the other ones.
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Chromodynamics (QCD).
To resume all these particles see the Tables 2.1, 2.2 and 2.3.

Flavour Charge Quantum Number Mass [GeV]
e -1 Le = +1 0.511× 10−3

νe 0 Le = +1 < 225× 10−9

µ -1 Lµ = +1 105.7× 10−3

νµ 0 Lµ = +1 < 0.19× 10−3

τ -1 Lτ = +1 1.777
ντ 0 Lτ = +1 < 18.2× 10−3

Table 2.1: Flavour, charge, quantum number and mass of leptons [4].

Interaction Charge Mass [GeV] Width [GeV]
g strong 0 0
γ electromagnetic 0 0
Z0 weak 0 91.1876± 0.0021 2.4952± 0.0023
W± weak ±1 80.398± 0.025 2.141± 0.041

Table 2.2: Charge, mass and width of force carriers [4].

Flavour Charge Quantum Number Mass [GeV]
u +2/3 U = +1 (1.5÷ 3.3)× 10−3

d −1/3 D = −1 (3.5÷ 6.0)× 10−9

c +2/3 C = +1 1.27+0.07
−0.11

s −1/3 S = −1 104+26
−34 × 10−3

t +2/3 T = +1 171.2± 2.1
b −1/3 B = −1 4.2+0.17

−0.07

Table 2.3: Flavour, charge, quantum number and mass of leptons [4].

To colmplete the SM it was introducted another particle, the Higgs boson. The
Higgs boson plays an important role in the SM as it provides an explanation for the
masses of the elementary particles and gives rise to the phenomenon of electroweak
symmetry breaking. The search for the Higgs particle has been one of the main
motivations for the construction of the Large Hadron Collider (LHC) at CERN.

2.1 Electroweak interaction

The electroweak theory unifies the weak and the electromagnetic interactions under
the simmetry group SU(2)L×U(1)Y . The L refers to the fact that the constituent
of the weak interaction are left-handed weak isospin doublets, while the Y is a
reminder that the U(1) group contains right-handed weak hypercharge singlets.
The left-handed fermion fields

ψi =

(
νi
`−i

)
and

(
ui
d′i

)
4



for the i-th fermion family transform as doublets under SU(2) while the right-
handed ones are singlets of SU(2). The weak isospin and the hypercharge Y
are respectively the generators of the symmetry transformations. Defined T3 the
third component of the weak isospin vector and Q the electric charge, we have the
relation

Q = T3 +
Y

2
.

Now, the electoweak Lagrangian is given by

L = −1

4
W µνWµν −BµνBµν + iψ̄ /Dψ (2.1)

where we can define the covariant derivative operator as

Dµ = ∂µ + igWµT +
i

2
g′BµY

where T is the weak isospin operator while g and g′ are two different coupling
constants for the electroweak interactions, g for SU(2)L and g′ for U(1)Y . If
we define Bµ as the the massless gauge field representing the singlet of U(1)Y ,
therefore Bµν is the follow tensor, similar to the electromagnetic one

Bµν = ∂µBν − ∂νBµ.

Defined Wµ as the the gauge field of SU(2), we can define the tensor

Wµν = ∂µWν − ∂νWµ.

We have to do an important precisation: W 1
µ , W 2

µ , W 3
µ and Bµ fields have

no physical meaning, the physical fields are Aµ, Zµ and W±
µ . Aµ is a neutral

electromagnetic field, Zµ describes the weak neutral current while W±
µ are the

weak charge current fields. The fields with which the weak Lagrangian is defined
are related to the physical ones by the transformation leads by the weak angle (or
Weinberg’s angle) θW (

Z
A

)
=

(
cos θW − sin θW
sin θW cos θW

)(
W 3

B

)
There is also a relation between the electromagnetic coupling constant e and

the coupling constants g and g′

e = g sin θW = g′ cos θW

and accordingly
g′ = g tan θW

The fields W 1
µ and W 2

µ are related to the observable fields W±
µ by the relation

W±
µ =

1√
2

(W 1
µ ∓W 2

µ)

and for the fields Zµ and Aµ we have
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Zµ =
−g′Bµ + gW 3

µ√
g2 + g′2

Aµ =
gBµ + g′W 3

µ√
g2 + g′2

Finally we can rewrite the term iψ̄ /Dψ in the electroweak Lagrangian (2.1)
responsible for the interaction for quarks and leptons with the gauge bosons as

eJµEMAµ +
g√
2

(J+µ
L W+

L + J−µL W−
L ) +

gg′

e
JµZZµ

where we have introducted the weak charge currents J±µL , the weak neutral
current JµZ and the electromagnetic current JµEM , respectively

J±µL =
√

2ψ̄γµT±µL ψ

JµZ = ψ̄γµ(T3L −Q sin2 θW )ψ

JµEM = ψ̄γµQψ

Since the electroweak Lagrangian mass terms for the gauge bosons violate the
gauge invariance, the bosons need to be massless. While the photon is in fact
massless, the short range feature of the weak interactions and the experimental
measurements show that Z and W± are effectively massive, their mass having been
measured with high precision at LEP [5] and Tevatron [6]:

mZ = 91.1876± 0.0021 GeV

mW = 80.425± 0.038 GeV

The mathematical mechanism which allows the introduction of gauge boson
masses is based on the spontaneous electroweak symmetry breaking in presence of
a scalar field: the Higgs field.

Moreover, the quark mass eigenstates are not proper states of the flavour ba-
sis. The flavour interaction eigenstates are instead linear combinations of the mass
eigenstates. A unitary mixing matrix is therefore introduced in the theory, corre-
sponding to the base change from the interaction eigenstates to the mass eigen-
states one. This matrix is called Cabibbo-Kobayashi-Maskawa or CKM matrix
[7, 8]: d′s′

b′

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

ds
b

 (2.2)

where the down quark vector on the left side of the equation correspond to the
interaction eigenstates and the vector to the right side of the CKM matrix are the
mass eigenstates. It must be noted that the diagonal elements of this matrix have
values close to 1, which favors the flavour exchange within the same generation.
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2.2 Heavy Flavour Physics

The study of heavy quark production is an important research area at the LHC.
Heavy quarks will be produced with a large cross section at a yet unreached center-
of-mass energy, enabling precision measurements to improve our understanding of
heavy flavour physics. In the context of this work the term heavy quark stands
for charm and beauty quarks since the mass of the up, down and strange quark
are significantly lower. The heavier top quark has a very short lifetime and does
therefore not form bound states of heavy hadrons because it is not able to hadronize
before to decay.

Heavy quark production is interesting on its own as it presents a key process for
the study of the theory of strong interactions, Quantum Chromodynamics (QCD).
Furthermore, a well-established theory of heavy quark production is needed for
many searches at the LHC.

In this section the theoretical concepts relevant to describe the physics of heavy
quarks at the LHC are introduced. The main ideas of Quantum Chromodynam-
ics are reviewed, before their application to high-energy hadron-hadron collisions
is discussed. This includes the factorization ansatz, the evolution of the parton
distribution functions, the partonic processes important for beauty quark produc-
tion and the phenomenological treatment of heavy quark fragmentation. A further
section is dedicated to the description of the decay of b-hadrons via the weak in-
teraction. The Monte Carlo event generators which are used in this analysis to
generate full hadronic events within the QCD framework are presented in the last
section.

2.2.1 Quantum Chromodynamics

QCD [9, 10, 11] is the field theory describing the strong interaction between color
charged partons. Color charge comes in three versions (red, green and blue) which
form a fundamental representation of the SU(3) symmetry group and is carried
by massive spin-1

2
quarks and massless spin-1 gluons. Analogous to the photons

in Quantum Electrodynamics (QED) [12, 13], the gluons are the gauge bosons
in QCD and mediate the strong interaction. Since the gluons themselves carry
color charge, they can directly interact with other gluons. This possibility is not
available in QED, as photons do not have an electric charge.

In QCD, as in any renormalizable quantum field theory, ultraviolet divergences
appearing in the calculation can be removed by introducing a scale dependent cou-
pling αs(Q

2) and a new scale, the renormalization scale µR [14]. The dependence
of αs on the energy-scale Q2 is known as running of the coupling. A summary of
measurements of αs(Q

2) as a function of the respective energy scale Q is presented
in Figure 2.1 . At the scale set by the mass of the Z boson the average value
of the strong coupling constant is αs(MZ) = 0.1184 ± 0.0007 [15]. The renor-
malization scale is used to set the validity limit of the perturbative approach, is
usually defined as ΛQCD and experimentally is found to be of the order of 200 MeV
[16]. At energy scales below ΛQCD the strong coupling rises to infinity, resulting
in the confinement of quarks and gluons inside color-singlet hadrons. The use of
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a perturbative approach is instead legitimate at scales Q2 � ΛQCD.

Figure 2.1: Summary of measurements of αs as a function of the respective energy
scale.

Hadronic Collisions

Due to the asymptotic freedom in QCD, the interaction between quarks and gluons
becomes arbitrarily weak at short distances. Consequently hadrons behave as
collections of free parton at large transferred momenta and their interaction can
therefore be described using a parton model.

A generic scattering process of two hadrons (h1; h2) with four-momenta P1 and
P2, respectively, is illustrated in figure 2.2. The scattering process is caused by the
interaction of two partons of the initial hadrons with four-momentum p1 = x1P1

and p2 = x2P2.

Figure 2.2: Scattering process of two hadrons h1 and h2 in the parton model. Two
partons with momentum fractions x1 and x2 undergo an hard interaction at the
scale Q2.

Since the center-of-mass of the partonic interaction is normally boosted with
respect to the laboratory frame, it is useful to classify the final state according to
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variables that are invariant under longitudinal boosts. The squared center-of-mass
energy of the hadronic system is

s = (P1 + P2)2. (2.3)

In the massless limit, the virtuality of the process is defined as

Q2 = ŝ = x1x2s. (2.4)

The momentum imbalance of the partons participating in the hard interaction
is reflected in the rapidity distribution of the outgoing particles. The transverse
momentum of the outgoing partons in the center-of-mass frame of the colliding
partons is denoted by p̂T and is of particular interest for the Monte Carlo event
generators (see section ....).

Factorization

Soft processes resulting in the production of low momentum hadrons will be the
most common events in proton-proton collision at the LHC. Although these pro-
cesses are QCD related, they cannot be calculated by perturbative QCD (pQCD).
Perturbative approaches only lead to reliable results if a hard scale is present in
the interaction. In the case of heavy flavour physics, the hard scale is provided
by the mass of the heavy quark, its transverse momentum or the virtuality of the
process.

Most of the processes calculated by pQCD feature infrared divergences emerg-
ing from real gluon emission. Singularities arise either if a gluon is emitted in
the direction of the outgoing parton (collinear divergences) or if a low momentum
gluon is emitted (soft divergence). Similar to the ultraviolet divergencies which
are removed by introducing a renormalization scale, µR, the infrared divergencies
can be absorbed when imposing a factorization scale, µL . The factorization scale
can be thought of as the scale which separates the short- and the long-distance
physics. The short-distance part covers the hard process calculable in pQCD, while
the long-distance part includes the collinear and soft divergencies which are not
accessible to perturbative calculations. The factorization ansatz is validated by
the factorization theorem [17, 18, 19].

According to the factorization theorem the cross section for a hard scattering
originating from an interaction of two hadrons with four-momenta P1 and P2 can
be written as

σ(P1, P2) =
∑
i,j

∫
dx1dx2 f

h1
i (x1, µ

2
F ) fh2

j (x2, µ
2
F ) σ̂i,j(x1P1, x2P2, αs(µR), Q2;µ2

F , µ
2
R)

(2.5)
where:

• fhi (x, µ2
F ) is the parton distribution function (PDF) for the parton i in the

hadron h,

• x1 is the momentum fraction of the hadron h1 carried by the parton i,
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• x2 is the momentum fraction of the hadron h2 carried by the parton j,

• σ̂i,j is the short-distance scattering cross section of partons i and j,

• µR is the renormalization scale, and

• µF is the factorization scale.

The parton distribution functions fhi (x, µ2
F ) describe the probability of extracting

a parton i from a hadron h with momentum fraction x. Hence, the factoriza-
tion theorem implies that the probability of extracting the parton can be treated
independently from the parton undergoing an interaction. This assumption was
successfully verified in deep inelastic lepton-hadron scattering (DIS) which is char-
acterized by a large virtuality (Q2 � ΛQCD). In the DIS regime, the factorization
theorem is proven to be valid to all orders in perturbation theory [19]. Nonetheless
it is not obvious that the factorization theorem can be adapted to hadron-hadron
collisions since gluons from the hadron remnant might interact and spoil the fac-
torization. Explicit calculations have shown that factorization breaking effects are
present but are suppressed by powers of ΛQCD/Q

2 in the high energy limit [20].
The partonic short-distance cross section σi,j can be computed in pQCD as

σ̂i,j = αks
∑
n

(αs
π

)n
c

(n)
ij (2.6)

were the coeffcients c(n) are functions of the kinematic variables and the factoriza-
tion scale. Different hard processes will contribute with different leading powers k
to the partonic cross section.

