
  

Evolution of Evolution of 
circumstellar diskscircumstellar disks



  Circumstellar disk in V1247 Orionis 

ALMA: radiointerferometer → 66 radiotelescopes observing at 
millimiter and submillimter wavelength 



  

HL Tau, age ~ 100000 yr, type: K9. 
Disk radius is about  2000 au and the 
mass is approximately   0.1 solar 
masses ( ALMA images,  0.3- 9.6 
mm). 



  

Disk around Elias 2-27 (age: 1 Myr, mass 
half of that of the sun)  in the constellation 
of  Ophiuchus at a distance of about  450 
light years from Earth. The disk has spiral 
arms extending beyond 60 au from the 
star. Gravitational instability, binary 
companion or planet(s)?  



  

Numerical modeling of 
the circumbinary disk in 
GG Tau (Nelson & 
Marzari, 2016) 

Numerical modeling 
of a circumstellar 
disk in a binary star 
system (Picogna & 
Marzari, 2013)



  

Equation of fluid dynamics: Euler equations

1) Continuity equation: mass conservation

d
dt∫V

ρ(r , t)dV=−∫
S

(ρu)⋅nds

∫
V

∂ρ

∂ t
dV=−∫

V

∇ (ρu)dV

Divergence 
theorem 

∂ρ

∂ t
+∇(ρu)=0

2) Momentum conservation. In an inertial reference frame 
the same fluid does not fill the same volume element for an 
extended interval dt. We must consider a volume co-moving 
with the fluid otherwise we cannot compute the effects of 
forces on the same mass element.  No flux of mass  in/out of 
the co-moving volume element.  It follows the fluid lines

u

u

u

u

u
u

The momentum of the fluid in the volume V is: 

∫
V

ρ(r ,t )u (r , t )dV



  

Forces acting on the fluid element changing the momentum: 

1)  Distance forces (gravity, electromagnetism…):  The general 
form is 

∫
V

ρ f dv

2) Contact forces: forces perpendicular to the volume 
element like Pressure (we neglect viscous forces). 

∫
S

−P ndS

The equation for the momentum is finally: 

d
dt∫V

ρudV=∫
S

−P ndS+∫
V

ρ f dV

This equation is derived in a co-moving frame. How do we 
get back to an inertial reference frame where the variables 
depend on r and t? We use the material derivative! 
Given any physical quantity f(r,t) of the fluid, ad example the 
temperature T(r,t), at a fixed point  r in space the local 
derivative is:   

∂ f (u , t)
∂ t

If instead we move with the fluid, the variation of f will be 
given by the local variation + the variation due to the fluid 
motion. Ad example, in the case of stationary flux, the 
velocity does not depend on time locally, but as the fluid 
moves from a region of low cross section to a region of large 
cross section it changes. 



  

Moving from S1 to S2 the local derivative of the velocity does not 
change (stationary fluid)  but the derivative on a moving fluid 
element changes. The material derivative is  the rate of 
change of a quantity (mass, temperature, pressurem energy, 
momentum..) as experienced by an observer that is moving 
along with the flow. The observations made by a moving 
observer are affected by the stationary time-rate-of-change 
of the property (∂f/∂t), but what is observed also depends on 
where the observer goes as it floats along with the flow 
(v· f). ∇

∂u
∂ t
=0 stationary case

D u
D t

=u⋅∇ u

Du
D t

=
∂u
∂ t

+u⋅∇ u

∇ u=(
∂ ux
∂ x

∂ ux
∂ y

∂ux
∂ z

∂u y
∂ x

∂u y
∂ y

∂ u y
∂ z

∂ uz
∂ x

∂ uz
∂ y

∂ uz
∂ z
)

In general for a fluid the material derivative is:

The gradient of 
a vector is a 
Jacobian or a 
2nd order 
tensor. 

