
  

CHAPTER 10

Mean Motion resonance in the 
restricted 3-body problem
Pendulum model for the 
resonant dynammics
Resonance width
Resonance superposition and 
chaos
Esamples of numerical 
integrations
Other sources of chaos in 
planetary systems: gravitational 
encounters



  

Kirkwood gaps: gaps in the distribution of 

asteroids in the  Main Asteroid Belt. 
These gaps are due to chaotic motion within 
the mean motion resonances (superposition 
of resonances) with Jupiter. 



  

Kuiper Belt: disk of planetesimals (comets) 
extending beyond the orbit of Neptune. 

Among  
KBOs (or 
TNOs) there 
are bodies 
comparable 
in size with 
Pluto. Are 
they 
planets? 



  

 Orbit around the star 
 Massive enough so that self gravity 

dominates in the shpe definition (almost 
spherical, hydrostatical equilibrium) 
 It has cleared a ring around its orbit of 

left over planetesimals.

If it fails to meet the third 
requirement, it is called dwarf 
planet.  

Definition of planetDefinition of planet

         Ceres                        Pluto                       Eris

D    975×909 km        2306 km               2400 km
M    9.5×1020 kg             1.305×1022 kg      ~1.6×1022 kg
a     2.766     AU               17.14   AU           67.69      AU
e     0.08                             0.25                    0.44
i      10.59o                        17.14o                  44.19o

   



  

The Kuiper Belt is also sculpted by 
MMR.  Plutinos are bodies in  2:3 
resonance with Neptune. This 
resonance protects them from 
impacting the planet. For example, 
Pluto’s orbit crosses that of Neptune  (e 
~ 0.25, I ~ 17.1o)  but the resonance 
protects it from close encounters by 
phasing the orbital angles.



  

Trojans of Venus, Uranus and Saturn are 
unstable due to the perturbations of the other 
planets. 

Troian asteroids  are in a 1:1 resonance.

Jupiter: ~ 7000 oggetti

Mars: 7               Neptune: 22 



  

Exoplanets in resonance: the system in Gliese 876

4:2:1 resonance among the 3 outer planets i.e. 2:1 
between e and b and 2:1 between b and c. 

The star is a red 
dwarf with a mass of  
0.32 solar masses. 

Multiple planet systems 
are detected from the 
radial velocity curve via 
progressive subtraction of 
each planet signal from 
the radial velocity curve 
(in figure the case of HD 
69830). 



  

Exoplanets in resonance: the system in Kepler 223

Convergent migration by interaction with the disk at the origin of 
the resonant configuration.

They are in a 8:6:4:3 mutual mean motion resonance. 
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The ‘Trappist’ planetary system.

MM resonances 
between the planets.

Transits (Hubble)From 
TTVs 
estimate 
the masses

3 planets in the 
habitable zone 
(liquid water on 
surface), the 
green ring in the 
figure. The inner 
planet is at 0.0116 
au, the outer at 
0.062 au. 

The star is a red dwarf with a mass=0.086 the solar mass 
and a temperature of ~ 2600 K
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Hamiltonian approach to the 2-body problem

μ=G(M 0+m1)

η=
M 0m1

M 0+m1

Reduced mass

The conjugate momentum is: p=η v

H=
1
2
p2

ν −
μη

r

d r
dt
=∇ pH

d p
dt

=−∇ rH

L=η√(μ a) l=M

G=L√(1−e2)=η√(μ a (1−e2)) g=ω

H=G cos i=η√(μ a(1−e2
))cos i h=Ω

The orbital elements are not canonical variables. It is 
necessary to introduce the Delaunay variables. 

H=−
μη

2L2

dl
dt
=
∂H
∂L

=n

Hamilton 
equations

The Keplerian Hamiltonian of the 2-body problem 
is then: 

The Hamilton equations give back the linear 
evolution of the Mean Anomaly   l= n t



  

Hamiltonian approach to the restricted 3-body problem

M 0 , m1 , m=0 m1 on circular constant orbit i1=i=0

d r2

dt 2 =−GM 0
r
r3 +Gm1(

r1−r

|r1−r|
3−

r1

|r1|
3 )

U (r )=−G
M 0

r
−Gm1( 1

|r 1−r|
−
r⋅r1

|r 1|
3 )

H=
v2

2
−
GM 0

r
−Gm1(

1
|r 1−r|

−
r⋅r1

|r1|
3 )=

v2

2
−
GM 0

r
−R(r , r1)

The Hamiltonian of the system is:

Delaunays’ variables (the reduced mass has disappeared) :

L=√(GM 0a) l=M

G=L√(1−e2
)=√(GM 0a (1−e2

)) g=ω

H=G cos i=√(GM 0a(1−e2
))cos i h=Ω

H=−
G2 M 0

2

2 L2 −R(L .G ,H , l , g , h ,t )

R(L .G ,H , l , g , h ,t )=Gm1∑
i=0

∞

∑
J=−∞

∞

K i , j
(G ,L)cos (il+ j(l '−g))

Since it is the planar 3-body problem, h does not 
appear in the Hamiltonian and then H is a constant 
of motion and it can be neglected in the Fourier 
development. 