Evolution of Parton Distribution Functions

As discussed in the previous section the long-distance, non-perturbative part of
the cross section is absorbed in scale dependent PDFs which cannot be calculated
by pQCD. Nevertheless, the dependence on the factorization µF is described by
perturbative calculation. The pQCD parton evolution equations predict the evo-
lution of the PDFs to any scale Q > Q2

0 once fhi (x,Q2
0) is known at a starting scale

Q2
0. The scale dependence of the PDFs is a consequence of gluon radiation and

gluon splitting effects, which are incorporated in the DGLAP evolution equations
[rif.] for the quark (qi(x,Q

2)) and gluon (g(x,Q2)) PDFs:

dqi(x,Q
2)

d logQ2
=

∫ 1

x

dy

y

(
qi(y,Q

2)Pqq

(
αs(Q

2),
x

y

)
+ g(y,Q2)Pqg

(
αs(Q

2),
x

y

))
(2.7)

dg(x,Q2)

d logQ2
=

∫ 1

x

dy

y

(∑
i

qi(y,Q
2)Pgq

(
αs(Q

2),
x

y

)
+ g(y,Q2)Pgg

(
αs(Q

2),
x

y

))
(2.8)

where the sum i = 1, ..., 2nf runs over quarks and antiquarks of all flaavours. The
functions Pab(αs(Q

2), z) are called splitting functions and represent the probability
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to find a parton a in a parton b at the scale Q2 with a momentum fraction z.
The splitting functions are calculable using a perturbative expansion in αs. The
diagrams contributing to the leading order splitting functions are shown in figure
2.3

Figure 2.3: Feynman diagrams contributing to the leading order splitting func-
tions.

In practice the PDFs used for calculations in the LHC energy regime are ob-
tained by evolving the PDFs measured in fixed target experiments and in electron-
proton scattering at HERA. The standard procedure is to first parametrize the x
dependence of the PDFs at afixed input scale Q2

0 and then extrapolate the func-
tion to the desired scale Q2 according to the DGLAP equations. Several groups
have performed PDF fits to the data obtained in DIS experiments, for example
the CTEQ [21], MRST [?], MSTW [23] and NNPDF [24, 25] groups. The quark
and gluon distribution functions measured at HERA at Q2 = 10 GeV are shown
in figure 2.4.

2.2.2 Heavy Quark Production

The leading-order (LO) process for the production of a heavy quark Q with mass
mQ in hadronic collisions is flaavour creation, i.e. quark-antiquark annihilation
and gluon-gluon fusion

qq̄ → QQ̄ and gg → QQ̄ (2.9)

The corresponding diagrams are shown in figure 2.5. When evaluating these di-
agrams and integrating over the two-body phase space the total partonic cross

11



Figure 2.4: The proton parton distribution functions measured at HERA at Q2 =
10 GeV, for valence quarks xuv and xdv, sea quarks xS, and gluons xg. The gluon
and sea distributions are scaled down by a factor 20.

section at LO in perturbation theory can be obtained [26, 27, 28]. The large
energy limit of the partonic cross section is

σ̂(qq̄ → QQ̄)→ 1

ŝ
(2.10)

σ̂(gg → QQ̄)→ 1

ŝ

(
1

β
log

(
1 + β

1− β
− 2

))
(2.11)

where ŝ is the center-of-mass energy available in the partonic system and β ≡√
1− 4m2

Q

ŝ
is the velocity of the heavy quark. The quark annihilation process

vanishes more quickly at high ŝ thus gluon-gluon fusion is the dominant process
for heavy quark production at the LHC. In flavour creation processes, the final
states involving the heavy quarks are observed back-to-back with little combined
transverse momentum.

Figure 2.5: Leading order diagrams for heavy-quark pair production: (a) quark-
antiquark annihilation qq̄ → QQ̄, (b)-(d) gluon-gluon fusion gg → QQ̄.

At next-to-leading order (NLO), contributions of real and virtual emission dia-
grams have to be taken into account. In addition, heavy quarks can be produced in
flavour excitation processes and gluon splitting events (figure 2.6). In the flavour
excitation process, the heavy quark is considered to be already present in the in-
coming hadron. It is excited by the exchange of a gluon with the other hadron
and appears on mass-shell in the final state. Since the heavy quark is not a va-
lence quark it must originate from a pair production process g → QQ̄. In most

12



PDF parametrizations the heavy-flavour contributions are assumed to vanish for
Q2 < m2

Q, the hard scattering in flavour excitation processes must therefore have a
virtuality above m2

Q. The heavy quark final states do not need to be back-to-back
as the third parton can carry away some transverse momentum.

Figure 2.6: Next-to-leading order diagrams for heavy-quark pair production:
(a),(b) flavor excitation; (c),(d) gluon splitting.

In gluon splitting events the heavy quark occurs in g → QQ̄ events in the
initial- or final-state shower. The resulting heavy flavoured final state can carry
a large combined transverse momentum and thus be concentrated within a small
cone of angular separation. The contribution of the different processes to the total
b-quark production cross section predicted by PYTHIA (see section 3.4) is shown
in figure 2.7 as a function of the center of mass energy.

Figure 2.7: Total b cross-section as a function of the center-of-mass energy
√
s in

proton-protoncollisions. The contribution from pair production, flavor excitation
and gluon splitting are shown. Vertical lines indicate 7 and 14 TeV in center of
mass energy.

2.2.3 Semileptonic Decays of Heavy Quarks

The presence of hadrons containing heavy quarks is deduced by the observation
of their decay products. In a first approximation of b-flavoured hadron decays,
only the beauty quark participates in the transition while the other quark acts
as a spectator quark. The b quark can decay via the weak interaction into a c-
or a u-quark. The charged current couplings for the flaavour-changing transition
between quarks are described in terms of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix given by
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VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (2.12)

The universality of the weak decay is reflected in the unitarity of the CKM
matrix. Hence, the CKM matrix can be parametrized by three mixing angles and
one irreducible phase which accounts for the CP -violation intrinsic to the weak
decay in the Standard Model. The decay width is proportional to the squared CKM
matrix element. Measurements of semileptonic decays of B mesons have shown
that the matrix elements relevant for the weak decay of the b quark are very small
compared to other elements: |Vcb| = 0.0412±0.0011 and |Vub| = 0.00393±0.00036
[29]. Consequently, the b quark decay is highly suppressed and the b quark has a
relatively large lifetime of τ ∼ 10−12 s. Since |Vcb| is about an order of magnitude
larger than |Vub| the preferred decay is b→ cW− with a branching ratio of almost
100 %.

The lifetime τof a b-hadron is related to the decay length l by

l =
pB
mB

cτ = βγcτ, (2.13)

where pB, mB and βγ are the particle’s momentum, mass and boost, respectively.
The distance of closest approach of the extrapolated muon track to the interaction
point is defined as impact parameter d:

d = l sin δ = βγcτ sin δ, (2.14)

where δ is the angle between the direction of the secondary track and the direction
of the parent particle. Objects originating from a secondary vertex are generally
characterized by a large transverse impact parameter (figure 2.8). The transverse
impact parameter is then defined as

dxy = d sin θ = βγcτ sin δ sin θ, (2.15)

where θ is the polar angle between the hadron direction and the beam axis.
Properties of b-hadrons are listed in Table 2.4. Their mean decay length is

c =466 µm. This transforms into an average observable decay length of L =
βγcτ =3÷5 mm in the rest frame at the LHC which can be observed as a displaced
(or secondary) vertex in the detector. In CMS a lifetime based tag of b-hadrons
is possible thanks to the pixel detector which achieves a track impact parameter
resolution of about 20 µm. For comparison, also the properties of c-hadrons are
listed in Table 2.4.

The W boson originating from the weak decay of the b-quark decays either
hadronically or leptonically. Within this analysis the semileptonic decay of b
quarks into muons is studied since the muon provides a clean signature which is
relatively easy to detect experimentally. The decay W− → µ−ν̄µ has a branching
ratio of about 10%. In addition, about 10% of the subsequent charm decays also
have a muon and a neutrino in the final state. The Feynman diagrams of the
semileptonic decay of a b-hadron with a muon in the final state are illustrated in
figure 2.9.
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Figure 2.8: Illustration of the transverse impact parameter d of the decay products
of a long-lived particle. The decay particles emerging from the secondary vertex
are characterized by a large transverse impact parameter compared to that of the
particles emerging from the primary vertex.

Figure 2.9: Weak decay of b-hadrons with a muon in the final state.
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quark content mass lifetime decay length fraction
m [MeV] τ [ps] cτ [µm]

B0 db 5279.50 ± 0.30 1.518 ± 0.007 455.1 0.403 ± 0.009
B+ ub̄ 5279.17 ± 0.29 1.641 ± 0.008 492.0 0.403 ± 0.009
B0
s sb̄ 5366.3 ± 0.6 1.477 ± 0.022 442.8 0.103 ± 0.009

Λ0
b ubd 5620.2 ± 1.6 1.425 ± 0.032 427.2 0.090 ± 0.015

D0 cū 1864.80 ± 0.14 0.415 ± 0.004 124.4 0.557 ± 0.053
D+ cd̄ 1869.57 ± 0.16 1.057 ± 0.015 316.9 0.233 ± 0.027
D+
s cs̄ 1968.45 ± 0.33 0.467 ± 0.017 140.0 0.103 ± 0.029

Λ0
c udc 2286.2 ± 1.6 0.206 ± 0.012 61.8 0.08 ± 0.05

Table 2.4: Properties of b- and c-hadrons. The table shows the quark content, the
mass, the lifetime and the decay length [29].

2.3 B-mixing

Quantum mechanics and the structure of the weak interaction permit to few neu-
tral mesons to change from their particle to their antiparticle. In 1955 Gell-
Mann and Pais predicted the oscillations of neutral strange mesons and Lande
at Brookhaven confirmed this prediction through the observation of two strange
neutral particles with different life time and masses. The only hadrons that can
undergo these oscillation are K0, D0, B0 and B0

s . Since this analysis deals with
the B mixing all the formalism is presented in terms of b quarks coupled with d, s
quarks, though it was first derived for the kaon system. In the following notation
B is used to mean either B0 and B0

s when a results is valid for both. In figure 2.10
box diagrams for B-mixing.

Figure 2.10: Dominant box diagrams for the B0
q → B̄0

q transitions (q = d or s).
Similar diagrams exist where one or both t quarks are replaced with c or u quarks.

2.3.1 Mixing formalism

The oscillation effect follows from a perturbative solution to Schodinger’s equation.
The strong interaction creates two stable states

|B〉 = |b̄q〉 (2.16)

|B̄〉 = |bq̄〉 (2.17)

where q = d, s, that are eigenstates of non perturbative Hamiltonian H
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H =

(
m0 0
0 m0

)
, (2.18)

where the masses mB = mB̄ = m0 are equal because of the CPT symmetry.
When the weak interaction is added also the decays, must be considered. A conse-
quence of this is that the matrix elements between the two states and a continuum
states become different from zero. The continuum state can be split up in three
groups:

1. States |α〉 accessible only to |B〉. This means that there are not possibility
for |B̄〉 to decay in this states: 〈α|HW B̄〉.

2. States |β〉 accessible only to |B̄〉 , that is states in which |B〉 can not decay.

3. States accessible from decays of both |B〉 and |B̄〉 .

In addition the two discrete states are connected by a direct matrix element
W12 = 〈B|HW B̄〉 or via off-shell continuum states accessible to both. The intro-
duction of continuum states has several effects:

1. The masses of both states |B〉 and |B̄〉 is shifted by δE, such that they
become M = m0 + δE.

2. The possible interactions between the two states through off-shell continuum
states accessible to both or via HW products a non diagonal elements in the
real part of the Hamiltonian different to zero.

3. The decays introduce an imaginary part to H that is connected with the
on-shell decays unique to each ( Γ ) and with continuum states common to
both ( Γ12 ).

Now the complete Hamiltonian H = H + HW has infinite dimensions. Even
if this matrix is not Hermitian it can be referred to as a Hamiltonian and can be
derived as follows:

H =

(
m0 + δE W12 + δE12

W ∗
12 + δE∗12 m0 + δE

)
− i

2

(
Γ W12 + Γ12

Γ∗12 Γ

)
. (2.19)

The eigenstates and the eigenvalues can be find diagonalising this matrix. The
difference of masses between the two eigenstates leads the notation to be H and
L, respectively for the Heavy and the Light eigenstate. The eigenstates of the
Hamiltonian are

|BL〉 = p|B〉+ q|B̄〉 (2.20)

|BH〉 = p|B〉 − q|B̄〉 (2.21)

where p and q are two complex number, and the eigenvalues are

λH,L = mH,L −
i

2
ΓH,L (2.22)
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The masses and the widths of these states are

mH,L = M ±<e y ≡M ±∆m/2 (2.23)

ΓH,L = Γ± 2 =m y ≡ Γ±∆Γ/2 (2.24)

where

y =

√
|M12|2 −

|Γ12|2
4
− i <e(M12Γ12∗). (2.25)

So we have a mass difference ∆m = mH − mL > 0 and a total decay width
difference ∆Γ = ΓL − ΓH . In the absence of CP violation in the mixing we have
|q/p| = 1. Moreover the lifetime difference ∆Γ between |BL〉 and |BH〉 is so small
that can be neglected.

