CHAPTER 3: non-
gravitational forces

* 3-1 Poynting-Robertson
effect: acting on dust

particles populating debris
disks.

* 3-2 Yarkovsky effect: acting
on meteoroids and asteroids.

* 3-3 Gas drag: acting on
planetesimals in gaseous
protoplanetary disks.



3-1 Poynting-Robertson drag and
radiation pressure.

* Emission laws

* Absorption and ri-emission of light by
dust grains

* Relativistic approach to the Poynting-
Robertson effect (drag)

* How drag affects heliocentric orbits.

(Burns, Lamy, & Soter, Icarus 40, 1-48,
1979)
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Emission and absorption laws

An idealized black body emits radiation at different A depending
on the tempearture T according to Planck’s formula:
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h is Planck’s constant (6.62606896(33)x10-3¢ Js ), cis the
speed of light (299792458 m/s) and k is Boltzmann's

constant (1.3806504x10~23 J K-1).

W Stefan-Boltzman'’s law: integrate Planck’s formula over A
and you get the total energy E (o is the Stefan Boltzmann
constant i.e. 5.67 10° W m? K* :

E(A,T)=

E=0T"

@ Wien’s law: derive Planck’s formula over A and you get the
thewavelenght of maximum energy emission:

b

Moo=
MAX T
with b= 2.8977685(51)x10-3 m K
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Spectrum of EM radiation:
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A star is a partial blackbody. The surface is a
black body but in the atmosphere there are
absorptions and emissions at different
temperatures.
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Figure 2.1 Flux per wavelength interval emitted by different types of stars, at their “sur-
faces”, compared to blackbody curves of various temperatures. Each black-
body’s temperature is chosen to match the total power (integrated over all wave-
lengths) under the the corresponding stellar spectrum. The wavelength range
shown is from the ultraviolet (1000 A= 0.1 pm), through the optical range
(3200-10,000 A), and to the mid-infrared (10> A= 10 um). Data credit: R.
Kurucz.



Cosmic dust: produced by the
combination of C,0,Si,H,S of
late stars. NH3, CO2 and st

add above them.
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Dust particles

* A protostellar disk surrounding a protostar is
made of gas and dust (mainly silicates and
CHON). Dust accumulates forming planetesimals
and planets.

* At present in the solar system (and in
exoplanetary systems) dust is produced by
collisions in the asteroid belt and Kuiper belt. The
zodiacal dust is produced in this way and
populates debris disks.

* Dust is also produced by comets during the
perihelion passage.

* Some grains may
come from from outside
the solar system from
galactic dust.

Zodiacal light. —




IRAS and COBE have observed the dust
distribution: it is not homogeneous. Ad example,
around the Earth (and also Venus) there is a dense
ring of dust of particles trapped in resonance. The
average size of these particles is 100 pym (the size
estimate is obtained by dust grains impacting the
Earth).

AU




Robertson’s formula for perfectly absorbing
particles

1) Flux of radiant energy given by Poynting vector:

_EXB ¢ erg-s

S W

~1.35X10 at 1 au

cm

2) Relativisyic Doppler’s effect for the light due to
radial motion

r .
5'25(1—— where F=v-s
C
ALY §
S
Radiation _[SA A is the particle area
pressure: F,= c S (cross section)




Poynting-Robertson drag: absorbed
radiation (100% in this model) is fully re-emitted

the infrared by the grain to keep constant the energy

balance. This is equivalent to the ejection of a
‘mass flux’ forward given by:
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E=mc = m=
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The momentum flux, and
then the recoil force acting
on the particles in the
opposite direction, is:

The total force acting on the grain (radiation
pressure + Poynting-Robertson drag) is finally:

F=FP+FD=(&) g_v|_sA 1_1) AN
C C C C C
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If a particle is not perfectly absorbing but it reflects part
of the incident radiation the equation is different.

f = fraction of absorbed light
g = fraction of reflected light
f+g=1

Qr =149

S5"A S'A 1%

F= —QPRS_7QPRE

When all light is reflected (g=1, f=0, Q__ =

2), ad example for a clean icy particle,
the force doubles. This because a
reflected photon releases to the dust
grain twice the momentum respect to an
absorbed photon.