  

1) There is a hidden 
dependence on time 
since l’ = n’ t (for the 
planet)
2) The first sum in the 
Fourier expansion goes 
from 0 to infinity to 
avoid doubling the 
terms 

Resonance condition: 

i l̇(L,G)+ j(l̇'− ġ(L,G))=0

cos (x+ y )=cos(−x− y)
cos (x− y)=cos (−x+ y)

If it is satisfied, repetition of 
mutual geometrical 
configurations, enhanced 
gravitational interaction. 

i= p+q
j=−p ( p+q )l̇(L ,G)+. p (l̇'− ġ(L ,G))=0

H=−
G2M 0

2

2 L2 −Gm1K
0,0
−Gm1K

i , j cosψ

Only the dominating resonant term is kept in the 
Hamiltonian (the system is in a i,j resonance). The angle 
ψ is the critical argument of the resonance and it 
librates. 

ψ=i l+ j( l'−g)



  

Poincare’s resonant canonical variables. 

Φ=[( p+q)G−p L] /q ϕ=l−(l'−g)

Ψ=(L−G)/q ψ=( p+q)l−p(l'−g)

They are canonical because they can be computed from a 
generating function from the Delauney’s variables. 

f (t ,l , g ,Ψ ,Φ)=[( p+q)l−p(l'−g )]Ψ+( l+g− l')Φ=ψΨ+ϕΦ

ψ=
∂ f
∂Ψ

ϕ=
∂ f
∂Φ

L=
∂ f
∂ l

G=
∂ f
∂ g

K=H+
∂ f
∂ t

H=−
G2M 0

2

2(Φ+( p+q )Ψ)2
−pn '

Ψ−n'
Φ

−Gm1 K
0,0
(Ψ ,Φ)−Gm1K

p+q , p
(Ψ ,Φ)cosψ−R

The Hamiltonian in the new variables reads: 

∂ f

∂ l '
∂ l'

∂ t
=− pn '

Ψ−n'
Φ

−Gm1K
0,0 is

neglected because small



  

First order resonances; q= First order resonances; q= ± 1± 1

j=p+q
j+1=p

For example 2:1, 3:2 , 4:3 ...etc..

If q=-1, the minor body is inside the orbit of the planet. 
1 n

a
 = 2 n

p
  i.e. 2 T

a
 = 1 T

p

(see paper by Winter and Murray, Astronomy & 
Astrophysics, 318, 290-304, 1997)

K=−
G 2M 0

2

2(Φ+ jΨ)2
−( j+1)n'

Ψ−n'
Φ+Gm1K

p+q , p
(Ψ ,Φ)cosψ

Φ=−√GM 0a (1−√(1−e2
))

Ψ=−√GM 0a ( j √(1−e2
)− j−1)

Condition for the onset of resonance: 

ψ̇=
∂K
∂Ψ

=−
G 2M 0

2 j

(Φ+ jΨ)3
−( j+1)n'

=0

The term                                              averages to 0
This condition is equivalent to: 

Gm1 K
p+q , p(Ψ ,Φ)cosψ

j−( j+1)
n'

n
=0 ⇒

n
n' =

ap
3 /2

a3 /2=
( j+1)

j



  

Pendulum model of the resonant dynamics

Series development (Taylor) of the hamiltonian K 
around the resonant value of Ψ = Ψ

r

K=A0+A1(Ψ−Ψr)+A2(Ψ−Ψ r)
2+B0 cosψ

K=−
G2M 0

2

2(Φ+ jΨ r)
2+

G2M 0
2 j

(Φ+ jΨ r)
3 (Ψ−Ψ r)

−
3G2M 0

2 j2

(Φ+ jΨr)
4 (Ψ−Ψr)

2
+....

−( j+1)n'
Ψ r−( j+1)n'

(Ψ−Ψr)−n '
Φ

A0=−
G2 M 0

2

2(Φ+ jΨ r)
2−( j+1)n'

Ψ r−n'
Φ

A1=−
G 2M 0

2 j

(Φ+ jΨ r)
3−( j+1)n'

A2=−
3G2 M 0

2 j2

2(Φ+ jΨ r)
4

n.b.  Φ is constant because K does not depend on φ

K=A0+A2(Ψ−Ψ r)
2+B0 cosψ

← resonance condition
     A

1
=0



  

Phase space 
portrait: the 
red curve is 
the 
separatrix.  
The level 
curves are 
given by the 
following 
equation: 

Ψ=Ψr±(
K−A0−B0 cosψ

A2
)

1 /2 K is the energy 
and it changes 
depending on the 
level curve

The separatrix crosses the point  (0,Ψ
r
) and we can 

compute the value of K in that point: 