The time evolution of a state which was a pure |B〉 at t = 0 expressed in
terms of flavour eigenstates can be obtained through the simple time dependence
|BL,H(t)〉 = e−iλL,H t |BL,H(t = 0)〉. So we get

|B(t)〉 =
|BL(t)〉+ |BH(t)〉√

2
(2.26)

= e−i∆mt−
Γ
2
t · [cos (∆m t)|B〉+ i sin (∆m t)|B̄〉]. (2.27)

The probability to find a B or a B̄ after t seconds from its creation is

Pu(t) =
|〈B|B(t)〉|2∫∞

0
〈B(t)|B(t)〉 dt

(2.28)

=
Γ

2
e−Γ/t · [1 + cos2 (∆m t)], (2.29)

Pm(t) =
|〈B̄|B(t)〉|2∫∞

0
〈B(t)|B(t)〉 dt

(2.30)

=
Γ

2
e−Γ/t · [1− cos2 (∆m t)], (2.31)

where the index m indicates the mixed probability, that is the probability to find
a final state different from the initial one. In the same way the index u means
unmixed. The time-integrated versions expresses the probability that a B decays
as a B̄. Using the ∆Γ = 0 approximation they can be written as follows:

χd =

∫ ∞
0

Pm(t) dt =
1

2

x

1 + x2
(2.32)

χs =

∫ ∞
0

Pm(t) dt =
1

2

x

1 + x2
(2.33)

where

x ≡ ∆m

Γ
. (2.34)

A common variable used in hadron colliders, where both B0 and B0
s can be

produced, is the average time-integrated mixing probability

χ̄ = fdχd + fsχs. (2.35)

where fd is the B0 fraction in the b sample while fs is the B0
s fraction.
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2.3.2 Measurements of χ̄

As we have seen in the previous section, flavor changing neutral currents induce the
flavor (F) transformation ∆F = 2 of a neutral B-meson into its antiparticle and
viceversa. In the standard model this phenomenon is described by box diagrams
involving the exchange of two up-like quarks (mostly top) and two W bosons (figure
2.10).

Precise measurements of the flavor oscillation frequencies, ∆md = 0.508 ±
0.003 (stat) ±0.003 (syst) ps−1 and ∆ms = 17.77±0.10 (stat) ±0.07 (syst) ps−1

have been performed for B0 mesons by the B-factories, and for Bs mesons by the
CDF collaboration. The corresponding time integrated mixing probabilities,

χd =
Γ(b→ B0 → B̄0)

Γ(b→ B0)
= 0.1873± 0.0024

and
χs = 0.49927± 0.00003

computed by integrating the functions describing the time dependent B-flavor
oscillation, are known with astonishing precision.

We have defined the average time integrated mixing probability,

χ̄ =
Γ(b→ B → B̄)

Γ(b→ B)
= fdχd + fsχs

where charge conjugate processes are always implied. Here fd and fs are the
fractions of B0 and Bs mesons in an unbiased sample of weakly decaying b-hadrons.
The measurement of χ̄ provides therefore a constraint on the values of fd and
fs. Uncertainties on the b-sample composition are among the largest sources of
systematic errors in the measurements of b-hadrons branching fractions at LHC.

Experimentally, χ̄ is measured by comparing the rates of events with two equal
or opposite charge leptons from the semileptonic decay B → `+ν`X. Same-charge
events occur when one, and one only, of the two B-hadrons produced undergoes
mixing (hereafter, mixed events). Opposite-charge leptons (hereafter, unmixed)
are observed when either none or both the mesons have oscillated. Precise mea-
surements of χ̄ have been performed by the LEP collaborations in e+e− collisions
at
√
s = 91 GeV. The LEP average χ̄ = 0.126 ± 0.004 is still the most precise

determination of χ̄. The latest CDF result χ̄ = 0.126 ± 0.008 is well consistent
with the LEP value, conferming the hypothesis that B-hadrons are produced in
equal proportions in e+e− and pp̄ colliders. It should be noted that, to derive this
result, a sizable fraction of the CDF dimuon sample is assigned to an unknown
origin, not explained by standard model source .

It is not expected a priori that the B-hadron sample composition at the LHC
be the same as at LEP or Tevatron, because the initial state in a pp collision is not
flavor symmetric, with four valence u-quarks and two valence d-quarks. The LHCb
collaboration has measured the composition of the B-hadron mixture by comparing
the event rates in fully reconstructed final states. These measurements are however
performed in a different kinematical domain, and are intrinsically limited by the
knowledge of the branching ratios of the reference B decays. A measurement
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of χ̄ at CMS allows therefore a comparison with the results obtained at flavor
symmetric colliders or in a different kinematic range at LHC. Besides increasing
our understanding of the b → B fragmentation process, this helps improving the
measurements of rare B decays from the LHC experiments.
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Chapter 3

The CERN Large Hadron
Collider and the Compact Muon
Solenoid Experiment

The Large Hadron Collider (LHC) [30] is an accelerator located at the European
Laboratory for Particle Physics Research (CERN) in Geneva. It has been con-
ceived to collide proton beams at a center-of-mass energy of

√
s = 14 TeV and

a nominal instantaneous luminosity of L = 1034 cm−2 s−1, representing a seven-
fold increase in energy and a hundred-fold increase in integrated luminosity over
the previous hadron collider experiments. Its main purpose is to search for rare
processes like the production of Higgs or new particles with mass of 1 TeV and
beyond. Two experiments have been installed around the LHC to pursue these re-
sults: ATLAS [31] and CMS [32]. Furthermore, the LHCb [33] experiment studies
the properties of charm and beauty hadrons produced with large cross sections in
asymmetric collisions at the LHC, and the ALICE [34] experiment will analize the
data from relativistic heavy ion collisions to study the hadronic matter in extreme
temperature and density conditions (i.e. high quark-gluon density).

3.1 The Large Hadron Collider

The LHC has been installed in the same tunnel which hosted the e+e− collider
LEP (Large Electron Positron). Accelerated electrons and positrons suffer large
energy loss due to the synchrotron radiation, which is proportional to E4/(Rm4),
where E is the electron energy, m its mass and R the accelerator radius. To
obtain energies of the order of TeV, at the fixed accelerator radius, only massive
charged particles could have been used: protons and heavy nuclei. The energy loss
is reduced by a factor (2000)4 for a given fixed energy E if we consider protons.
Another important aspect of the LHC is the collision rate. To produce a sufficient
number of rare processes, the collision rate needs to be very high. Beam protons
are collected in packets called bunches. The collision rate is proportional to the
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instantaneous luminosity of the accelerator, defined as:

L =
fkn2

p

4πσxσy
, (3.1)

where f is the bunch revolution frequency, k the number of bunches, np the num-
ber of protons per bunch and σx, σy their transverse dispersion along the x and y
axis. At the nominal 14 TeV LHC conditions (L = 1034 cm−2s−1) the parameter
values are: k = 2808, np = 1.5×1011 and σxσy = 16.6 µm (with σz = 7.6 cm along
the beam). The integrated luminosity is defined as L =

∫
Ldt. For comparison

we can consider the Tevatron accelerator at Fermilab, which produced proton-
antiproton collisions since 1992. Its energy was 1.8 TeV up to 1998 and 1.96 TeV
since 2001. To increase L by two orders of magnitude, protons are injected in both
LHC beams instead of antiprotons. The latters, in fact, are obtained by steering
proton beams onto a nickel target and represent only a small fraction of the wide
range of secondary particles produced in this interactions.

The LHC is constituted by 1232 super-conducting dipole magnets each 15 m
long, delivering a 8.3 T magnetic field to let the beams circulate inside their trajec-
tories along the 27 km circumference. Two vacuum pipes are utilized to let beams
circulate in opposite directions. A scheme representing the transverse dipole mag-
net section is represented in Fig. 3.1. More than 8000 other magnets are utilized

Figure 3.1: LHC dipole magnet section scheme. Figure from [30].

for the beam injection, their collimation, trajectory correction, crossing. All the
magnets are kept cool by superfluid helium at 1.9 K temperature.
The beams are accelerated from 450 GeV (the injection energy from the SPS) to 7
TeV with 16 Radio Frequency cavities (8 per beam) which raise the beam energy
by 16 MeV each round with an electric field of 5 MV/m oscillating at 400 MHz
frequency.
Before the injection into the LHC, the beams are produced and accelerated by
different components of the CERN accelerator complex. Being produced from
ionized hydrogen atoms, protons are accelerated by the linear accelerator LINAC,
Booster and the Proton Synchrotron (PS) up to 26 GeV energy, the bunches being
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separated by 25 ns each. The beams are then injected into the Super Proton Syn-
chrotron (SPS) where they are accelerated up to 450 GeV. They are then finally
transferred to the LHC and accelerated up to 7 TeV energy per beam. The CERN
accelerator complex is illustrated in Fig. 3.2.

Figure 3.2: Scheme representing the CERN accelerator complex.

The LHC started its operations in December 2009 with center of mass energy√
s = 0.9 TeV. The center of mass energy was set to

√
s = 7 TeV in 2010, and the

performance during 2010 and 2011 raised impressively. In 2010 the peak luminosity
reached L = 2 × 1032 cm−2s−1 (200 µb−1s−1, with 368 bunches) and during 2011
increased by a factor 10 in up to L = 3.5× 1033 cm−2s−1 (3.5 nb−1s−1, with 1380
bunches). The integrated luminosity in 2010 has been L = 40 pb−1, while in 2011
it increased by a factor 100 up to ∼ 5 fb−1, as graphically summarized in Fig. 3.3.
In 2012 the machine is operated at a center of mass energy

√
s = 8 TeV and

increasing instant luminosity. So far ∼ 7 fb−1 have been collected.

3.2 Constraints on the Design of the CMS Ex-

periment

We can briefly summarize the aims of the CMS detector [36, 37]. They are mainly:

• search for SM and MSSM Higgs boson decaying into photons, b quarks, τ
leptons, W and Z bosons,

• search for additional heavy neutral gauge bosons predicted in many superstring-
inspired theories or Great Unification theories and decaying to muon pairs,

• search for B0 → µ+µ− decays,
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Figure 3.3: LHC performance in 2010 (top) and 2011 (bottom). Left: LHC peak
luminosity; right: LHC integrated luminosity. Figures from [35].

• search for new Physics in various topologies: multilepton events, multijet
events, events with missing transverse energy or momentum, any combina-
tion of the three above 1,

• study of the violation of the CP symmetry in the decay of the B0
s meson into

J/ψ φ→ µ+µ+K+K−,

• study of QCD and jet physics at the TeV scale,

• study of top quark and EW physics.

CMS has been therefore designed as a multipurpose experiment, with particu-
lar focus on muon (H → ZZ → 4µ), photon (H → γγ), and displaced tracks
reconstruction. Superb performances have been achieved overall, in particular in:

1. primary and secondary vertex localization

2. charged particle momentum resolution and reconstruction efficiency in the
tracking volume

3. electromagnetic energy resolution

4. isolation of leptons and photons at high luminosities

1Missing transverse energy /ET is the amount of energy which must be added to balance the
modulus of the vector sum of the projections of the track momenta and calorimeter clusters in
the plane perpendicular to beam axis.
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5. measurement of the direction of photons, rejection of π0 → γγ

6. diphoton and dielectron mass resolution ∼ 1% at 100 GeV

7. measurement of the missing transverse energy /ET and dijet mass with high
resolution

8. muon identification over a wide range of momenta

9. dimuon mass resolution ∼ 1% at 100 GeV

10. unambiguously determining the charge of muons with pT up to 1 TeV

11. triggering and offline tagging of τ leptons and b jets

3.3 The CMS Experiment

The Compact Muon Solenoid [32] is a general purpose detector situated at inter-
action region 5 of the CERN Large Hadron Collider. It is designed around a 4
T solenoidal magnetic field provided by the largest superconducting solenoid ever
built. The structure of CMS is shown in Fig. 3.4, where particular emphasis is
put on the volumes of the different subsystems: the Silicon Pixel Detector, the
Silicon Strip Tracker, the Electromagnetic and Hadronic Calorimeters, and Muon
Detectors.

Figure 3.4: Transverse (left) and longitudinal (right) cross sections of the Compact
Muon Solenoid detector showing the volumes of the different detector subsystems.
The transverse cross section is drawn for the central barrel, coaxial with the beam
line, while complementary end-caps are shown in the longitudinal view.

The reference frame used to describe the CMS detector and the collected events
has its origin in the geometrical center of the solenoid. It is embedded with different
types of global coordinates measured with respect to the origin2:

2Global coordinates are measured in the CMS reference frame while local coordinates are
measured in the reference frame of a specific sub-detector or sensitive element.
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• Cartesian coordinate system – x̂ axis points towards the center of the LHC,
ŷ points upwards, perpendicular to the LHC plane, while ẑ completes the
right-handed reference, pointing along the beamline directed towards the
Jura mountains

• polar coordinate system – directions are defined with an azimuthal angle
tanφ = y/x and a polar angle tan θ = ρ/z, where ρ2 = x2 + y2

• from hte polar angle the rapidity y and pseudorapidity η are obtained for
any particle

y =
1

2
ln

(
E + pz
E − pz

)
(3.2)

η = − ln

(
tan

θ

2

)
(3.3)

where E is the particle energy and pz the component of its momentum along the
beam direction.

3.3.1 Magnet

The whole CMS detector is designed around a ∼ 4 T superconducting solenoid [38]
12.5 m long and with inner radius of 3 m. The solenoid thickness is 3.9 radiation
lengths and it can store up to 2.6 GJ of energy.

Figure 3.5: Left: CMS superconducting solenoid during assembly: the barrel re-
turn yokes are painted red. Muon detectors are already mounted and visible be-
tween return yoke layers. Right: cross section of the CMS magnet cables. Figures
from [39].