(u⋅∇ u)x=ux
∂ux
∂ x

+u y
∂ux
∂ y

+uz
∂ ux
∂ z

(u⋅∇ u)y=ux
∂ uy
∂ x

+u y
∂u y
∂ y

+uz
∂ u y
∂ z

(u⋅∇ u)z=ux
∂ uz
∂ x

+u y
∂uz
∂ y

+uz
∂uz
∂ z



  

With the material derivative we can transform the equation for 
the momentum written for a moving fluid element to an 
equation written in a fixed reference frame with given 
coordinates.  

d
dt∫V

ρudV=−∫
S

P ndS+∫
V

ρ f dV

d
dt∫V

ρudV ⇒
D
Dt∫V

ρudV=∫
V

D
Dt
(ρu dV )=∫

V

D u
Dt
ρdV

The mass of the fluid element does not change with time so 
ρ dV is constant in time and the material derivative applies 
only to u

∫
V

Du
Dt
ρdV=∫

V

ρ(
∂u
∂ t
+u∇ u)dV

∫
V

ρ(
∂u
∂ t
+u∇ u)dV=∫

S

−P ndS+∫
V

ρ f dV=∫
V

(−∇ P+ρ f )dV

ρ(
∂u
∂ t
+u∇ u)=−∇ P+ρ f

3+1 equations for u + ρ  but P is unknown. An additional 
equation is needed.  For a gas, P is related to the density ρ 
and temperature T. 

PV=nRT=
m
M
RT ⇒ P=

m
V
RT
M
=ρ

RT
M



  

The relativistic formulation of Euler equations is more compact. 
Starting from the energy-momentum tensor (in normalized units 
i.e. c=1, otherwise ρ + p/c2)

Tμ ν=(ρ+p)UμU ν
+ pημ ν Conservation of this tensor implies

∂νT
μν
=T , ν

μ ν
=0

Uμ
=(1, v i) |v i|≪1 p≪ρ

This equation translates back into Euler’s equations. Let’s see 
for example the first conservation equation. We adopt a non-
relativistic limit where  

∂νT
μν
=∂ν (ρ+ p)U

μU ν
+(ρ+ p)(U ν

∂νU
μ
+Uμ

∂νU
ν
)+∂ν p η

μν
=0

This equation can be contracted by multipling both members by Uμ

Uμ∂νT
μν
=∂ν (ρ+p)UμU

μU ν
+(ρ+ p)

(Uμ∂νU
μU ν

+UμU
μ
∂νU

ν
)+Uμ∂ν pη

μ ν
=0

Taking into account that U νU
ν
=−1 and that

U ν∂μU
ν
=
1
2
∂μ(U νU

ν
)=
1
2
∂μ (−1)=0 since

1
2
∂μ(U νU

ν
)=
1
2
(U ν∂μU

ν
+U ν

∂μ(ην σU
σ
))=

1
2
(U ν∂μU

ν
+ηνσU

ν
∂μU

σ
)=
1
2
(U ν∂μU

ν
+U ν∂μU

ν
)=2

1
2
U ν∂μU

ν

U ν∂μT
μ ν
=−∂νρU

ν
−∂ν pU

ν
−ρ∂νU

ν
−p∂νU

ν
+U ν

∂ν p=
−∂μ(ρU

μ
)−p∂νU

ν
≈−∂ ν(ρU

ν
)=0

∂ν (ρU
ν
)=∂tρ+∇(ρ v )=0 In non.relativistic limit. 

we get that



  

The other equation comes from the projection of the 
derivative of T along a direction perpendicular to U. In GR 
the partial derivative must be changed to Covariant 
derivative. 



  

Energy equationEnergy equation

D
Dt∫V (

1
2
u2+U )ρdV=∫

V

ϵρdV−∫
S

F⋅ndS+∫
V

f⋅uρdV +∫
S

u⋅(−P n)dS

Where U is the internal energy, ε a local energy source and F 
the flux of energy from one region to another. In differential 
form the equation becomes

ρ
D
Dt (

1
2
u2+U )=ϵρ−∇⋅F+ρ f⋅u−u⋅∇ P−P∇⋅u

The ‘mechanical’ work is given by

 u⋅ρ
D u
Dt
=u⋅(−∇ P+ρ f )⇒

ρ
D
Dt (

1
2
u2)=−u⋅∇ P+ρ f⋅u

The thermal part related to gas compression is from 
the first principle

dU=−PdV +δQ



  

Application of Euler equations to an engineering 
case: the shape of the de Laval nozzle. 

