
The 3-body problem 

In general, the three body problem consists in determining the motion of  3 point masses which attract 
each other according to some kind of force for any initial conditions. We will focus here on the 
gravitational and hierarchical 3-body problem where the force is the Newtonian gravity and one body is
significantly more massive than the others which orbit around it.   The equation governing the motion 
of the three bodies in hierarchical form (the more massive body is at the center of the reference frame ) 
is 
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If we concentrate on the scenario in which one of the 3 bodies has a mass negligible respect to the other
2, we can assume that its mass is 0 and deal with the restricted 3-body problem. The equation 
governing the motion of the third mass is in this case
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The problem is complicate enough not to be handled analytically. However, a simplified version of it 
can been described with analytical tools. If we assume that the orbits of the two lighter bodies occur on 
the same plane and the the orbit of the second mass m2  is circular, then we deal with the restricted, 
planar, circular 3-body problem.  To simplify the analytical treatment of the problem, we switch to 
normalized units.  We set G m1m2=1  and a=1  where a is the semimajor axis of body 2. 
Being the orbit circular, a is also the radius of the orbit.  

In these normalized units, we can define the mass ratio =
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 so that the mass of the central 



body is 1=1−  while that of the secondary body is simply 2= . The mean motion of body 2 

around body 1 is given by n=
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orbit of m2 is  circular respect to m1, it will be circular also respect to the center of mass of the system. 
We can describe the motion of the system in a reference frame rotating with frequency n=1 around 
the barycenter. In this reference frame, the position of bodies 1 and 2 will be fixed along the x-axis and 
we can write in a simplified form the equations of the motion of the third massless particle
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1. The second term on the left is the centrifugal force while the third is the Coriolis force, both due to 
the use of a rotating and then non-inertial reference frame. Re-writing the above equation in the 
coordinates we obtain the Hill's equation
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 is the pseudo-potential which includes 

a centrifugal term in addition to the gravitational attraction of the two massive bodies.  From now on, 
we concentrate on the  x,y plan (planar problem) and neglect the motion along the z-axis. In this way 
the problem becomes bi-dimensional.  Under this condition, r1=x

2
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 y2 The system  admits an integral of motion, the Jacoby constant C. If we 

multiply the  Hill's equation by the corresponding velocity components we get

ẋ ẍ−2 ẋ ẏ= ẋ
∂V
∂ x
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We can add up the two equations in a single one obtaining
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The integrals respect to time can be solved 
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where C is the Jacoby constant.  It is possible to construct curves in the plane on which the velocity 
vanishes. If such a zero-velocity curve is closed, then the particle cannot escape from the interior of the 
closed zero-velocity curve once it is placed there with the constant of the motion equal to the value 
used to construct the curve.  The only way to escape is to use an external force (like a rocket engine for 

a spacecraft). The curves are obtained setting to 0 the velocity term 
1
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determined uniquely by the pseudo-potential.  In figure we show the curves for different values of the 
Jacoby constant. 

The Jacoby has an additional meaning, it is the Hamiltonian of the system. The Hill's equation can be 
easily derived from the following Lagrangian
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The system must obey the Lagrange equations 
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above expression for L, give back the Hill's equations. From the Lagrangian, we can derive the 



Hamiltonian function 
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x ẏ ż2
−

1
2
 ẋ2
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This expression reduces to 

H=
1
2
 ẋ2
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The Hamiltonian has then the same expression of the Jacoby constant (with a factor 2 difference). This 
is an alternative proof that C is constant since H is the energy of the system which, in absence of 
external and dissipative forces, is conserved.  The equations of motion can be easily retrieved from the 
definition of Hamiltonian H=∑i

pi q̇ i−Lqi , q̇ i , t   and the Hamilton equations
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Lagrangian equilibrium points