The field is closed by a 10 000 t iron return yoke made of five barrels and two
end-caps, composed of three layers each. The yoke is instrumented with four layers
of muon stations. The coil is cooled down to 4.8 K by a helium refrigeration plant,
while insulation is given by two pumping stations providing vacuum on the 40 m3

of the cryostat volume.
The magnet was designed in order to reach precise measurement of muon mo-
menta. A high magnetic field is required to keep a compact spectrometer capable
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to measure 100 GeV track momentum with percent precision . A solenoidal field
was chosen because it keeps the bending in the transverse plane, where an accuracy
better than 20 µm is achieved in vertex position measurements. The size of the
solenoid allows efficient track reconstruction up to a pseudorapidity of 2.4. The
inner radius is large enough to accommodate both the Silicon Tracking System
and the calorimeters. The magnet is currently operated at 3.8 T.

3.3.2 Tracking System

The core of CMS is a Silicon Tracking System [40, 41] with 2.5 m diameter and
5.8 m length, designed to provide a precise and efficient measurement of the tra-
jectories of charged particles emerging from LHC collisions and reconstruction of
secondary vertices.

The CMS Tracking System is composed of both silicon Pixel and Strip De-
tectors, as shown in Fig. 3.6. The Pixel Detector consists of 1440 pixel modules
arranged in three barrel layers and two disks in each end-cap as in Fig. 3.7. The
Strip detector consists of an inner tracker with four barrel layers and three end-cap
disks and an outer tracker with six barrel layers and nine end-cap disks, housing a
total amount of 15,148 strip modules of both single-sided and double-sided types.
Its active silicon surface of about 200 m2 makes the CMS tracker the largest silicon
tracker ever built.

Figure 3.6: Layout of the CMS silicon tracker showing the relative position of
hybrid pixels, single-sided strips and double-sided strips. Figure from [32].

The LHC physics programme requires high reliability, efficiency and precision
in reconstructing the trajectories of charged particles with transverse momentum
larger than 1 GeV in the pseudorapidity range |η| < 2.5. Heavy quark flavours
can be produced in many of the interesting channels and a precise measurement
of secondary vertices is therefore needed. The tracker completes the functionali-
ties of ECAL and Muon System to identify electrons and muons. Also hadronic
decays of tau leptons need robust tracking to be identified in both the one-prong
and three-prongs topologies. Tracker information is heavily used in the High Level
Trigger of CMS to help reducing the event collection rate from the 40 MHz of
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bunch crossing to the 100 Hz of mass storage.

Silicon Pixel Detector

The large number of particles produced in 25 piled-up events, at nominal LHC
luminosity, results into a hit rate density of 1 MHz/mm2 at 4 cm from the beamline,
decreasing down to 3 kHz/mm2 at a radius of 115 cm. Pixel detectors are used
at radii below 10 cm to keep the occupancy below 1%. The chosen size for pixels,
0.100× 0.150 mm2 in the transverse and longitudinal directions respectively, leads
to an occupancy of the order of 10−4. The layout of the Pixel Detector consists
of a barrel region (BPIX), with three barrels at radii of 4.4, 7.3 and 10.2 cm,
complemented by two disks on each side (FPIX), at 34.5 and 46.5 cm from the
nominal interaction point. This layout provides about 66 million pixels covering a
total area of about 1 m2 and measuring three high precision points on each charged
particle trajectory up to |η| = 2.5. Detectors in FPIX disks are tilted by 20◦ in a
turbine-like geometry to induce charge sharing and achieve a spatial resolution of
about 20 µm.

Figure 3.7: Layout of the current CMS Pixel Detector. Figure from [40].

Silicon Strip Tracker

In the inner Strip Tracker, which is housed between radii of 20 and 55 cm, the
reduced particle flux allows a typical cell size of 0.080 × 100 mm2, resulting in a
2% occupancy per strip at design luminosity. In the outer region, the strip pitch
is increased to 0.180 × 250 mm2 together with the sensor thickness which scales
from 0.320 mm to 0.500 mm. This choice compensates the larger capacitance of
the strip and the corresponding larger noise with the possibility to achieve a larger
depletion of the sensitive volume and a higher charge signal.
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The Tracker Inner Barrel and Disks (TIB and TID) deliver up to 4 r-φ mea-
surements on a trajectory using 0.320 mm thick silicon strip sensors with strips
parallel to the beamline. The strip pitch is 0.080 mm in the first two layers and
0.120 mm in the other two layers, while in the TID the mean pitch varies from
0.100 mm to 0.141 mm. Single point resolution in the TIB is 0.023 mm with the
finer pitch and 0.035 mm with the coarser one. The Tracker Outer Barrel (TOB)
surrounds the TIB/TID and provides up to 6 r-φ measurements on a trajectory
using 0.500 mm thick sensors. The strip pitch varies from 0.183 mm in the four
innermost layers to 0.122 mm in the outermost two layers, corresponding to a res-
olution of 0.053 mm and 0.035 mm respectively. Tracker End-Caps (TEC) enclose
the previous sub-detectors at 124 cm < |z| < 282 cm with 9 disks carrying 7 rings
of microstrips, 4 of them are 0.320 mm thick while the remaining 3 are 0.500 mm
thick. TEC strips are radially oriented and their pitch varies from 0.097 mm to
0.184 mm.

As shown in Fig. 3.6, the first two layers and rings of TIB, TID and TOB, as
well as three out of the TEC rings, carry strips on both sides with a stereo angle
of 100 milliradians to measure the other coordinate: z in barrels and r in rings.
This layout ensures 9 hits in the silicon Strip Tracker in the full acceptance range
|η| < 2.4, and at least four of them are two-dimensional. The total area of Strip
Tracker is about 198 m2 read out by 9.3 million channels.

Trajectory Reconstruction

Due to the magnetic field charged particles travel through the tracking detectors
on a helical trajectory which is described by 5 parameters: the curvature κ, the
track azimuthal angle φ and polar angle η, the signed transverse impact param-
eter d0 and the longitudinal impact parameter z0. The transverse (longitudinal)
impact parameter of a track is defined as the transverse (longitudinal) distance of
closest approach of the track to the primary vertex, as explained in Section ??.
The main standard algorithm used in CMS for track reconstruction is the Combi-
natorial Track Finder (CFT) algorithm [42] which uses the reconstructed positions
of the passage of charged particles in the silicon detectors to determine the track
parameters. The CFT algorithm proceeds in three stages: track seeding, track
finding and track fitting. Track candidates are best seeded from hits in the pixel
detector because of the low occupancy, the high efficiency and the unambiguous
two-dimensional position information. The track finding stage is based on a stan-
dard Kalman filter pattern recognition approach [43] which starts with the seed
parameters. The trajectory is extrapolated to the next tracker layer and compati-
ble hits are assigned to the track on the basis of the χ2 between the predicted and
measured positions. At each stage the Kalman filter updates the track parameters
with the new hits. In order to take into account possible inefficiencies one further
candidate is created without including any hit information.

The tracks are assigned a quality based on the χ2 and the number of missing
hits and only the best quality tracks are kept for further propagation. Ambiguities
between tracks are resolved during and after track finding. In case two tracks share
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more than 50% of their hits, the lower quality track is discarded. For each tra-
jectory the finding stage results in an estimate of the track parameters. However,
since the full information is only available at the last hit and constraints applied
during trajectory building can bias the estimate of the track parameters, all valid
tracks are refitted with a standard Kalman filter and a second filter (smoother)
running from the exterior towards the beam line. The expected performance of
the track reconstruction is shown in Fig. 3.9 for muons, pions and hadrons. The
track reconstruction efficiency for high energy muons is about 99% and drops at
|η| > 2.1 due to the reduced coverage of the forward pixel detector. For pions and
hadrons the efficiency is in general lower because of interactions with the material
in the tracker.

The material budget is shown in Fig. 3.8 as a function of both pseudorapidity
and different contributions of sub-detectors and services.

Figure 3.8: Material budget of the current CMS Tracker in units of radiation
length X0 as a function of the pseudorapidity, showing the different contribution
of sub-detectors (left) and functionalities (right). Figures from [32].

The performance of the Silicon Tracker in terms of track reconstruction effi-
ciency and resolution, of vertex and momentum measurement, are shown in Fig. 3.9
and 3.10 respectively. The first one, in particular, shows the difference in recon-
struction efficiency for muons and pions, due to the larger interaction cross section
of pions, which cannot be assumed to be minimum-ionizing particles and therefore
are much more degraded by the amount of material.

Vertex Reconstruction The reconstruction of interaction vertices allows CMS
to reject tracks coming from pile-up events. The primary vertex reconstruction is a
two-step process. Firstly the reconstructed tracks are grouped in vertex candidates
and their z coordinates at the beam closest approach point are evaluated, retaining
only tracks with impact parameter less than 3 cm. Vertices are then reconstructed
through a recursive method for parameter estimation through a Kalman filter [44]
algorithm. For a given event, the primary vertices are ordered according to the
total transverse momentum of the associated tracks,

∑
pT . The vertex reconstruc-

tion efficiency is very close to 100% and the position resolution is of the order of
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Figure 3.9: Global track reconstruction efficiency as a function of track pseudora-
pidity for muons (left) and pions (right) of transverse momenta of 1, 10 and 100
GeV. Figures from [32].

Figure 3.10: Resolution of several track parameters as a function of track pseudora-
pidity for single muons with transverse momenta of 1, 10 and 100 GeV: transverse
momentum (left), transverse impact parameter (middle) and longitudinal impact
parameter (right). Figures from [32].

O(10) µm in all directions.

It is also possible to reconstruct the secondary vertices, for example those from
b-quark decays. The secondary vertex reconstruction uses tracks associated to
jets applying further selection cuts: the transverse impact parameter of the tracks
must be greater than 100 µm to avoid tracks coming from the primary vertex and
below 2 cm to avoid tracks from pileup events.

3.3.3 Muon Spectrometer

Detection of muons at CMS exploits different technologies and is performed by
a “Muon System” rather than a single detector [45]. Muons are the only parti-
cles able to reach the external muon chambers with a minimal energy loss when
traversing the calorimeters, the solenoid and the B-field return yoke. Muons can
provide strong indication of interesting signal events and are natural candidates
for triggering purposes. The CMS Muon System was designed to cope with three
major functions: robust and fast identification of muons, good resolution of mo-
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mentum measurement and triggering.
The Muon System is composed of three types of gaseous detectors, located inside
the empty volumes of the iron yoke, and therefore arranged in barrel and end-cap
sections. The coverage of Muon System is shown in Fig. 3.11.

Figure 3.11: Transverse and longitudinal cross sections of the CMS detector show-
ing the Muon System with particular emphasis on the different technologies used
for detectors; the ME/4/2 CSC layers in the end-cap were included in the design
but are not currently installed. Figures from [32].

In the barrel region the neutron-induced background is small and the muon
rate is low; moreover, the field is uniform and contained in the yoke. For these
reasons, standard drift chambers with rectangular cells are used. The barrel drift
tubes (DT) cover the |η| < 1.2 region and are organized in four stations housed
among the yoke layers. The first three stations contain 12 chambers, arranged in
two layers providing measurement in the transverse plane and one layer measuring
along z, each of them containing four chambers. The fourth station provides mea-
surement only in the transverse plane. To eliminate dead spots in the efficiency
and any left-right ambiguity, cells in consecutive layers are shifted by half of their
width.

Both the muon rates and backgrounds are high in the forward region, where
the magnetic field is large and non uniform. The choice for muon detectors fell
upon cathode strip chambers (CSC) because of their fast response time, fine seg-
mentation and radiation tolerance. Each end-cap is equipped with four stations
of CSC’s. The CSC’s cover the 0.9 < |η| < 2.4 pseudorapidity range. The cath-
ode strips are oriented radially and provide precise measurement in the bending
plane, the anode wires run approximately perpendicular to the strips and are read
out to measure the pseudorapidity and the beam-crossing time of a muon. The
muon reconstruction efficiency is typically 95-99% except for the regions between
two barrel DT wheels or at the transition between DT’s and CSC’s, where the
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efficiency drops.

Figure 3.12: Resolution on pT measurement of muons with the Muon System, the
Silicon Tracker or both, in the barrel (left) and end-caps (right). Figures from [32].

Both the DT’s and CSC’s can trigger on muons with a Level 1 pT resolution
of 15% and 25%, respectively. Additional trigger-dedicated muon detectors were
added to help measured the correct beam-crossing time. These are Resistive Plate
Chambers (RPC), gaseous detector operated in the avalanche mode, which can
provide independent and fast trigger with high segmentation and sharp pT thresh-
old over a large portion of the pseudorapidity range. The overall pT resolution on
muons is shown in Fig. 3.12, with emphasis on the different contribution from the
Muon System and the Silicon Tracker.

Muon Reconstruction

Muon detection and reconstruction play a key role in the CMS physics program,
both for the discovery of New Physics and for precision measurements of SM
processes. CMS has been designed for a robust detection of muons over the entire
kinematic range of the LHC and in a condition of very high background. The
muon system allows an efficient and pure identification of muons, while the inner
tracker provides a very precise measurement of their properties. An excellent
muon momentum resolution is made possible by the high-field solenoidal magnet.
The steel flux return yoke provides additional bending power in the spectrometer,
and serves as hadron absorber to facilitate the muon identification. Several muon
reconstruction strategies are available in CMS, in order to fulfill the specific needs
of different analyses. The muon reconstruction consists of three main stages:

1. local reconstruction: in each muon chamber, the raw data from the detector
read-out are reconstructed as individual points in space; in CSC and DT
chambers, such points are then fitted to track stubs (segments);

2. stand-alone reconstruction: points and segments in the muon spectrometer
are collected and fitted to tracks, referred to as “stand-alone muon tracks”;
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3. global reconstruction: stand-alone tracks are matched to compatible tracks in
the inner tracker and a global fit is performed using the whole set of available
measurements: the resulting tracks are called “global muon tracks”.