Derivation of Bernoulli’s equation for the case of a stationary 
(the fluid properties do not change with time) and inviscid  
fluid. 

If stationary
∂u
∂ t
=0 ....

∂ρ

∂ t
=0

∇(ρu)=0
ρ (u∇ u )=−∇ P+ρ f

From calculus: (u∇)u=∇ (
1
2
u2)−u×∇×u

∇ (
1
2
u2)−u×∇×u=−

1
ρ ∇ P+ f

We focus on a barotropic flow where the pressure is only 
function of the density P(ρ). We also introduce the state 
function enthalpy defined as: 

h=∫
dP
ρ =∫

dP
d ρ

d ρ
ρ ⇒ dh=

dP
ρ

dP=(
∂ P
∂ x )dx+(

∂ P
∂ y )dy+(

∂ P
∂ z )dz ⇒

∇ P
ρ =∇ h

u×∇×u=∇ (
1
2
u2)+∇ h+∇V=∇ (

1
2
u2+h+V )

Introducing enthalpy in the previous equation, assuming that 
the force can be expressed as the gradient of a potential V, 
we get: 



  

If we multiply both sides of the equation by u

u⋅(u×∇×u )=0=u⋅∇ (
1
2
u2+h+V )

The velocity u is tangent to the fluid motion, as a 
consequence the quantity

1
2
u2+h+V is constant along the streamlines.  Bernoulli 

theorem!

Design of the 
nozzle: why the 
cross section 
is diverging 
when the flux 
becomes 
supersonic? 



  

If we multiply both sides of the equation by u

u⋅(u×∇×u )=0=u⋅∇ (
1
2
u2+h+V )

The velocity u is tangent to the fluid motion, as a 
consequence the quantity

1
2
u2+h+V is constant along the streamlines.  Bernoulli 

theorem!

Design of the 
nozzle: why the 
cross section 
is diverging 
when the flux 
becomes 
supersonic? 



  

Let’s assume the flux through the nozzle is 
stationary and barotropic. We also neglect gravity 
(too small to significantly affect the high velocity 
gas).   The cross section of the nozzle is called 
A(x)  and it is measured at different section 
distant x from the top.  The equations governing 
the flux are: 

1
2
u2+h=const

ρu A=const

The first equation is derived respect to x:

1
2
2u
du
dx
+
dh
dx
=0 ⇒ udu+dh=0

dh
dx
=
dP
dx
⋅
1
ρ =

dP
d ρ
⋅
d ρ
d x

1
ρ

u⋅du+
1
ρ
dP
d ρ

dρ=0

The sound speed in barotropic approximation is:

c s
2
=
dP
dρ



  

u⋅du+
c s
2

ρ d ρ=0 ⇒
d ρ
ρ =−

u2

c s
2

du
u
=−M 2du

u
Where M is the Mach number.

dρ
ρ =−M 2du

u
ρu A=constant

From the second equation we can derive the following 
relation between the differentials:

1
ρu A

d
dx

(ρu A )=
dρ
dx

uA
ρu A

+
d u
dx

ρ A
ρu A

+
d A
dx

uρ
ρu A

d ρ
ρ +

du
u
+
d A
A
=0 ⇒

d ρ
ρ =−

d u
u
−
d A
A

Combining the equations we finally get to: 

−
d A
A
=(1−M 2

)
du
u

 If M <<1 (subsonic flow), A must be reduced to 
increase u
 If M > 1 (supersonic flow) A must be increased 

to increase u

The optimal design of the nozzle has to 
converge the flux until the velocity becomes 
supersonic. From then on, the nozzle has to 
be divergent. 



  

u⋅du+
c s
2

ρ d ρ=0 ⇒
d ρ
ρ =−

u2

c s
2

du
u
=−M 2du

u
Where M is the Mach number.

dρ
ρ =−M 2du

u
ρu A=constant

From the second equation we can derive the following 
relation between the differentials:

1
ρu A

d
dx

(ρu A )=
dρ
dx

uA
ρu A

+
d u
dx

ρ A
ρu A

+
d A
dx

uρ
ρu A

d ρ
ρ +

du
u
+
d A
A
=0 ⇒

d ρ
ρ =−

d u
u
−
d A
A

Combining the equations we finally get to: 

−
d A
A
=(1−M 2

)
du
u

 If M <<1 (subsonic flow), A must be reduced to 
increase u
 If M > 1 (supersonic flow) A must be increased 

to increase u

The optimal design of the nozzle has to 
converge the flux until the velocity becomes 
supersonic. From then on, the nozzle has to 
be divergent. 



