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Kozai-Lidov

Full 3-body problem with the 
outer body far out respect to the 
inner pair so that

is a small parameter. 
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n

Where the constant 
mass term is 

Naoz, ARAA 2016 

The full Hamiltonian (including the 
Keplerian terms):

a
1
 is the semimajor axis of the orbit of 2 vs. 1, while a

2
 

is the semimajor axis of body 3 vs. CM of 1 and 2. 



  

In the simplified problem where the second body is 
treated as a massless test particle in the presence 
of an external massive perturber (star or planet) on 
a fixed orbit, a set of canonical coordinates 
(assuming that the outer body is on a fixed orbit)  
are given by:

L=
m1m2

m1+m2
√γ

2
(m1+m 2)a M

G=L√(1−e2
) ω

H=G cos( i)=L√(1−e2
)cos (i) Ω



  

The perturbative Hamiltonian (without the Keplerian terms) is:

F=Fqu+ϵFoc

Fqu=−
e2

2
+θ

2
+

3
2
e2

θ
2
+

5
2
e2

(1−θ
2
)cos (2ω)

where θ=cos i With i the inclination respect to the outer 
body orbital plane. 

Foc=
5

16
(e+

3
4
e3

) {(1+11⋅θ−5⋅θ2
−15θ

3
)cos (ω+Ω)

+(1−11⋅θ−5⋅θ2
+15⋅θ3

) cos(ω−Ω)}

−
175
64
e3 {(1−θ−θ

2
+θ

3
)cos(3ω−Ω)

+(1+θ−θ
2
−θ

3
)cos (3ω+Ω)}

If  e
2  

 is small , the term ε is also small and the quadrupole 
approximation works well and the Hamilton equation leads to 

d J z
d t

=
∂F
∂Ω

=0
Since F

qu
 does not depend on Ω,  J

z
 is 

a constant of motion (together with 
F).

ϵ=
(a /a2)e2

1−e2
2 a=a1 e=e1



  

J z=√(1−e2
)θ Assuming that J

z
 is rescaled with 

mGM sa=1

Level curves for given values of  J
z
 and F.



  

For large values of inclination, small values of eccentricity 
and viceversa. An external perturber can force eccentricity in 
exoplanets (16 Cyg) or favor circularization of the orbit by 
pushing the pericenter of the planet very close to the star 
where the tidal interaction with the star can act. 

Holman et al. 1997



  

ϵ=
(a/ a2)e2

1−e2
2 >0

And the octupole term comes into play!

When the eccentricity of the perturber is no longer 
negligible, than 

Spin flips: the orbit 
may become 
retrograde and 
viceversa

Onset of chaotic 
behaviour for 
increasing α

i=0o

i=90o

i=180o

J

J



  

If we relax the 
assumption of 0 
mass for the inner 
body, then the 
dynamical evolution 
is more complex. Ad 
example, two planets 
of similar mass have 
a different behaviour 
from that described 
by the quadrupole 
term in the massless 
approximation. In 
particular J

z
 is not 

anymore a constant 
of motion. The 
constant of motion is 
now the full angular 
momentum of the 
system and the J

2
 of 

the outer planet 
changes accordingly 
to that of the inner 
planet to keep the 
total J constant.  In 
the figures 
comparison betwen 
the test particle case 
(TP) and the massive 
one (MP) with the 
two planets having 
the same mass (= M 
Jupiter). 



  

Kozai migration of exoplanets:  Kozai 
cycles + tide

Planet initially at a=5 au, e=0.1 while the binary is 
inclined by 85o and has an eccentricity of 0.5. 

It explains also misalignment with respect to the 
star rotating axis (Fabryky and Tremaine (2007)).



  

Is it possible to switch off the Lidov-
Kozai perturbations? 

General Relativity
Tides

t rel∼2π
a1

5/2 c2(1−e1
2)

3G3
(ms+m1)

3/2

t quad∼
2π a2

3
(1−e2

2
)

3/2
√(m1+m2)

a1
3 /2m3G

Derived from the computation of dω/dt.  The 
relativistic term is derived from the PN 
approximation.The ratio between the two 
timescales is: 

t rel
tquad

=
a1

4

3a2
3

c2
(1−e2

)m2

(1−e2
2
)

3/2
(m1+m2)

2G2

If t
rel 

< t
quad

 then the relativistic term dominates and 
the Kozai Lidov oscillations are damped.



  

The effects of tides is complex: 

  It causes precession of perihelia
  It damps the eccentricity
  There are tides of the star on the
  planet and vicevers
  Dynamic and static tides. 

Comparing the precession due to 
Lidov-Kozai to that due to tides and 
also including the eccentricity 
damping appears to be difficult from 
an analytical point of view. 
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