The stationary points of the system in the x,y plane are obtained imposing the condition that both the 
velocities and accelerations are 0.   By inspecting the equations of motion
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we find that the necessary condition is that ∇ V=0 . From the definition of V we get
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Inserting this relation in the equation for the equilibrium, the equation for finding the stationary points 
becomes
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Grouping the terms in r1  and r 2  we obtain 
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Two easy solutions are given by r1=r2=1 . These
are the equilateral Lagrangian points L4 and L5, 
stable equilibrium points located at the vertices of an
equilateral triangle as in figure.  Their coordinates
are 
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To go back to physical units, the coordinates must be
multiplied by the semimajor axis of the perturbing
planet. The other 3 stationary unstable points are again solutions of the stability equation, all lie on the 
x-axis and are labeled  L1, L2  and L3.  Their coordinates are given as series expansion in the following 
way
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L1, L2  are located on both sides of the perturbing body (the planet) while  L3  is located on the other side
of the massive body (the star) . 

Trojan asteroids

Around the equilateral L4 and L5 points, stable periodic orbits are possible. A
consistent population of asteroids have been found around the two
Lagrangian points of Jupiter while a potentially comparable population is
inferred for Neptune. Mars is known to posses a few Trojans while recently
a Trojan asteroid for the Earth has been found.  More than 4000 Jupiter
Trojans are presently known and they are named after Greek and Trojan
heroes.  The largest body, 624 Hektor, is an irregular body with dimensions 
370 km×195 km×195 km.  Two main theories have been proposed so far to
explain the formation and evolution of the Trojans. Trojans  might have been
local planetesimals trapped in tadpole (Trojan type) orbits in the final phase of Jupiter growth when its 
mass increased from a few Earth masses to its present value (~318 Earth masses) on a very short 
timescale by gas infall. In alternative, the so called 'Nice model' predicts that Trojans were bodies 
formed in the outer part of the solar system, trapped by Jupiter during its evolution through a 2:1 
resonance with Saturn.  

 A special class of orbits which surround
both the  L4 and L5 points and, in
addition, the  L3 point are called 
horseshoe orbits.  As shown in figure, the
body moves back and forth  from the
planet with a trajectory (in the rotating
reference frame) that encloses the three
Lagrangian points. This kind of trajectory
is unstable on the long term and it is a
gate towards Trojan type orbits.  This
kind of orbit is shown in light blue in
figure with the body moving from A, B
etc... These kind of trajectories are
relevant in planet migration since gaseous
mass from disk crosses the planet orbit
from outer regions of the disk into inner
regions through these kind of trajectories.
They can cause significant effects on the
migrating planet orbit changing the
direction of migration from outward
inward and viceversa. 



Trojan capture mechanisms

At present, about 7000 Jupiter Trojans, 29 Neptune Trojans, whose population might overcome that of 
Jupiter Trojans,  and 9 Mars Trojans are known. The Trojan orbits of Saturn and Uranus and venus are 
known to be unstable (Marzari et al., 2002, 2003,  2005).  There are static and dynamic mechanisms for
the capture in Trojan orbits. The static mechanisms include 1) capture in horseshoe orbits because of 
orbital decay due to gas drag (Yoder, 1979), 2) trapping of fragments of collisions occurring close to 
the Trojan region (Schoemaker et al. 1989) and 3) capture by the widening of the Trojan region during 
the mass growth of the planet (Marzari & Scholl, 1998).  Dynamic trapping can occur 1) during the 
migration of the planets if there is mean motion resonance superposition and chaotic evolution  
(Morbidelli et al., 2005) 2) during a steep jump in the semi-major axis of the planet due to a planet-
planet scattering event (Nesvorny’ et al., 2013) and 3) by the mass growth of the planet during its 
migration by tidal interaction with the circumstellar disk (Pirani et al., 2019).   These last two 
mechanisms explain also why there are more L4 Trojans than L5. However, while the model with the 
planet jump can produce either more L4 or more L5, the mechanism related to migration is not 
symmetric and inward migration leads to a larger L4 population.  
To understand the capture of Trojans during migration or mass growth, an hamiltonian model can be 
developed.  The Trojan motion can be described in a simplified way by the following equation: 
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It is the typical hamiltonian of a harmonic oscillator and the time evolution of the angle  φ is then 
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where A is the libration amplitude. When we change either the mass of the planet or its semi-major 
axis, we can compute how the libration amplitude varies. We introduce an adiabatic invariant 

J= ∫
period

p dq   where p=aP ϕ̇ q=aP ϕ so that the hamiltonian is H=
1
2

p2
+

1
2
ω

q2

aP
.

