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MAGNETOSPHERE OF EARTH: estimate of 
dimensions. 

An approximate radius of Earth’s 
magnetosphere is computed from the 
balancing of the wind pressure and magnetic 
pressure. 
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Computation of pressure for a normal gas

For the solar wind v ~ vx i.e. the flux is unidirectional 
(radial). 

P∼ρV 2

The magnetic pressure has the same expression as the 
energy density: 
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Mercury’s magnetic field is 20% off the 
center of the planet. It is also strongly 
affected by the solar wind. 



  

∂ρ

∂ t
+∇(ρu)=0

ρ(∂u∂ t +u⋅∇ u)=−∇ P+ρ f+ j×B

E=−v×B

MHD: Ideal magnetohydrodynamics

Lorentz force

Generalized Ohm’ law: in the fluid reference frame

In the fixed reference frame, taking into account 
that E’ = E + v x B

J=σ E '

1
σ J=E+v×B

In ideal conditions, there is perfect conductivity 
i.e. σ → ∞ so that the above equation becomes: 

Inserting this equation into Maxwell’s equation

∇ ×E=−
∂ B
∂ t

⇒
∂B
∂ t

=∇ ×(v×B)

Induction equation

Euler equations: 
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From Maxwell’s equations we can derive an 
expression for the current density: 

In non-relativistic conditions the second term can 
be neglected and we get for the current density
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The equations for the ideal MHD are then: 
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There is a magnetic pressure term given by:

−∇ ( B
2
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Which contributes to the plasma 
kinetic pressure . The total 
pressure term becomes: 

Magnetic pressure  from MHD

A×(∇×C)=A⋅∇ C−( A⋅∇ )C
1
2

∇ (A⋅A)=A⋅∇ A

Vector calculus identities: 

The Lorentz force term can be changed according to the 
induction equation as: 

−∇ (P+
B2

2μ0
) The additional term is anti-

parallel to the curvature 
radius of the local magnetic 
field line 
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Comparing the relevance of the kinetic 
pressure with the magnetic one leads to the 
definition of the coefficient β 

β=
gas pressure

magnetic pressure
=

P

B2
/2μ0

Solar corona:  β ~ 3.5 x 10-3

Solar wind (Earth orbit):  β ~ 2

Why sunspots have a lower temperature? 

Imagine a 
sunspot as a 
vertical 
magnetic flux 
tube. 



  

Within the flux tube the magnetic field B
0
 is vertical. In 

equilibrium conditions,  i.e.  the velocity u = 0 and also its 
time derivative: 

ρ(∂u∂ t +u∇ u)=0 So that:

Since the magnetic field is constant and vertical the tension 
term is = 0 
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Which implies that this term is constant 
and has the same value inside and outside 
the flux tube. 
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If also the density is equal inside and outside the tube and we 
recall the state equations:

PE=
ρEK BT E

mE

P0=
ρ0 K BT0

mE

T 0

T E
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⇒ T E>T 0

In the sun, ad example, T
0
 ~ 3700 K while T

E
 ~ 5700 K



  

Non-ideal MHD, the magnetic diffusion:

1
σ J=E+v×B ∇×E=−

∂ B
∂ t

∇ ×E=−
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This is =0 because of Maxwell’s equation
∇⋅B=0

∂B
∂ t

=η∇
2B+∇ ×(v×B)

where η is the diffusion coefficient. 



  

Alfven’s theorem and freezing of magnetic field lines

In a perfectly conducting plasma (MHD) field lines move with 
the plasma flow. 

The curve c 
encloses the 
surface S which 
moves with the 
plasma. In the 
time interval dt an 
element of c 
which is 
determined by the 
vector ds sweeps 
an area (blue in 
the fig)  equal to

Area=(v dt )×ds

The flux through S is given by                       where dS 
is the surface element and ds            the line element. 

∬
S

B⋅dS

and its change with time  is given by 
d
dt (∬S B⋅ds)

The flux element  exiting (or entering) through the blue area 
is 

B⋅((v dt)×ds)=−((v dt )×B)⋅ds

The total flux is then −∫
c

((v dt)×B)⋅ds



  

The change in the flux is due to 1) a change in time of B or 
2) to a motion of the boundary of the surface S, and then 
curve c. As a consequence, we may write:

d
dt (∬S B⋅dS)=∬S

∂ B
∂ t

⋅dS−∫
c

v×B⋅ds

Using the Stokes’ theorem, the second term can be 
transformed in a surface integral

d
dt (∬S B⋅dS)=∬S

∂ B
∂ t

⋅dS−∬
S

∇ ×(v×B)⋅dS

Combining the two integrals and reminding the 
induction equation we get:

d
dt (∬S B⋅dS)=∬S (∂ B∂ t −∇ ×(v×B))⋅dS=0

The magnetic flux through a closed circuit does not 
change if the circuit moves with the plasma, so B is 
frozen on the plasma. 
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