... some special relativity.....




s Coordinates  (ct,x)  (x°,x',x*,x°)

® Interval ds’=—c’dt’+d x°
2 2
* Proper time de:_dg_: dtz—dZX
C C
4-velocity (tangent to the U= dP
evolution line) T dt
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The modulus of the 4-velocity is constant

U-U=n,U"U'=—c

2

In the proper reference frame, the 4-velocity
vector is;
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m,y C ;
4-momentum p=m,U=|"To¥Vx|=ly 5
m,c’
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The modulus of the 4-momentum is:
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Lorentz transformations (..and Tetrads)

U, is the 4-velocity 4 v
of P respectto O, U " S —
will be the 4-velocity
of Prespectto R, v»
is the 3-velocity
vector of P measured v
respect to O, while >

vz 1S the 3-velocity of
the reference frame
centered in R respect
to that centered
on O
If we apply the Lorentz transformation A to Us we get the
components of Uz .

v
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An alternative way to compute the components of Uz is to use

projections over a tetrad. A tetrad 1s a set of axes (usually

orthonormal) attached to a point in space-time. We assign to the

observer centered in R a tetrad (¢.¢:.¢;.¢;) so that the components of
Ux will be computed as projections (scalar product) of U, over
ep.¢,  To find the tedrad attached to R we first note that the 4-

velocity Us is parallel to ¢ . U, | once computed in the reference

frame of R, has component (¢,0,0,0) so it can be related directly to
e, trough the identity



From e, and the orthogonality relation between versors, we can compute
€,

IyR'u'Rfcl

eye,=0 and |e|=1 leadto e,= };}R

0

The remaining versors €.¢; can be chosen parallel to those of the observer
centered in O. To compute the controvariant component of vector v”
respect to R, we project " on the basis vector (e,.e,.e,.e;) :

YpC
_{’r;‘OZUP'eOZ )}!;)1‘;} [_}’R:yRB;-sosO}:_YR YOV ¥s Vs
0

The value of Uz’ isthe same as that obtained with the Lorentz
transformation. The minus sign is due to the presence of the metric tensor
and the scalar product of any vector u with € w-e,=u"etn,=—u" . The x-
component of Uy is

Y€
U=t XBYP (= YaVal€. Y2, 0,0)==Y o YpclcVa+Y  YpVs=—BrYr YrC+YaYrVp

\ 0 f

This, again, is equal to the value obtained with the Lorentz
transformation. With tetrads we can compute the components of a 4-
vector in any reference frame attached to an observed if we now his 4-
velocity. We compute its tetrad and project the 4-vector of interest on the
tetrad.



Relativistic derivation of Robertson’s equation
for P-R drag

Let's assume that a dust grain is moving respect to the star
on a circular orbit (no radial velocity component) with
velocity v. A flux of photons leaves the star radially and part
of the flux will meet the particle after traveling in the
antisolar direction -x. At any instant of time we can assume
that the reference frames are inertial with the frame attached
to the grain moving with constant velocity. As a first
approximation we assume that the reference frame centered
on the sun is inertial (it is not due to the planetary

perturbations, but the baricenter is close to the center of the
sun).



The radiation flux S of photons from the sun is
described by the 4-momentum:

S/c
_|—S/c

P=
0

Transforming to the reference frame of the grain
where absorption and reflection occurs requires a
Lorentz transformation along z, direction

perpendicular to the grain orbit. p=r y:%
C 1_[32
y 0 0 —By||S/c yS/c
p'= 0 1 0 0 |[-Slc|_| —Slc
0 0 1 0 0 0
—pBy 0 0 vy 0 —pByS/c

In the reference frame of the grain p’ A
radiation is absorbed per unit of time and the
amount reflected is:

YAS/c ..negative sign
. | —AS/c(1-Q,) because of
P r= 0 ’ reflection. From
—ByAS/c(1-Q,,) nowon S A = E:

intercepted energy.



In the reflected 4-momentum the energy term is not
multipied by 1- Q_.. This because it includes the

contribution from the re-emitted radiation. It is
isotropically emitted, so it does not contribute to the
momentum since it averages to 0, but it is included in
the energy term

E,=fE=(1-Q,+1)E=(2—Q,,)E absorbed = isotropically reemitted
E,=gE=(Q,,—1)E reflected
ER:<f+g)E:<2_Qpr+Qpr_1)E:E = EO

To get back to the inertial sun-centered reference frame
(from now on E=S/c):

y 0 0 By YE/c
|0 1.0 0| —Elc(1-Qu) |_
Pr=lo 01 o 0 B
By 0 0 ¥ [|-ByE/c(1-Qp)
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_E/C<1_QPR) -
0

BY’E/lc—BY’E/c(1—Qpp)

Elc(y*—B* Yy’ +B°y’Qpr)| [E/c(1+py’Qpp)
—Elc(1-Qpp) _| —Elc(1-Qpg)
0 0

BY2E/CQPR BYZE/CQPR




The recoil force on the dust grain is then given by:

Elc E/C(1+B2Y2QPR)
—E —E/c(1—
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—ElcﬁzyzQPR
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The radiation pressure and P-R drag forces are then:

F,=—E/cQ,s
F,=—BY ElcQ,u,~—BElcQ,u,=—E/c°Q,,Vv




Effects of P-R drag on heliocentric orbits: average
values of semimajor axis and eccentricity
derivatives (average over orbital period).