Muon identification represents a complementary approach with respect to global
reconstruction: it starts from the inner tracker tracks and flags them as muons by
searching for matching segments in the muon spectrometer. The muon candidates
produced with this strategy are referred to as “tracker muons”.
After the completion of both algorithms, the reconstructed stand-alone, global
and tracker muons are merged into a single software object, with the addition of
further information, like the energy collected in the matching calorimeter towers.
This information can be used for further identification, in order to achieve a balance
between efficiency and purity of the muon sample.

3.3.4 Calorimetry

Identification of electrons, photons, and hadrons relies on accurate calorimetry,
which is a destructive measurement of the energy of a particle. As in most of
the particle physics experiments, a distinction is made between electromagnetic
calorimetry and hadron calorimetry. Electromagnetic calorimetry is based on the
production of EM showers inside a high-Z absorber, while hadron calorimetry
measures the effects of inelastic scattering off heavy nuclei of hadrons, including
production of photons from neutral pions and muons, and neutrinos from weak
decays. Calorimetry must be precise and hermetic also to measure any imbalance
of momenta in the transverse plane which can signal the presence of undetected
particles such as high-pT neutrinos.

Figure 3.13: Cut-away view of the CMS ECAL showing the hierarchical structure
of crystals arranged in supercystals and modules and the orientation of crystals
whose major axis is always directed to the origin of the reference frame. Figure
from [46].

The electromagnetic calorimeter of CMS, ECAL, is a homogeneous calorime-
ter, where the absorber material is the same as the sensitive one [46]. ECAL
is composed of 61,200 lead tungstate (PbWO4) crystals in the barrel region and
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7,324 crystals in the end-caps, as shown in Fig. 3.13. The crystal cross-section is
22×22 mm2 at the front face, while the length is 230 mm. End-caps are equipped
with a preshower detector. PbWO4 was chosen because of its high density, 8.28
g/cm3, short radiation length, 0.89 cm, small Molière radius, 2.2 cm. This way,
the calorimeter can be kept compact with fine granularity, while scintillation and
optical properties of PbWO4 make it fast and radiation tolerant. Signal trans-
mission exploits total internal reflection. Scintillation light detection relies on two
different technologies. Avalanche photodiodes (APD) are used in the barrel region,
mounted in pairs on each crystals, while vacuum phototriodes (VPT) are used in
the end-caps. The preshower detector is a sampling calorimeter composed of lead
radiators and silicon strips detectors, and it is used to identify neutral pions in
the forward region. The nominal energy resolution, measured with electron beams
having momenta between 20 and 250 GeV, is(σE

E

)2

=

(
2.8%√
E

)2

+

(
0.12

E

)2

+ (0.30%)2 (3.4)

where the different contributions are respectively: the stochastic one, due to fluc-
tuations in the lateral shower containment and in the energy released in the
preshower, that due to electronics, digitization and pile-up, and the constant term,
due to intercalibration errors, energy leakage from the back of the crystal and non-
uniformity in light collection.

The hadron calorimeter of CMS, HCAL, is a sampling calorimeter employed
for the measurement of hadron jets and neutrinos or exotic particles resulting in
apparent missing transverse energy [47]. A longitudinal view of HCAL is shown
in Fig. 3.14. The hadron calorimeter size is constrained in the barrel region,
|η| < 1.3, by the maximum radius of ECAL and the inner radius of the solenoid
coil. Because of this, the total amount of the absorber material is limited and
an outer calorimeter layer is located outside of the solenoid to collect the tail
of the showers. The pseudorapidity coverage is extended in the 3 < |η| < 5.2 by
forward Cherenkov-based calorimeters. The barrel part, HB, consists of 36 wedges,
segmented into 4 azimuthal sectors each, and made out of flat brass absorber
layers, enclosed between two steel plates and bolted together without any dead
material on the full radial extent. There are 17 active plastic scintillator tiles
interspersed between the stainless steel and brass absorber plates, segmented in
pseudorapidity to provides an overall granularity of ∆φ×∆η = 0.087×0.087. The
same segmentation is maintained in end-cap calorimeters, HE, up to |η| < 1.6,
while it becomes two times larger in the complementary region. The maximum
material amount in both HB and HE corresponds to approximately 10 interaction
lengths λI . The energy resolution on single electron and hadron jets is shown in
Fig. 3.15.

3.3.5 Trigger and Data Acquisition

High bunch crossing rates and design luminosity at LHC correspond to approxi-
mately 20-25 superimposed events every 25 ns, for a total of 109 events per second.
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Figure 3.14: Cross section of the CMS HCAL showing the tower segmentation.
Figure from [47].

Figure 3.15: Left: ECAL energy resolution as a function of the electron energy
as measured from a beam test. The energy was measured in a 3×3 crystals array
with the electron impacting the central one. The stochastic, noise and constant
terms are given. Right: the jet transverse energy resolution as a function of the
transverse energy for barrel jets, end-cap jets and very forward jets reconstructed
with an iterative cone algorithm with cone radius R = 0.5. Figures from [32].
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The large amount of data associated to them is impossible to store and process,
therefore a dramatic rate reduction has to be achieved. This is obtained with two
steps: the Level 1 Trigger [48] and the High Level Trigger, HLT [49].

The Level 1 Trigger is based on custom and programmable electronics, while
HLT is a software system implemented on a ∼ 1000 commercial processors farm.
The maximum allowed output rate for Level 1 Trigger is 100 kHz, which should
be even kept lower, about 30 kHz, for safe operation. Level 1 Trigger uses rough
information from coarse segmentation of calorimeters and Muon Detectors and
holds the high-resolution data in a pipeline until acceptance/rejection decision
is made. HLT exploits the full amount of collected data for each bunch cross-
ing accepted by Level 1 Trigger and is capable of complex calculations such as
the off-line ones. HLT algorithms are those expected to undergo major changes
in time, particularly with increasing luminosity. Configuration and operation of
the trigger components are handled by a software system called Trigger Supervisor.

The Level 1 Trigger relies on local, regional and global components. The Global
Calorimeter and Global Muon Triggers determine the highest-rank calorimeter and
muon objects across the entire experiment and transfer them to the Global Trigger,
the top entity of the Level 1 hierarchy. The latter takes the decision to reject an
event or to accept it for further evaluation by the HLT. The total allowed latency
time for the Level 1 Trigger is 3.2 µs. A schematic representation of the Level 1
Trigger data flow is presented in Fig. 3.16.

Muon Trigger

All Muon Detectors – DT, CSC and RPC – contribute to the Trigger. Barrel
DT’s provide Local Trigger in the form of track segments in φ and hit patterns in
η. End-cap CSC’s provide 3-dimensional track segments. Both CSC’s and DT’s
provide also timing information to identify the bunch crossing corresponding to
candidate muons. The Local DT Trigger is implemented in custom electronics.
BTI’s, Bunch and Track Identifiers, search for coincidences of aligned hits in the
four equidistant planes of staggered drift tubes in each chamber superlayer. From
the associated hits, track segments defined by position and angular direction are
determined. TRACO’s, Track Correlators, attempt to correlate track segments
measured in DT φ superlayers, enhancing the angular resolution and producing a
quality hierarchy.

The requirement of robustness implies redundancy, which introduces, however,
a certain amount of noise or duplicate tracks giving rise to false Triggers. There-
fore the BTI’s, the TRACO’s and the different parts of the Local Trigger contain
complex noise and ghost reduction mechanisms. The position, transverse momen-
tum and quality of tracks are coded and transmitted to the DT regional Trigger,
called the Drift Tube Trigger Track Finder (DTTF), through high-speed optical
links.

The Global Muon Trigger combines the information from DT’s, CSC’s and
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Figure 3.16: Schematic representation of the Level 1 Trigger data flow.

RPC’s, achieving an improved momentum resolution and efficiency compared to
the stand-alone systems. It also reduces the Trigger rate and suppresses back-
grounds by making use of the complementarity and redundancy of the three Muon
Systems. The Global Muon Trigger also exploits MIP/ISO bits from the Regional
Calorimeter Trigger. A muon is considered isolated if its energy deposit in the
calorimeter region from which it emerged is below a defined threshold. DT and
CSC candidates are first matched with barrel and forward RPC candidates based
on their spatial coordinates. If a match is possible, the kinematic parameters are
merged. Several merging options are possible and can be selected individually for
all track parameters, taking into account the strengths of the individual Muon Sys-
tems. Muons are back-extrapolated through the calorimeter regions to the vertex,
in order to retrieve the corresponding MIP and ISO bits, which are then added to
the GMT output and can be taken into account by the Global Trigger. Finally,
the muons are sorted by transverse momentum and quality to deliver four final
candidates to the GT. The Muon Trigger is designed to cover up to |η| < 2.4.

Global Trigger

The Global Trigger takes the decision to accept or reject an event at Level 1, based
on candidate e/γ, muons, jets, as well as global quantities such as the sums of
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transverse energies (defined as ET = E sin θ), the missing transverse energy vector
/ET , the scalar transverse energy sum of all jets above a chosen threshold (usually
identified by the symbol HT ), and several threshold-dependent jet multiplicities.
Objects representing particles and jets are ranked and sorted. Up to four objects
are available and characterized by their pT or ET , direction and quality. Charge,
MIP and ISO bits are also available for muons. The Global Trigger has five basic
stages implemented in FPGAs: input, logic, decision, distribution and read-out.
If the Level 1 Accept decision is positive, the event is sent to the Data Acquisition
stage.

High Level Trigger and Data Acquisition

The CMS Trigger and DAQ system is designed to collect and analyze the detector
information at the LHC bunch crossing frequency of 40 MHz. The rate of events
to be recorded for offline processing and analysis is of the order of a few 102 Hz.
The first level Trigger is designed to reduce the incoming average data rate to
a maximum of 100 kHz, by processing fast Trigger information coming from the
Calorimeters and the Muon System, and selecting events with interesting signa-
tures. Therefore, the DAQ system must sustain a maximum input rate of 100 kHz,
and must provide enough computing power for a software filter system, the High
Level Trigger (HLT), to reduce the rate of stored events by a factor of 1000. In CMS
all events that pass the Level 1 Trigger are sent to a computer farm (Event Filter)
that performs physics selections, using faster versions of the offline reconstruction
software, to filter events and achieve the required output rate. The various sub-
detector front-end systems store data continuously in 40-MHz pipelined buffers.
Upon arrival of a synchronous Level 1 Trigger Accept via the Timing, Trigger and
Control System (TTCS) the corresponding data are extracted from the front-end
buffers and pushed into the DAQ system by the Front-End Drivers (FED’s). The
event builder assembles the event fragments belonging to the same Level 1 Trigger
from all FED’s into a complete event, and transmits it to one Filter Unit (FU) in
the Event Filter for further processing. The DAQ system includes back-pressure
from the filter farm through the event builder to the FED’s. During operation,
Trigger thresholds and pre-scales will be optimized in order to fully utilize the
available DAQ and HLT throughput capacity.

3.4 Monte Carlo Event Generator and Data se-

lection

3.4.1 Monte Carlo Event Generator

Monte Carlo (MC) event generators provide an event-by-event prediction of com-
plete hadronic final states based on QCD calculation. They allow to study the
topology of events generated in hadronic interactions and are used as input for
detector simulation programs to investigate detector effects. The event simulation
is divided into different stages as illustrated in figure 3.17. First, the partonic
cross section is evaluated by calculating the matrix element in fixed order pQCD.
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The event generators presently available for the simulation of proton-proton colli-
sions provide perturbative calculations for beauty production up to NLO. Higher
order corrections due to initial and final state radiation are approximated by run-
ning a parton shower algorithm. The parton shower generates a set of secondary
partons originating from subsequent gluon emission of the initial partons. It is
followed by the hadronization algorithm which clusters the individual partons into
color-singlet hadrons. In a final step, the short lived hadrons are decayed. In the
framework of the analysis presented here, the MC event generator PYTHIA 6.4
[rif.] is used to compute effciencies, kinematic distributions, and for comparisons
with the experimental results. This programs were run with its default parameter
settings, except when mentioned otherwise.

Figure 3.17: Schematic view of the subsequent steps of a MC event generator:
matrix element (ME), parton shower (PS), hadronization and decay.

PYTHIA

In the PYTHIA program, the matrix elements are calculated in LO pQCD and
convoluted with the proton PDF, chosen herein to be CTEQ6L1. The mass of
the b-quark is set to mb = 4.8 GeV. The underlying event is simulated with the
D6T tune [rif.]. Pile-up events were not included in the simulation. The parton
shower algorithm is based on a leading-logarithmic approximation for QCD radia-
tion and a string fragmentation model (implemented in JET-SET [rif.]) is applied.
The longitudinal fragmentation is described by the Lund symmetric fragmenta-
tion function [rif.] for light quarks and by the Peterson fragmentation function for
charm and beauty quarks. The parameters of the Peterson fragmentation function
are set to εc = 0.05 and εb = 0.005. In order to estimate the systematic uncer-
tainty introduced by the choice of the fragmentation function, samples generated
with different values of εb are studied. The hadronic decay chain used in PYTHIA
is also implemented by the JETSET program. For comparison, additional event
samples are generated where the EvtGen [rif.] program is used to decay the b-
hadrons. EvtGen is an event generator designed for the simulation of the physics
of b-hadron decays, and in particular provides a framework to handle complex
sequential decays and CP violating decays.