Ψ(ψ=0)=Ψr K=A0+B0

Ψ sep(ψ)=Ψ r±(
B0

A2

(1−cosψ))
1/2

=

=Ψ r±√
2B0

A2

sin
ψ

2

sin(
ψ

2
)=√ 1−cosψ

2



  

ΔΨ=√
2B0

A2

The resonance half-width  is evaluated at the point  
(ΔΨ

, 
π/2) 

Resonance width 
with a planet located 
at 1 au (semi-major 
axes normalized to 
that of the planet). 
There is a 
dependence on the 
eccentricity of the 
minor body (see 
definition of Ψ) δn=±√12n2 e

m1

M 0

a
a ' f ( aa' )

δa=−
2a
3 n
δn

(see Murray & Dermott, Solar System Dynamics, pg. 
338)



  

Numerical examples of the orbital elment 
evolution of a minor body in a 2:1 resonance 
with a planet (Jupiter) 

The eccentricity of the planet is set to 0 so the 
restricted 3-body problem is a good 
approximation. 

ψ

Ψ



  

If the eccentricity of Jupiter is set to its average 
value, 0.05, the value of  Ψr is not constant 
anymore. Additional perturbative terms come 
into play and the evolution is more complex.  

Widening of the 
resonant region 
due to an increased 
eccentricity of 
Jupiter  (from 
Morbidelli’s book 
“Modern Celestial 
Mechanics).



  

Ψres depend on the eccentricity of the minor body i.e. 
(1-e2)1/2  and the libration center shifts depending on the 
minor body eccentricity. 



  

Restricted 3.body problem with inclined orbits. 

R(L .G ,H , l , g , h ,t )=

=Gm1 ∑
i=−∞

∞

∑
j=−∞

∞

∑
j'=−∞

∞

∑
m=−∞

∞

∑
m'
=−∞

∞

K i , j
(G ,L)

cos (il+ i' l'+ j~ω+ j'~ω'
+mΩ+m'

Ω
'
)

cos (3 l−l '−2~ω)
cos (3 l−l '−2~ω'

)

cos (3 l−l '−2Ω)
cos (3 l−l '−2Ω'

)

......

Any of this term has a 
slightly different 
resonance center (Ψ

r
) 

At pg. 261 of Murray & Dermott, Solar System dynamics, 
there is the disturbing function of the 3:1 resonance. The A 
coefficients depend only on the semi-major axes and 
masses. 

Example: the 3:1 resonance: 



  

Origin of chaosOrigin of chaos 
(Chiricov)

• Superposition of mean motion 
resonances and secular 
resonances (resonance with 
the fundamental frequencies of 
the N-body planetary system) 

• Superposition of different terms 
of the same resonance. 

• Superposition of different 
MMRs like close to a planet 
(external region of the asteroid 
belt near Jupiter).



  

NEO asteroids perturbed by resonances with Jupiter and Earth. 

1) Different 
MMRs

2) Different 
terms of 
the 3:1 
MMR



  

Superposition of MMR and the asteroid belt. 

Taken from Morbidelli’s book



  

Secular resonances within the 3:1 MMR.  The 
secular resonances are with the f5 and f6 
fundamental frequencies of the solar system. 
There is also a Kozai-type resonance. 



  

The situation is more complex when two massive bodies are 
in resonance (planets).  For first order resonances:

H=−
GMm1

2a1

−
GMm2

2a2

−
Gm1m2

a2
( f res

1 e1 cos(k λ2−(k−1)λ1−
~ω1)+ f res

2 e2 cos(k λ2−(k−1)λ1−
~ω2))

There are 2 potentially librating critical angles. With the 
Poincarè action-angle variables defined as:

Λ=μ√G (M+m)a λ=M+~ω

Τ=Λ(1−√1−e2
) γ=−~ω

HK=−
G2 M 2m1

3

2Λ1

−
G2 M 2m2

3

2Λ2

H r=−
G2 Mm1m2

3

Λ2
3 /2 (f res1 √

2Τ1

Λ1
cos(k λ2−(k−1)λ1+γ1)+ f res

2 √
2Τ2

Λ2
cos(k λ2−(k−1)λ1+γ2))

Which can be transformed to an integrable single  degree of 
freedom Hamiltonian (see Batygin & Morbidelli, A&A 556, 
A28, 2013). 



  

Additional source of chaos for   NEO asteroids 
and  Short Period Comets are close encounters 
with planets (terrestrial planets for NEOs, Jupiter 
for SPC). 

Close 
encounter
s cause 
large 
impulsive 
variations 
of the 
orbital 
elements 
which 
cumulate. 



  

Close encounters can 
be simple parabolic 
encounters or more 
complex if there is a 
quasi-satellite 
capture. 



  

Example of NEO orbits perturbed by resonances 
and close encounters. The evolution is highly 
chaotic and unpredictable on a short timescale. 



  

Jupiter Family Comet orbital evolution. The repeated 
encounters with Jupiter eject the comet out of the 
solar system on a hyperbolic orbit on a timescale of 
the order of 105 year. 
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