CE ( ) (2+3¢e?)

dt . )3/2
cf 5 (M 1
—=——|— e

dt 2 2 QPR (1 6)1/2
_2.53><1011

Solar wind contributes to radiation pressure and P-R

drag
F,,=3A g, [1-1 eV
rad C PR C C
2 J—
F = nm— ACD(W v)
2 w
F

w: solar wind velocity
u=w-—v

n: number density

m: mass of SW — particles
j: different SW particles



Esample of dynamical evolution of dust grains
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Fig. 3. Combined view of the semimajor axis and eccentricity
evolution for a 30 um dust particle started at the inner edge of
the main belt. The initial conditions are a =2.2 AU, e=0.14 -
and i = 5° rad. The orbital decay is interrupted at a = 1.1588 AU, |
where the particle is trapped for ~ 45000 yr in the 4/5 outer res-
onance with the Earth. The orbital eccentricity grows larger than

0.2 during the resonance trapping .
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The orbital _decay due to P-R drag (da/dt < 0) is
temporarely halted by mean motion resonances with
the planets. In this case it is the Earth.




Radiation pressure on cometary particles: ejection
from the solar system and injection in the galactic
dust particle population.

r =a(l—e) vzz&(“—e)

a(l—e)
Ezl_vz_M _u (1+e) w1

r, 2a(l—e) a(l—e)

at perihelion

When the particle is ejected, it feels the radiation

pressure that counteracts the gravity force (both radial
but opposite in direction):

50 Qpr

2
r

» Alc _3 S()QPR

_S'AQy, GM,m_
b= "GM.m 4GM._cps

C r2

Where s is the radius of the dust particle and S, is the
solar radiation flux at 1 au (solar constant).

After the ejection from the comet body, the orbital velocity
is approximately the same (the ejection velocity is small

compared to the orbital velocity) and the orbital energy
becomes:

polo w'_w (1+e) p(d-p) 1 _ple—1+2p)
D a (1—e) 2a(1—e)

-~
No
Q

—
f—

I
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~—

if e—1+2p=0 The orbital energy becomes
positive and the body is injected
on a hyperbolic trajectory




Perihelion Aphelion

(1—e) (1+e)
p= > p= 5

It is much easier to have ejction at perihelion for
particles ejected from comets on highly eccentric orbits.

Example:
e=09 p=2l>005 p=5 %1052
2 PS
§<5.7%107° —20F
p-0.05
Assuming that  ~3 % p=1.5

We get an estimate of the maximum size of particles
that will be ejected at perihelion:

s<5.7%X10"* cm



3-2 Yarkovsky effect

Bodies larger than dust grains (from some cm and
beyond) have thermal inertia that implies an
anysotropic ditribution of the superficial
temperature. The sunlit surface is hotter and emits
more energy and at shorter wavelenght while the
shaded surface will be colder and emits less
energy at lower wavelenght. The net dynamical
effect depends on the orientation of the body spin
axis.

Seasonal
Diurnal

(@)

Asteroid




Diurnal component: due to the change in the
temperature distribution due to the body rotation.
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Force per mass unit of the body, ¢ is the Stefan-Boltzmann
constant

€ is the infrared
emissivity.

=V

z__2¢0 4
f= 3 e {dsT

Prograde rotation: outward drift
Retrograde rotation: inward drift

PROBLEM: to calculate the temperature T(x,y,z) all over
the surface of the body. The Fourier equation for the heat
transfer must be solved, but it requires a deep knowledge
of the internal structure and composition of the body and
the insolation pattern.




Asteroid Lutetia polyhedron model derived from
images of ROSETTA S/C

T

100
80
60
40

50

vertex

edge



Seasonal component: related to the change in
the temperature distribution due to the orbital
motion <t>

® Always negative
H drift because the
4 \* warm side (S) is
&
5

always pushing
ﬂ—) : against the orbital
[ —_

I motion.
A
y o
‘5’, B
o dNh F
s JA
nR2e
da _8a “F,(R,8)cosy
Cit diurnal S) n mc
da 40, TR €, .2
— = F (R,0)sin
dt 9n mc “( ) ¥

seasonal

n=mean motion

w=rotation rate

a=albedo

y=obliquity

R=radius of the body
0=thermal parameter

F _(R,0) is a positive function

F (R,0) is a NEGATIVE function

Bertotti, Farinella,
Vokrouhlicky, Physics of
the solar system, pg. 499



Asteroid families and their
evolution with time.