  

Parker’s solution for an unmagnetized solar wind

Simplifications: spherically symmetric, isothermal and 
non-magnetic non-rotating flux.

The steady state equation for the radial component of the 
momentum is:

ρu
du
dr
=−

dP
dr
−ρ

GM

r2

dP
dr
=
dP
d ρ

d ρ
d r
=c s

2 d ρ
d r

Isothermal approximation → 

u
du
dr
=−c s

2 d ρ
dr
1
ρ−

GM

r2

From the mass conservation equation

dρ
dr
1
ρ=−

d u
dr
1
u
−
d A
dr

1
A

It is a symmetrical It is a symmetrical 
spherical flux so the area spherical flux so the area 
is 4is 4ππrr22

cs
2 d ρ
dr
1
ρ=−cs

2 d u
dr
1
u
−2cs

2 1
r

u
du
dr
=−cs

2 d u
dr
1
u
−
2c s

2

r
−
GM
r2

u2

u
du
dr
−cs

2 d u
dr
1
u
=
2c s

2

r
−
GM
r2

⇒

(u2−cs
2
)

u
du
dr
=
2c s

2

r
−
GM

r2



  

The equation is similar to that of de Laval nozzle. The 
solution can be written as (C is an integration constant):

 
( uc s )

2

− ln ( ucs )
2

=4 ln ( rrc )+
4 rc
r
+C where rc=

GM
2
c s
2

At the critical point the flux from subsonic becomes 
supersonic (as in the nozzle)  and v

c
 = c

s

Solution V has C=-3



  

Accretion disks

Cylindrical coordinates are typically used:  (r ,ϕ , z)

The disk is considered thin and axis-symmetric ∂
∂ϕ
=0

u⋅e z=0

The fluid velocity is u=(u , rΩ ,0)

∂u
∂ t
+u
∂ u
∂r
−rΩ2

=−
1
ρ
∂ P
∂ r
−∂Ψ
∂ r

In cylindrical coordinates the r-component of the 
momentum equation is 

Ψ=−
GM

(r2+ z2)1/ 2

Where the 
gravitational 
potential is 

Under the simplification conditions that 
∂P
∂ r
≪1 u=0

rΩ2
=
GM

r2
⇒ Ω=√

GM

r3

The usual Keplerian rotation.



  

1) Euler equation for u in cylindrical 
coordinates.  

ρ(
∂ur
∂ t
+u r

∂u r
∂ r
+
uϕ
r
∂u r
∂ϕ
−
uϕ
2

r
+u z

∂u r
∂ z
)=−

∂P
∂ r
−ρ ∂Ψ

∂ r

ρ
D u⃗
Dt
=−∇ P−ρ∇Ψ

r-component

ρ(
∂uϕ
∂ t
+ur

∂ uϕ
∂r
+
uϕ
r
∂ uϕ
∂ϕ

+
uϕur
r
+uz

∂uϕ
∂ z

)=−
1
r
∂ P
∂ϕ
−ρ ∂ Ψ

∂ϕ

φ-component 

ρ(
∂uz
∂ t
+ur

∂ uz
∂ r
+
uϕ
r

∂ uz
∂ϕ
+uz

∂ uz
∂ z
)=−

∂ P
∂ z
−ρ ∂Ψ

∂ z

z-component

Vectorial form



  

2) Scale height of a disk in isothermal 
approximation

In hydrostatic equilibrium,  u
z
 = 0 so the z-component 

of the Euler equations read: 

c s
2
=
dP
dρ
=
RT
μ μ is the mean molecular weight

In isothermal approximation (fixed temperature profile), 
the state equation is: 