It is an adiabatic invariant if in one libration period the properties of the planet  i.e. ap and mp

and the amplitude and frequency of the Trojan motion A and ω do not significantly change. The integral
becomes:
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The conservation of J in presence of adiabatic variations of ap and mp leads to
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This equation implies that either if the planet migrates inward or it grows in mass, the libration 
amplitude decreases (from Fleming & Hamilton, Icarus 148, 479, 2000) .  As a consequence, when a 
body is in the Trojan region and the semi-major axis or mass of the planet decreases/increases, the 
libration amplitude diminishes leading to a stronger trapping into the Trojan region. 

Hill's sphere

An additional definition following the computation of
the stationary Lagrangian points is that of Hill's sphere.
In figure, it is the approximately circular shape
encompassed between L1 and L2 surrounding the planet.
According to the definition of 0 velocity curves, bodies
that move within this region cannot escape, they are
under the influence of the planet gravity field. The
approximate radius of the Hill's sphere is given by the
difference between the x coordinate of  L1 and L2  along
the x-axis. 

r Hill=3 
1
3

which, translated to physical units, becomes 



r Hill= m2

3 m1m2 
1
3

a

Ad example, the r Hill≈0.355 AU  for Jupiter while it is r Hill=0.010 AU  for the Earth.  The Hill's 
radius is relevant in asteroid satellite search since the smaller body must orbit within the Hill's sphere 
of the asteroids. It is also important in the explanation of  the evolution of cataclysmic variables. They 
are  binary star systems  having a white dwarf  (primary star) with a normal star companion. Their orbit
is small with periods ranging from 1 to 10 hours. The companion star  transfers mass to its compact 
companion and this interaction gives rise to a rich range of behaviour, of which the most noticeable are 
the outbursts of luminosity that give the class its name.  Because of conservation of angular 
momentum, the infalling gas from the companion can't plunge directly onto the surface of the white 
dwarf. In systems where the white dwarf doesn't have an appreciable magnetic field, the infalling gas 
forms an accretion disk with the white dwarf at its center. The gas in the disk spirals down towards the 
white dwarf, radiating its gravitational potential energy away as it goes. The temperatures on this disk 
ranges from 5000 to 10000 K and can be as high as 105-108 K in the inner border, emitting in the UV 
and X. The resulting accretion process gives
significant  changes in brightness with outbursts.
From this the name of cataclysmic variables. The
transfer of mass begins when the secondary star
fills its Hill's sphere and material begins to escape
through L1 into the primary star with disk.  

The Tisserand invariant

This invariant is used to distinguish between asteroids and short period comets. It is expressed in 
heliocentric orbital elements. To derive it, we have to move from the reference frame centered on the 
barycenter and rotating with frequency n to a non-rotating reference frame centered on the star. We 
neglect the difference between the location of the barycenter respect to the center of the sun and we 
focus on the computation of the velocity in the fixed reference frame. The body velocity is then given 
by v=V−v SR  where v is the velocity in the velocity in the rotating reference frame, V is the velocity
in the fixed one centered on the star, and v SR  is the instantaneous velocity of the rotating reference 

frame.  This velocity is given as v SR=−nY
n X   where X,Y are the coordinates of the massless body in 

the fixed reference frame. The relation between the velocity coordinates in the two reference frames are
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where hz is the z-component of the orbital angular momentum. To derive the last equation we recall 
also that since the rotating and fixed reference frame are assumed to have the same origin
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This relation holds in the fixed reference frame and it is a consequence of the invariance of C in the 
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since n is the mean motion of the planet with semimajor axis ap.  We can neglect the term 
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which is small compared to those depending on Gm1  so finally we obtain 
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T is called the Tisserand invariant and it allows to recognize the orbital elements of a body after it had a
close encounter with a planet (like Jupiter for short period comets). While the orbital elements will 
undergo significant changes due to the hyperbolic passage close to the planet, the value of T will be the 
same.  