40



3.4.2 Data selection

Here we briefly summarize the general slections on muons and jets in the data.
As we have seen a track is associated to a muon. The quality of this track is
associated with the number of hits in the detector and and the goodness of the fit
that adapts the trajectory. Now we elencate the features of the track associated
with a muon to pass the selection:

• at least 12 hits in the inner silicon tracker,

• |ηµ| < 2.1

• pµT > 3 GeV

• the χ2/ndf of the fit of the trajectory in the inner tracker is at least 2,

• the χ2/ndf of the fit of the global track of the muon is at least 10,

• the number of muon chambers with matched segments is at least 2.

For jets instead the general selection is:

• pjetT > 10 GeV,

• |ηjet| < 2.6.

These are the general selections for muons and jets. They can be modified in
the analysis, when it happen it will be specified.
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Chapter 4

Pile Up analysis

4.1 Introduction

At LHC the expected luminosity at the nominal centre of mass energy of
√
s = 14

TeV is about 1034 cm−2 s−1 ; this involves a great number of primary vertices
for every collision of the beams, this is the pile up problem. Even at smaller
luminosities pile up effect are sizeable. It’s clear that if we are interested to a
particular channel, like in this analysis on dimuon pairs from pp→ µµX, we need
that the muons arrive from the same vertex. In this section we want to evaluate
the pile up effect and then subtract it for the dimuonic analysis.

Pile up (PU) was rejected in the measurement of bb̄ cross section [riferimento]
by requiring that the pair of muons arrived from the same reconstructed vertex.
However, for our analysis we initially consider all the couples of muons for each
even: if there are more than two muons in the event, we consider all the possible
combinations.

In the analysis algorithm every muon is associated with a track, and the track
is associated with the nearest vertex, chosing that with the smallest impact pa-
rameter.

We take only muons with pT > 4 GeV, to masimize our statistics moving as
much as possible from the turn on curve of the trigger (trigger cuts at 3 GeV).
Muon tracks are associated with a vertex only if the impact parameter along the
transverse plane is less then 1 cm. This is because it’s very diffcult that a muon
with a track with an impact parameter grater than 1 cm may come from that
vertex, even taking into account that the algorythm has an inherent error in the
valutation of the vertex position and of the track. In presence of jets, we take events
with pjetT > 5 GeV. It’s a very low theresholds for jets transverse momentum, so
to have maximal statistic for our analysis.

In this analysis we have initially three samples of data linked to three periods.
In particular we have the follow dataset:

• November 2010, with about 6 millions of events (L ∼ 0.2 · 1032 cm−2 s−1);

• May 2011, with about 5.5 millions of events (L ∼ 1032 cm−2 s−1);

• August 2011, with about 1.5 millions of events (L ∼ 2 · 1032 cm−2 s−1).
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Because the luminosity increases with time, we expect that the effect of PU
is more important in the late 2011 data. In particular we are interested to the
difference between the impact parameters for two muons along z axis, ∆z. If we
call V1 and V2 the positions of vertices along z axis, and z1, z2 the positions of the
intersections, along z axis, of the muon tracks and the beam line (see figure 4.1a),
we can define

∆z = (z1 − V1)− (z2 − V2) = z1 − z2 − (V1 − V2). (4.1)

Note that in the n-tuples are present zi − Vi and Vi, not zi.

(a) Definition of Vi and zi. (b) Definition of δz.

Figure 4.1: Muon tracks are shown in blue. The zero comes from the geometry of
the detector.

We can plot the ∆z distributions for each pairs of muons for all the dataset;
in particular we plot three cases that we are able to distinguish:

1. ∆z for all the pairs of muons;

2. ∆z for the case in which the muons arrive from same vertex ;

3. ∆z for the case in which the muons arrive from different vertices.

We show all in Figure 4.2. From these figures we can see that there are no
particular differences between the three datasets, the shape of distributions is
always the same, with a peak on the mean at ∆z = 0. Now, from definition (4.1),
it’s evident that the distributions of ∆z for the case same and different vertices
can’t be different. This is because the distributions of the impact parameters zi−Vi
are the same for i = 1, 2, so it’s indifferent if the vertex is the same or not.

4.1.1 New variable : δz

To understand the pile-up effect, it’s necessary to define a new variable that can
distinguish the cases of muons coming from same and different vertices. A possible
candidate is the distance, projected along z-axis, between the tracks associated
with the muons (figure 4.1b):

δz = ∆z + V1 − V2 = z1 − z2. (4.2)
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Figure 4.2: Distribution of ∆z. First row are data from November 2010, the second
from May 2011 and the third from August 2011. First column is for all the pairs of
muons, the second for muons from same vertex, the third for muons from different
vertices.

If the muons come from same vertex δz = ∆z. We plot this variable as previous
by ∆z in figure 4.3.

As anticipated, there are no differences with ∆z for the case of muons from
the same vertex. Instead for the case of muons from different vertices we have
a new shape (third column in figure 4.3). The peculiar shapes of the different
vertex case can be explained as follows. First, there is an increase of the number
of events until this number falls close to the mean. To explain this increase we
remember that if there are many primary vertices (PV), it’s easier to find closer
pairs of vertices. But in this case muons from the same vertex could be associated
with different vertices, causing the increase similar to same vertex case.

To explain the dip close to zero we note, first of all, that the dip is like a
reversed peak similar to same vertex case. This fact leads us to believe that the
fall is due to the resolution of our analysis algorithm: it doesn’t distinguish vertices
very close together, reducing them to only one vertex. An important observation
is that the reconstruction algorithm of the vertices is different between data 2010
and 2011. That’s the principal cause for the differences between plots in the third
column in figure 4.3. In particular, plot of the 2010 has a larger hole in the centre
of distribution.
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Figure 4.3: Distribution of δz. First row are data from November 2010, the second
from May 2011 and the third from August 2011. First column is for all the pairs of
muons, the second for muons from same vertex, the third for muons from different
vertices.
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4.2 Checks

4.2.1 PV number VS run number.

First we can analize in 2-dimensional plots the number of primary vertices (PVnum-
ber) in the samples as a function of the run numbers (runNumber). The run
determines the period of data taking, it is increasing with time and accordingly
with luminosity. We can do this control for all the samples; we expect that the
PVnumber increase with runNumber and that there are more events for higher
runNumber (because of luminosity).

As we can see from figures 4.4, 4.5 and 4.6, the number of PV increases with
time, as we expected, in particular PVnumber is about 15 for November 2010
(Figure 4.4), instead for the other two is about 20. Within the same period there
is a tendence of increase of the number of PV as a funcion of runNumber.

Finally we note that the case with all the pairs of muons are very similar with
the case of muons from same vertex, because the number of pairs of muons from
different vertices is significantly lower. Nevertheless also the cases of muons from
different vertices have a similar behavior. Maybe we could expect to observe a
greater number of PV in this last case; to better understand the behavior of the
case of different vertices we refer to next check.

(a) All pairs of muons. (b) Muons from same vertex.

(c) Muons from different vertices.

Figure 4.4: Distributions PVnumber VS runNumber from November2010.
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(a) All pairs of muons. (b) Muons from same vertex.

(c) Muons from different vertices.

Figure 4.5: Distributions PVnumber VS runNumber from May 2011.

(a) All pairs of muons. (b) Muons from same vertex.

(c) Muons from different vertices.

Figure 4.6: Distributions PVnumber VS runNumber from August 2011.
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4.2.2 Checks on muons from different vertices.

In this section we consider the cases of muons from different vertices, in particular
we are interested to examine the relation between the percentage of events of
couple of muons from different vertices with the number of PV or the run number.
From the previous plots (figures 4.4, 4.5 and 4.6), we can calculate the percentage
of events from different vertices as a function of PVnumber or runNumber, for all
the samples; see figure 4.7

From the plots a dependence on PVnumber is evident, in particular the per-
centage of events from different vertices increases with the presence of an high
number of PV. That’s reasonable because if there are more vertices, it’s more likely
that muons come from different vertices. A similar behavior is not observed for
the dependence on the run number, where the percentage remains fairly constant.
We will expect that the percentage increase with run number but into the same
period of data taking there is no this behaviour. However the means of percentage
grow between 2010 and 2011. We have in effect a mean 2.5 % for 2010, and for
2011 it’s about 4.9 %. This is in agreement with the increase of the luminosity
between 2010 and 2011.
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Figure 4.7: The percentages of events of muons from different vertices as a function
of the PVnumber (on the left) and as a function of the runNumber (on the right).
First row is for November 2010, the second for May 2011, the third for August
2011.
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4.2.3 δz VS PVnumber

Now we can evaluate the consistency of previous check. We take the distributions
of δz as a function of PVnumber for the period of August 2011, figure 4.8, other
periods are similar.

(a) All pairs of muons. (b) Muons from same vertex.

(c) Muons from different vertices.

Figure 4.8: Distributions of δz VS PVnumber for data from August 2011.

Note that the δz distribution is wider in the case with all the events because
of the contribution from muons from different vertices, and it has a concentration
of events for δz = 0 due to the muon from same vertex. At this point we can cut
this plots for each PVnumber and evaluate the RMS of the distributions. In this
way we have an idea of the effect of the presence of muons from different vertices
on the distribution. We plot, for the three periods, all the distributions in figure
4.9.

From the plots we can see that the RMS are very large for the case of different
vertices; this fact, summed with the increase of the percentage of muons from
different vertices with the increase of PVnumber, discussed in the previous section,
involves an increase of the RMS at the same way for the case of all the pairs of
muons (first column of plots in figure 4.9), as its logical conseguence.

4.3 Estimate of events from Pile Up.

Now we are ready to estimate the PU effect on our datasets. In paticular we can
evaluate the number of PU events in each periods of data taking. We are able to
distinguish the charge of the muons, so we can estimate the PU effect for these
cases:
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Figure 4.9: Distribution of RMS. First row are data from November 2010, the
second from May 2011 and the third from August 2011. First column is for all the
pairs of muons, the second for muons from same vertex, the third for muons from
different vertices.

• All pairs of muons;

• Two muons of opposite charge sign (OS);

• Two muons of same sign, both positive or negative (SS+ or SS−).

We take these distributions and fit them to evaluate the PU effect. The fits
are performed using the sum of a relativistic Breit-Wigner function, a Gaussian
function, two exponential functions and a zero-order polynomial function (a con-
stant):

f(x) =
k

(x2 − µ2)2 + x2γ2
+ A e−

1
2(x−µσ )

2

+ k1 e
−α1|x| + k2 e

−α2|x| +B. (4.3)

This is a fit with 10 parameters:
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• k, A, k1, k2 are the constants for the amplitude of the functions;

• µ is the mean for Gaussian and Breit-Wigner functions;

• γ is the resonance width of the Breit-Wigner function;

• σ is the standard deviation of the Gaussian function;

• α1, α2 are the coeffcients on the exponents for the exponential functions;

• B is the zero-order polynomial function.

We plot the histograms of the distributions of δz in the various cases with the
resulting fit functions: first all the pairs of muons (figure 4.10), then separating by
the charge relation (figure 4.11). Note that plots are in logarithmic scale.

(a) Fit for November 2010. (b) Fit for May 2011. (c) Fit for August 2011.

Figure 4.10: In red fits for the case of all the pairs of muons in the three periods
of data taking.

To evaluate the goodness of the fits we use the χ2/ndf criterion; as we can see
in the tables included in the plots, it assumes values in the range 1.01÷1.36 .
We consider these results good for our purposes. We can use the parameter B to
evaluate the fraction of PU events in the range (in centimeters) −1 ≤ δz ≤ 1,
where most of the correlated muon events take place. The parameter B measures
the level of flat ” background” because it is a straight line parallel to the axis of
abscissas. Multiplyng B for the width of the range, 2 cm, we have a estimation
of the number of PU events. As we are interested in the percent fraction of PU
events, we need to determine the total number of events in the same interval, as
given by the integral of the histogram in that range.

At this point we can summarize the fractions of PU events in our samples, in
the case of all the pairs of muons taken indiscriminately or for each period, or by
separating charge; see Table 4.1.

From this table we see that the case SS+ has a fraction of PU always greater
then the case SS−, in all the periods. In Table 4.2 we report these differences.

Note that the errors for August 2011 are greater because of a lower dataset size.
From Table 1 we confirm that in 2010 we have less PU events respect to 2011, as we
expected because of the increases of luminosity. Another consideration is that the
fraction of PU events for the OS case is always less then the others. To explain it,
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Figure 4.11: Fits for the trhee periods of data taking. In this case we have divided
by muon charge: muons of opposite sign chargeOS (µ+µ−), muons of same positive
sign SS+ (µ+µ+), muons of same negative sign SS− (µ−µ−) .

we remember that the PU events are accidentally distribuited for the case SS+,
SS− and OS , but the correlated OS events are much more frequent than the
cases SS, because we are in presence of the signal of pp→ bb̄X that has evidently
an high presence of opposite sign muons (b and b̄ decay tipically in OS muons).
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Fraction of PU events (%) percent error

ALL
Nov. 2010 0.2497±0.0048 1.94
May 2011 0.3184±0.0031 0.98
Aug. 2011 0.3014±0.0053 1.75

Nov. 2010
OS 0.1316±0.0040 3.01
SS+ 0.5156±0.0214 4.15
SS− 0.4406±0.0200 4.54

May 2011
OS 0.2393±0.0029 1.23
SS+ 0.7165±0.0165 2.30
SS− 0.6694±0.0160 2.40

Aug. 2011
OS 0.2428±0.0050 2.07
SS+ 0.6208±0.0317 5.10
SS− 0.5893±0.0311 5.28

Table 4.1: Percentages of PU events and their errors.