Asteroid families are the outcome of collisions between
asteroids in the Main Belt. They appear as clusters in the
proper orbital element planes. Proper orbital elements are
filtered of planetary perturbations and reflect the orbtial
distribution, due to the collisional dv, just after the collision.
They are almost constant with time.
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Proper elements can change because of the Yarkovsky
effect (bc}th diurnal and seasonal).

Any
asteroid
family is
named
after its
bigger
member. In
figure itis
represente
d the
Koronis
family.
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Bottke et al. (2001)
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In blue are illustrated the trajectories in the orbital element
space of small asteroids (< 20 km) in a family which drift
either inward or outward due to Yarkovsky.



SWIFT_BMVSY (7440, a25-200-1b), R = 200 m, C-type
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The Yarkosky effect refills the population of NEO
asteroids (Near Earth Objects). After a collision, a
family forms, and because of the Yarkovsky effect
some of its members migrate on inner orbits. They find
secular resonances which pump up their eccentricities
until they have close encounters with Mars. After that
they become planet crossing and can have close
approaches with all terrestrial planets until, after about
10 Myr (Gladman 2000) either they impact a planet or
the sun or are ejected out of the solar system.
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3-3 Gas drag

Circumplanetary disks (or accretion or
circumstellar disks) are made of gases
(mostly H and He) and dust. They form during
the last phases of the gravitational collapse
of a protostar and their shape is dictated by
the conservation of angular momentum. The
gas acts on dust particles and planetesimals
orbiting around the protostar altering their
Keplerian motion.



n.b: there is a significant difference
between debris disks and circumplanetary
disks.

Circumstellar
disk:
gas+dust.
Ongoing
accretion
process
(dust,
planetesimals
, planets)

AR R R M e WO A Debris disk: made of
dust produced by
collisions in a leftover
planetesimal belt. No
more gas that
dissipated after about
10 Myr from the
formation of the star.




What is the lifetime of a protoplanetary
disk? (time available for giant planets to
form...)
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Focus on stellar clusters where the
ages of the stars are approximately the
same. The fraction of stars with disks
give an idea of the dissipation process.
Lifetime around 5-10 Myr.
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Protoplanetary Disks in the Orion Nebula HST »WFPC2

...other images of protoplanetary disks..




Statistics ....statistics.....
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Comparison with the Taurus region
(1-2 Myr). Younger region has more
massive disks... (Barenfeld et al.
2016)
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Andrews et al. (2010)
Pre-ALMA statistics to be improved. Due to
disk evolution is also difficult to interpret
these data. Do radius, radial surface density
coefficient y, scale height at 100 au and
viscosity change with time?



Protoplanetary and evolved disks evolution

M, <2M, 2M, <M,

Diskless (44)
E,;L, 25%, Diskless (12) Protoplanetary (13)
33%
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From Ribas et al. 2015, results from 22 nearby
young star forming regions. The lifetime of the
disks depend on the star mass. Is
photoevaporation relevant in the dissipation of
the disk since more massive stars lose their
disks more quickly?



Physical properties of circumplanetary disks
from observations (infrared excess, direct
imaging...)

M~0.01-0.1M_,

98% H,He
1,2% metals

p(r)=por * 0,~2-3%x10"° g/cm®
T(r)=T,r" T,~200—400 K
Oc1<r):0dor_y O40~7—10 g/cm2

At r=1 au
o, is the dust superficial

density

Adopting these profiles we now study the
gas motion around the star and how it is
affected by the gas pressure



Laminar gas motion (no turbulence)

»  GM
/Cmg: P2 _F<P)
Centripetal - Force due to
acceleration FGravity pressure gradient
GM 7 elor .
W= = eplerian angular velocity
r

ro;=rox—F(P)




. P(x+0x)

P(x) -

dz :
The force acting on
- the slab is:

dy

F=[P(x)—P(x+dx)]-dydz
The force per volume unit is:

F [P(x)—P(x+6x)]°dydz__d_P
v dx dy dz  dx

Where a is the acceleration of the volume element and
p its density. Finally, changing x with the radial
distance from the star r, we get:

ru)z—roo2+1dp
SO g




To compute the pressure term dP/dr in a disk the equation
of state is used

N, m nN,m
PV=nRT=n——RT=>P= RT
A M VN,m
KT
P=p—— m= mean molecular mass=w-m,
m
dP d «K_. 4 K Ca—f—
d—rza(po" —Tor B)ZE(G%)DOTOF -
~(a+pr1)
2__ 2 K Tor _
(Dg_mK_E(OH'B)po or " =
" GM|. K R e
GM

5 [1-2n(r)]=0k(r)[1-2n(r)]

2
_T En _,|8KT

c. mean thermal speed of gas

,//

y(r)=o(r)[1-2n(r)]"

~_

~_
/
P

~ Slower than
n~10"°x10"? purely
Keplerian!



Drag force on dust particles embedded in a

circumstellar disk. We assume that the particle be
spherical with radius s smaller than the mean free path of
the gas particles and move respect to the gas with velocity v.
The thermal velocity of the gas is:

Cm:Vth: TCMm
H

uwm,, =average molecular weight in terms of the hydrogen
atom mass. The frequency with which the molecules

collide head-on is

L @~ D
f=ns"(Zv,+v) —2
370 m
u H VAtN-wts’
1 P
3 W my, 2
VAtN-mts
v
N= M __ VP Each collision releases (assuming

umy  uMy vth>>V)am0me”tum:APZZMmHg"m

4
Fy=—(f=b) Ap=—Zms’p,v,v

Epstein drag law: ; . |

dust particle

gas particles



Details..... f:VAt'N.AS:v b s
At W my,
1
APZZMmﬂgvm
A 1 1 P
A—It):dp-f—dp-bzn52-(§vth+v—§vth—v)-uniH-dp
A o 1
A—€:2n52-v-uniH2MmH§Vth
Stopping time
Po= 7w Ps a4 With a particle radius and K;T
sop 1\ 8 Py ¢ c_isothermal sound speed C =
S Wmpy
Stokes number
ap
=t Q =R s
St tstop . In2D St 5 Zg

If St << 1 dust particles are strongly coupled to the gas,
for St ~ 1 they feel strong headwind and drift inwards.



Motion in a viscous regime:
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The sedimentation speed in the median plane of a
circumstellar disk is then:
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If we express the gravity force in function of the
Keplerian frequency, we get:
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The time required by the dust to sediment on the median
plane is then:

YA _ vth pg

- ~10’yr a1 AU
Vsettle QKpdS

t —

settle ~




Stokes drag law:

It applies when the free mean path is shorter than the size of the
particle. In this case the gas is treated as a fluid acting on the
particle and the result is similar to the solar wind pressure i.e.
pv? (Ram pressure). The force F_ becomes:
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Where C_ depends on the Reynolds number (typical length is
2s)
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Note: we do not used turbulent turbulence or if the surface
viscosity to calculate drag coefficients is rough
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Explicit computation of the drag force on planetsimals:
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The vector u is the relative velocity between the body and
the gas. Ad example, assuming that i=0 we can compute
u as:
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Planetesimal orbtial element variations due
to gas drag

The drag force is decomposed along the radial, tangent
and vertical directions so that Guass equations can be
used to compute the effect of the perturbation.
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These equations are averaged over an orbital period
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Numerical integration of a planetesimal orbit perturbed
by gas drag and the gravity of Jupiter. The semimajor
axis decreases due to the gas friction.
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Figure 3. Temporary trapping in the 2:1 resonance of a 300 km size planetesimal.

When the planetesimal crosses the MM resonance 2:1
with Jupiter, its eccentricity is pumped up and the
inward drift rate is increased. After the resonance
crossing, the gas drag plays the major role and the
eccentricity is damped again towards 0. The drifting
rate is reduced.



Relevance of gas drag in
the initial phases of planet
formation

* It keeps low the relative velocities
between planetesimals favoring
accreting impacts and speeding up
planet formation.

* The combination of gas drag and
MM resonances may drive local
planetesimals on eccentric orbits
— formation of shock waves and
chondrules.



Formation of chondrules (silicate
inclusions) in chondrites (most common
meteorites) can be due to supersonic
planetesimals creating shock waves in the
protoplanetary disk with melting and quick
solidification when the wave has passed.




Planet formation in binary star systems.




S-type orbits

5-Type

Planetary systems

More complex configurations....

30Ari B : b|30 Ari A
double starsystem ouble star system

Newfound star

Plarpt Both double

star systems
orbit a point
in space

between the
two systems.

Quadruple Star System - 30 Ari



P-type orbit.
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Doppler effect for the light:
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