Period Absolute difference Relative difference (%)
Nov. 2010 (7.51±2.93) 10−4 14.56±5.25
May 2011 (4.71±2.30) 10−4 6.57±3.10
Aug. 2011 (3.14±4.44) 10−4 5.07±6.97

Table 4.2: Differences between SS+ and SS− cases.
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4.4 Further Checks

To overcome the PU problem usually is imposed (by algorithms in the analysis
stage) that muons come from same vertex. In this case we take events with two
muons and no more. Both muons have to pass our selections, the same as the
previous analysis. As we have seen if muons come from the same vertex then
∆z = δz. So we plot the variable ∆z for our samples (Figure 4.12). We compare
with a Montecarlo (MC) simulation sample of about 800 000 events generated
without PU. As we can see the distributions are really similar to the previous, as
we expected because they are a subsample of them. MC has the same shape.

(a) November 2010. (b) May 2011.

(c) August 2011. (d) Simulated events by MC.

Figure 4.12: Distributions of ∆z for events with only two muons from the same
vertex.

To better understand this distributions we can study their dependence on the
PVnumber. In fact we have two muons from same vertex but the number of
primary vertices in the event is independent. We report the distributions in figure
4.13.

To make considerations more appropriate we divide these histograms in some
ranges in number of primary vertices. In particular the ranges are choosen to have
an approximately equal number of entries. Therefore we use this convention: the
first range is in black, the second in red , the third in green and the fourth in
blue. In figure 4.14 these plots are represented in logarithmic scale; for the MC
sample there are only two ranges because the first is very populated respect the
rest. In table 4.3 we report the ranges for our samples divided for number of
primary vertices.

Analyzing the plots in figure 4.14 we can see that the distributions of the range
are overlapped, and this is consistent with the fact that the distribution of ∆z
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(a) November 2010.
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(b) May 2011.
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(c) August 2011. (d) Simulated events by MC.

Figure 4.13: Distributions of ∆z VS PVnumber for events with only two muons
from the same vertex.

Sample range black range red range green range blu
November 2010 [1; 1] [2; 2] [3; 3] [4; 11]

May 2011 [1; 2] [3; 4] [5; 6] [7; 18]
August 2010 [1; 3] [4; 5] [6; 7] [8; 18]

MC [1; 1] [2; 5] - -

Table 4.3: The ranges for each sample; here the colors for each range are
specified.

does not depend on the number of primary vertices. Moreover the distributions
of real data are well represented by MC simulation, in fact the shapes are very
similar. As anticipated MC simulation doesn’t present pile up effect, almost all
entries are in effect in the case of only one primary vertex.
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(c) August 2011. (d) Simulated events by MC.

Figure 4.14: Projections of the plots in figure 4.13.
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Chapter 5

Angular resolution of the
B-direction

5.1 Introduction

As explained before [2.3.2] we deduce the flavour of the B-hadron at its decay time
from the charge of the muon produced in the direct decay process B → µνµX. A
positive (negative) charge muon tags a B (B̄) particle. With a sample of events
consisting only of couples of muons from direct B decays we would compute χ̄ from
the rate of equal charge pairs in the overall sample:

χ̄ =
N(µ+µ+) +N(µ−µ−)

N(µµ)
.

Muons however are often produced from background processes: this makes the
measurement more complicated and dilutes the precision of the result. In analyzing
a sample of 281 342 simulated MonteCarlo events, we tag muons in several different
classes according to the mechanism of their production:

1. primary B decays (B → µνµX), corresponding to muons produced in the
semileptonic decay of a B hadron,

2. primary C decays (C → µνµX), where the muon comes from the semileptonic
decay of a charm hadron produced in the pp collision,

3. prompt muons, either charged hadrons punching through the detector up to
the muon chambers, or muons from charmonium or bottomonium decays,

4. muons from the decay in flight of a charged pion or kaon

5. sequential B decays, where the muon comes from the semileptonic decay of a
charm hadron or the leptonic decay of a tau lepton produced in the B-hadron
decay,

6. fake, where there is no relation between the track reconstructed and the
particle produced at the generation stage.
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Muons from class 5 are the most dangerous, because in most of the cases the
relation between the charge of the muon and the flavour of the original B. We can
distinguish the backgrounds (classes 2 to 5) from the signal (class 1) by analysing
the kinematic properties of the observed particles.

Due to the larger mass, B hadrons inherit a more sizeable fraction of the en-
ergy of the parton they come from, which is described by a harder fragmentation
function as compared to that of the other quarks. As a consequence, the momen-
tum of the muons produced in the primary B-decay is on average larger than for
background events. The cut on the lepton pT therefore naturally enhances the
signal.

In addition we exploit jet information to improve background rejection as done
for instance in the LEP experiments. In the rest frame of the decaying hadron,
the lepton momentum can be as large as half of the mass of the decaying particle.
Therefore, the momentum of signal muon in the parent rest frame can be as large
as about 2.5 GeV, to be compared to about 0.9 GeV for muons from charm or
tau decays (Class 2 and 5). However we observe the event in the laboratory
frame, where the parent hadron has a considerable Lorentz boost. To disentangle
signal from background, therefore, we need to compare projection of the lepton
momentum in the direction ortogonal to the parent hadron boost. As we do not
fully reconstruct the parent hadron, we consider instead the jet connected to it.

When a hard parton is produced at LHC the observable particles produced in
the fragmentation and decays of the original parton are emitted within a narrow
cone centered around the original parton direction. This flow of collimated parti-
cle is referred to as a jet. Jets are reconstructed with high efficiency in CMS with
a particle flow algorithm which exploits at best the detector information. The
jet momentum is obtained from the vector sum of the momenta of the particles
assigned to it. Its direction represents the direction of the original parton. There-
fore, to separate signal muon from the background, one could use the variable pinT
corresponding to the muon muomentum computed in the direction perpendicular
to the jet main axis. It turns out that background rejection improves if the muon
is first removed from the jet and the projection is computed with reference to the
axis of the jet obatined without the muon contribution. This variable is called
poutT .

Qui mettere e citare un paio di plot che mostrano ptrel e
ptout per le varie categorie. fatto aiutare da Luca o Jacopo.

The spectra of poutT depend on several factor, as the decay and fragmentation
proprties of the particles considered. The following sections describe the means by
which we compare the resolution in the definition of the jet axis in the data and
in the simulation.

In our analysis we consider the decay of a B hadron into a muon, B → µX.
We want to determine the angular resolution in the measurement of the B-direction;
we compare the direction of the B-jet with that obteined from the line joining the
primary to the secondary vertex (B-”flight” direction).

We consider initially a sample of MC simulated events, then we compare it
with a sample of real data from 2010. From this analysis it’s possible to obtain a
systematic uncertainty for the analysis of time integrated mixing probability. The
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number of MC simulated events is 281 342 events whilst the events in 2010 data
sample are 1 182 197.

Due to efficiency of reconstruction of muons and jets and to the necessity to
have a good statistic, we impose the following theresholds in pT :

• pµT > 4 GeV,

• pjetT > 10 GeV.

5.2 Analysis of MC sample

5.2.1 Definitions

Now we define some quantities for the current analysis:

• ηtrue and φtrue : pseudorapidity and azimuthal angle of the particle generated
by MC (this is the “MC truth”);

• ηjet and φjet : pseudorapidity and azimuthal angle of the jet axis produced
by the decay;

• ηsv and φsv : pseudorapidity and azimuthal angle of the primary vertex to
secondary vertex direction .

Note that there are ηsv and φsv only if the secondary vertex (SV) is present, i.e.
if we are able to reconstruct the SV. For the ηjet and φjet the definition is more
general: a jet can be present also when there isn’t a reconstructed SV.

From these definitions we can determine the resolutions as:

• ∆ηjet = ηjet − ηtrue ;

• ∆φjet = φjet − φtrue ;

• ∆ηsv = ηsv − ηtrue ;

• ∆φsv = φsv − φtrue .

Also in this case ∆ηsv and ∆φsv are determined only if SV is present.
There’s an important consideration to do: jet axis direction can be defined in

two cases. The first one is when muon momentum is included into the jet momen-
tum (jet with muon). The second when the muon momentum is subtracted from
the jet momentum (jet without muon). Obviously we expect that the resolution
for the first case is better than the second because subtracting the muon from the
jet we loose information. Nevertheless it’s very interesting to study also the second
case because it was seen (riferimento?) that an important discriminator between
the various decay channels for the b quark is the ptout, i.e. the transverse momen-
tum of the muon respect to the direction of the jet axis when muon momentum is
subtracted.
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5.2.2 MC distributions

Now we report the ∆ηjet and ∆φjet distributions as a function of the jet energy
(Ejet), in the two cases with or without muon momentum inside the jet momentum
(Figure 5.1). From these plots it’s evident that the resolution improves when the
jet energy is high; this is because the jet is more collimates if its energy is higher,
as we expect. We show the distribution of ∆ηsv and ∆φsv as a function of the
flight length (Lflight) of the hadron decaying (Figure 5.2), recalling that these can
be defined only in SV presence, thence the smaller number of entries compared to
the previous case. Resolutions in this case are better if the flight length is greater.
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(a) ∆ηjet vs Ejet, Jet with muon.

Ejet [GeV]
20 40 60 80 100 120 140 160 180 200

φ
∆

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Entries  156337
Mean x   43.49
Mean y  -0.0002611
RMS x   30.09
RMS y  0.08729
Integral   1.532e+05

Entries  156337
Mean x   43.49
Mean y  -0.0002611
RMS x   30.09
RMS y  0.08729
Integral   1.532e+05

0

20

40

60

80

100

120

140

160

180

200

 Jet vs  Ejet(all, Jet with Muon)φ∆

(b) ∆φjet vs Ejet, Jet with muon.
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(c) ∆ηjet vs Ejet, Jet without muon.
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(d) ∆φjet vs Ejet, Jet without muon.

Figure 5.1: ∆ηjet and ∆φjet distributions for the case with all the events.
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(a) ∆ηsv vs Lflight.
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(b) ∆φsv vs Lflight.

Figure 5.2: ∆ηsv and ∆φsv distributions, they are only in presence of SV. They
don’t depend on the presence of the muon inside jet.

It’s possible to select for ∆ηjet and ∆φjet the cases in which the SV is present.
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In this case we expect that the resolution is better than the case with all the events.
We plot this case in Figure 5.3.
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(a) ∆ηjet vs Ejet, Jet with muon.
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(b) ∆φjet vs Ejet, Jet with muon.
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(c) ∆ηjet vs Ejet, Jet without muon.
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(d) ∆φjet vs Ejet, Jet without muon.

Figure 5.3: ∆ηjet and ∆φjet distributions for the case in presence of SV.

To get an idea of the value of the resolution in all these cases we can project
the previous plots in one-dimensional plots, then we can take the RMS widths and
compare them. It’s only a rough estimation of the resolution but for our purposes
it’s sufficient because now we are only concerned that the distributions follow our
predictions.

In Figure 5.4 and 5.5 we report the one-dimensional distributions. In Table 5.1
the RMS widths are reported.

ALL SV
RMS ∆η RMS ∆φ RMS ∆η RMS ∆φ

Jet with muon 0.089 0.088 0.063 0.064
Jet without muon 0.109 0.104 0.084 0.086
Flight direction - - 0.054 0.055

Flight direction (cut at 0.75 cm) - - 0.043 0.045

Table 5.1: RMS widths for the case with all the event and in presence of SV.

As expected (table 5.1) the RMS values are smaller for jet with the muon
momentum inside respect to outside. Another consideration is that resolutions
are better if we consider the events in presence of SV, i.e. for events with a re-
constructed SV (this is because efficiency reconstruction increases for larger jet
energy).
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Figure 5.4: ∆ηjet and ∆φjet one-dimensional distributions for the case with all the
events.

Finally we can see that the resolutions for the PVtoSV direction (flight direc-
tion) are better then the others. In this case we have also applicated a cut, choosing
events with Lfligth > 0.75 cm and reported it in the table 5.1. The resolution
in this case is better, as we expect because the efficiency of SV reconstruction
increases for larger flight lenght.
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Figure 5.5: One-dimensional distributions for the case in presence of SV
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5.2.3 New definitions for the analysis of real data.

The previous definitions of ∆η and ∆φ were suitable only for a MC sample, be-
cause we don’t know the real direction of the decaying hadron in a real data
sample. However we can reconstruct the decay vertices and determine the flight
direction (PVtoSV direction). We also know the jet momentum (and the muon
momentum), so we know its axis. At this point we can define, in analogy with
previous definitions, new ∆η and ∆φ, this time for MC and real data events:

∆η = ηjet − ηsv; (5.1)

∆φ = φjet − φsv. (5.2)

Also in this case we consider jet direction with or without the muon momentum;
the presence of SV is necessary in all the cases. In this section we analyze the MC
distributions for ∆η and ∆φ, then we will proceed with data. This time we plot
the distribution of ∆η and ∆φ as a function of jet energy or length flight. We
start in Figure 5.6 with the case of muon momentum inside the jet momentum.
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(a) ∆η vs Ejet.
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(c) ∆η vs Lflight.
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(d) ∆φ vs Lflight.

Figure 5.6: ∆η and ∆φ distributions for jet with muon.

Plots are as expected, at high jet energy or length flight the resolution improves.
We plot the 1D-distribution to evaluate the RMS (Figure 5.7).

For MC sample it’s possible to separate muons from the decay B → µX, that
we define muons of class 1, from the other decays like B → C → µX or C → µX
and others that we have already defined. We can do the previous analysis for class
1 muons, see Figure 5.8 and Figure 5.9.

We repeat the same analysis for the case in which muon momentum is sub-
tracted from jet momentum (case jet without muon). We begin with the distri-
butions of ∆η and ∆φ for all the events (always in presence of SV because the
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Figure 5.7: ∆η and ∆φ 1D distributions for jet with muon.
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(b) ∆φ vs Ejet.
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(c) ∆η vs Lflight.
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(d) ∆φ vs Lflight.

Figure 5.8: ∆η and ∆φ distributions for jet with muon, class 1 muons.

definitions of ∆η and ∆φ) in Figure 5.10 and 5.11. Then we pass to the case of
class 1 muons, Figure 5.12 and 5.13.

We summarize these results in the Table 5.2 .
Only one consideration about this table: the RMS widths are always greater

in the case of muon from class 1.
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(a) ∆η, 1D distribution.
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Figure 5.9: ∆η and ∆φ 1D distributions for jet with muon, class 1 muons.
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(a) ∆η vs Ejet.
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(b) ∆φ vs Ejet.
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(c) ∆η vs Lflight.
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(d) ∆φ vs Lflight.

Figure 5.10: ∆η and ∆φ distributions for jet without muon.

ALL Class 1
RMS ∆η RMS ∆φ RMS ∆η RMS ∆φ

Jet with muon 0.0642 0.0657 0.0677 0.0688
Jet without muon 0.0797 0.0822 0.0847 0.0872

Table 5.2: RMS values for ∆η and ∆φ distributions.
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(a) ∆η, 1D distribution.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

200

400

600

800

1000

 jet-PVtoSV, without muonφ∆

Entries  40332

Mean   -0.0001209

RMS    0.08224

Integral  3.992e+04

 jet-PVtoSV, without muonφ∆

(b) ∆φ, 1D distribution.

Figure 5.11: ∆η and ∆φ 1D distributions for jet without muon.
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(a) ∆η vs Ejet.
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(b) ∆φ vs Ejet.
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(c) ∆η vs Lflight.
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(d) ∆φ vs Lflight.

Figure 5.12: ∆η and ∆φ distributions for jet without muon, class 1 muons.
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(a) ∆η, 1D distribution.
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Figure 5.13: ∆η and ∆φ 1D distributions for jet without muon, class 1 muons.
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5.2.4 Some checks

Now we are interested into the distributions of muons from class 1 in our MC
sample, with the aim to verify the presence of any anomalies. We take the distri-
butions in presence of SV and in the case of the class 1 muons, then we compare it
and calculate the percentage of muon from class 1 as a function of Lflight (Figure
5.14).
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Figure 5.14: Comparison SV-class1 for Lflight

The most interesting check is the poutT distribution. We can see it in Figure
5.15.

We now compare the case SV and class 1 in Figure 5.16. As we can see the
class 1 distribution has a higher mean , this because muons from direct B hadron
decay have a higher momentum. The percentage of class 1 muons is about 90 %
from about 2 GeV forward.
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Figure 5.15: Distribution of poutT for MC sample.
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Figure 5.16: Comparison SV-class1 for poutT
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5.3 Real data analysis

Defined ∆η and ∆φ as in (5.1) and (5.2), we can repeat the previous analysis for
a sample of real data from November 2010. Initially we take the case with muon
momentum inside jet momentum. In Figure 5.17 we plot the resolutions ∆η and
∆φ and their 1D projections in Figure 5.18.
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Figure 5.17: ∆η and ∆φ distributions for jet with muon, data 2010.
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Figure 5.18: ∆η and ∆φ 1D distributions for jet with muon, data 2010.

Then we plot in Figure 5.19 and 5.20 the same variables but for the case of
muon momentum subtracted from jet momentum. In Table 5.3 we can summarize
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the RMS widths for MC and real data, obviously RMS values for class 1 in MC
haven’t a corrispondence with data.
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Figure 5.19: ∆η and ∆φ distributions for jet without muon, data 2010.
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Figure 5.20: ∆η and ∆φ 1D distributions for jet without muon, data 2010.

Also in this case real data have a greater RMS, as we expected. As a control
on our sample we can see the poutT distributions for all muons and for muons in
presence of SV, see Figure 5.21.

Now we are interested to evaluate the smearing (i.e. the differences in reso-
lutions) between data and MC. We take the plots of the resolution ∆η and ∆φ
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Jet with muon Jet without muon
RMS ∆η RMS ∆φ RMS∆η RMS ∆φ

MC 0.0642 0.0657 0.0797 0.0822
DATA 2010 0.0704 0.0693 0.0837 0.0841
MC class 1 0.0677 0.0688 0.0847 0.0872

Table 5.3: RMS values for MC and Data 2010.
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Figure 5.21: The poutT distributions. As in the MC case poutT is larger for the second
case.

as a function of the jet energy for MC and data in the case of jet with muon,
Figure 5.6a, 5.6b, 5.17a and 5.17b. We separate the distributions in four regions
of energy. The energy ranges are [10; 19.5] GeV, [19.5; 29] GeV, [29; 49.9] GeV
and [49.9; 200] GeV. We fit the histograms with a sum of two Gaussian functions;
in principle the fit function can be expressed by

f(x) = N

[
f

σ1

√
2π

e
− 1

2

(
x−µ
σ1

)2

+
1− f
σ2

√
2π

e
− 1

2

(
x−µ
σ2

)2
]
. (5.3)

where f is the fraction of events under one Gaussian function. In this case we
define an overall σ

σ =
√
f σ1

2 + (1− f) σ2
2. (5.4)

That leads

f =
σ2 − σ2

2

σ1
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2
. (5.5)

At this point we extract σ directly from the fit:
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It has 5 free parameters:

• N is the normalization,

• µ the mean of two Gaussian functions,
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• σ1
2 and σ2

2 variances of the Gaussian functions,

• σ2 is the overall variance of the sum of two Gaussian functions.

We use a likelihood fit for each region. From Figure 5.22 to Figure 5.25 we can
see fit and residual plots for ∆η and ∆φ in MC and data samples.

Similarly we can plot for the case of jet without muon (from Figure 5.26 to
5.29).

Fits are not bad for our purposes, there are some discrepancies only near the
mean as we can see in residual plots. We can define the smearing as

s =
√
σData2 − σMC

2. (5.7)

Now we summarize all in tables 5.4, 5.5, 5.6 and 5.7 for all the cases.

Energy range [GeV] σData · 10−4 σMC · 10−4 s·10−4

[10; 19.5] 1011 ±9 921 ±14 417 ±38
[19.5; 29] 795 ±5 714 ±9 350 ±22
[29; 49.9] 684 ±3 630 ±6 266 ±16
[49.9; 200] 616 ±3 537 ±5 302 ±11

Table 5.4: Case jet with muon, ∆η.

Energy range [GeV] σData · 10−4 σMC · 10−4 s·10−4

[10; 19.5] 975 ±10 948 ±16 228 ±79
[19.5; 29] 776 ±6 730 ±9 263 ±31
[29; 49.9] 671 ±3 635 ±6 217 ±20
[49.9; 200] 616 ±3 559 ±5 259 ±13

Table 5.5: Case jet with muon, ∆φ.

Energy range [GeV] σData · 10−4 σMC · 10−4 s·10−4

[10; 19.5] 1165 ±10 1106 ±16 366 ±58
[19.5; 29] 961 ±5 907 ±9 318 ±30
[29; 49.9] 824 ±3 784 ±6 254 ±21
[49.9; 200] 723 ±3 664 ±5 286 ±14

Table 5.6: Case jet without muon, ∆η.

We can see from tables that σData is always larger than σMC , as we expected
from definition (5.7).
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Energy range [GeV] σData · 10−4 σMC · 10−4 s·10−4

[10; 19.5] 1158± 10 1147± 17 159± 142
[19.5; 29] 962± 5 944± 10 185± 57
[29; 49.9] 827± 3 794± 6 231± 23
[49.9; 200] 732± 3 694± 6 233± 20

Table 5.7: Case jet without muon, ∆φ.
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Figure 5.22: Fits and residual plots for ∆η for jet with muon, MC.
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Figure 5.23: Fits and residual plots for ∆φ for jet with muon, MC.
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Figure 5.24: Fits and residual plots for ∆η for jet with muon, Data 2010.
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Figure 5.25: Fits and residual plots for ∆φ for jet with muon, Data 2010.
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Figure 5.26: Fits and residual plots for ∆η for jet without muon, MC.
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Figure 5.27: Fits and residual plots for ∆φ for jet without muon, MC.
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Figure 5.28: Fits and residual plots for ∆η for jet without muon, Data 2010.
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Figure 5.29: Fits and residual plots for ∆φ for jet without muon, Data 2010.
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5.4 Further checks

5.4.1 A comparison between Data and MC

Here we want to do some checks to compare the MC and Data distributions, in
particular we are interested to understand if there are differences as a function
of flight length (Lflight) of the decaying hadron. If we call L the Lflight, we can
separate and plot the distributions for L > 1 cm or L < 1 cm. Then we compare
Data with MC distributions, also in this case evaluating the RMS. In particular
we expect two things:

1. RMS of Data are larger than MC, as always;

2. RMS in case of L > 1 cm are smaller then in case L < 1 cm, because the
resolutions are better for L > 1 cm.

We plot ∆η and ∆φ for all the cases, jet with or without muon, from Figure 5.30
to Figure 5.33.

In Table 5.8 and 5.9 we resume the RMS for the ∆η and ∆φ distributions.

L < 1 cm L > 1 cm

RMS ∆η
MC 0.0671 0.0493
Data 0.0733 0.0572

RMS ∆φ
MC 0.0688 0.0505
Data 0.0726 0.0541

Table 5.8: Case jet with muon.

L < 1 cm L > 1 cm

RMS ∆η
MC 0.0830 0.0628
Data 0.0866 0.0697

RMS ∆φ
MC 0.0856 0.0655
Data 0.0876 0.0676

Table 5.9: Case jet without muon.

These tables show that our expectations are satisfied in all cases.
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Figure 5.30: ∆η distributions for jet with muon.
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Figure 5.31: ∆φ distributions for jet with muon.
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Figure 5.32: ∆η distributions for jet without muon.
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Figure 5.33: ∆φ distributions for jet without muon.
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5.4.2 A sight on classes

During this chapter we talked about the class 1 as the class, in MC simulation, in
which we have the muons from direct decay of B hadron B → µνmuX. Now we
consider the other classes as defined in the introduction of this chapter.

In our MC sample with 281 342 events we don’t find muon from class 3 (prompt
muons) , that because this class is unlikely respect to the others. So we report in
Figure 5.34, 5.35, 5.36, 5.37 and 5.38 the distributions of muons for classes 1, 2,
4 , 5 and 6 as a function of Lflight and the corresponding percentage respect to
the events in presence of SV.
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Figure 5.34: Class 1: primary B decays (B → µνµX)
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Figure 5.35: Class 2: primary C decays (C → µνµX)

Only one consideration: when Lflight increases, the percentage of class 5 (se-
quential decays) increases. This is the reason, at first sight, why the percentage
of class 1 drops. There aren’t other particular effects in these plots, many classes
have poor statistics in order to do other considerations.
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Figure 5.36: Class 4: muons from the decay in flight of a charged pion or kaon.
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Figure 5.37: Class 5: sequential B decays (B → C → µ or B→ τ → µ)
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Figure 5.38: Class 6: fake, where there is no relation between the track recon-
structed and the particle produced at the generation stage.
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Chapter 6

Conclusions

This thesis, carried out within the CMS collaboration at LHC, was intended to
make a preliminary studies for a measurement of the B-mixing with di-muon
events, in particular a measurement of the average time integrated mixing proba-
bility χ̄.

As a first analysis we have evaluated the pile up effect on 2010 and 2011 data
samples. As we have seen in 2010 we have less PU events respect to 2011, as we
expected because of the increases of luminosity. However the PU effect is always
small, the fraction of PU events in fact is always under 1%. This means that for
successive analysis the PU effect is negligible also for the 2011 data where the
luminosity is larger. Since the PU effect is usually rejected by imposing that the
two muons come from same vertex, we have compared the data samples with a MC
simulation devoid of PU. We have not found substantial differencies between data
and MC distribution, confirming that PU effect is not important for the samples
available.

As a second study we have determined the angular resolution in the measure-
ment of the B-direction, to obtain a systematic uncertainty for the analysis of time
integrated mixing probability. In this case we had available MC simulations only
for 2010, so we have compared it with data 2010. From this comparison we have
found the smearing between data and MC in some range of the jet energy (between
10 and 200 GeV), without noting anomalies.

The tools developed in the latter analysis could be used for the data 2011 as
soon as a MC simulation relative to 2011 is available.
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