P=
RρT
μ

1
ρ
∂P
∂ z
=
1
ρ c s

2 ∂ρ

∂ z
=−

GM z

r3
⇒ ln (ρ)=−

1
2
Ω
2

c s
2 z

2

1
ρ
∂P
∂ z
=−

∂Ψ

∂ z
=
∂

∂ z [ GM
(r2+z2)1 /2 ]∼−

GM z
r3

ρ( z)=e
−
1
2
Ω
2

c s
2 z

2

=e
−
1
2
z2

H2

where H=
c s
Ω

The vertical disk scale-height h is around 0.05 so 
the isothermal sound speed is smaller than the 
keplerian velocity

H=
c s
Ω
=
cs
Ω r

r=hr



  

3) Equation for the superficial density of a disk

Σ(r , t)=∫
−∞

∞

ρ(r , t , z )dz ⇒ Σ=ρ0√2 π h

Shear A=r
dΩ
dr
=−

3
2
√(GM )r−5 /2

Specific angular momentum( perunit of mass)

J⃗=r⋅e⃗ϕ⋅⃗u=r {
0
1
0}⋅{

u
rΩ
0 }=r

2
Ω

The ϕcomponent of themomentum conservationequation

must include a viscosity term

ρ{∂uϕ∂ t +u
∂uϕ
∂ r

+
uuϕ
r }=f ϕρ

where f is the viscous force per mass unit

∂ J
∂ t
+u
∂ J
∂r
=
DJ
Dt
=r f ϕ

u
∂ j
∂r
=u

∂(r uϕ)
∂ r

=uuϕ+ur
∂u phi
∂ r



  

4)   Viscosity

Friction between adiacent surfaces. The component of 
viscosity tangent  to the motion is  

μ A (r)=ρ ν A (r)

This is a force per unit length. The larger is the shear or 
the gas density, the higher is the viscosity 

dr

r

The force at the inner edge tends to accelerate it while 
that at the outer edge slows it down due to the 
Keplerian motion. 

F inn=2π [r ν|A|∫
−∞

∞

ρdx ]r−dr /2=2 π(r ν|A|Σ)r−dr /2

Fout=2π (r ν|A|Σ)r+dr / 2

Let’s consider a 
ring of gas with 
width  dr.  It feels 
the friction from the 
gas at the outer 
and inner edges of 
the ring. 

The torque acting on the ring, assuming that the forces 
act at center of the ring r, is 

T=F inn rinn−Fout rout

4)

Be careful!, the 
sign of  d Ω /dt is 
negative.



  

T=−2π (r2 νΣ r
dΩ
dr
)
r− dr/2

+2π (r2 ν Σr
dΩ
dr
)
r+dr /2

=

=2 π
d
dr
(r2νΣr

dΩ
dr
)⋅dr

The ring mass is:

T for mass unit is 

M ring=2π r Σdr

T=r f ϕ=2π
d
dr
(r3 νΣ

dΩ
dr
)

dr
2π r Σdr

=

=
1
r Σ

d
dr
(r3 νΣ

dΩ
dr
)

The equation for the specific angular momentum is 
finally: 

DJ
dt
=
1
r Σ

d
dr
(r3 νΣ

dΩ
dr
)

5) 



  

From the mass conservation we can derive an 
additional equation: 

Dρ
Dt
+ρ∇⋅u⃗=0

Which, once integrated in z, 
gives an equation for the 
superficial density Σ

D Σ
Dt
+Σ∇⋅u⃗=∂Σ

∂ t
+∇⋅(u⋅Σ)=0 In cylindrical 

coordinates

Σ∇⋅⃗u=
1
r
Σ ∂
∂ r
(r u)+

1
r
Σ
∂ uϕ
∂ ϕ

+Σ
∂uz
∂ z

u∇ Σ=
1
r
u ∂
∂ r
(rΣ)

The last two terms are =0 because of the axisymmetric 
and thin disk approximations. 

∂Σ
∂ t
+
1
r
∂
∂ r
(r u Σ)=0

6)

The Keplerian frequency Ω  is function only of r and so 
is also  J by definition

J=r2Ω

DJ
Dt
=
dJ
dr
⋅u

Where u is the component along r of the fluid velocity 
vector u. We are looking for a stationary solution for J 
→  its time partial derivative = 0 



  

DJ
dt
=
1
r Σ

d
dr
(r3 νΣ

dΩ
dr
)

∂Σ
∂ t
+
1
r
∂
∂ r
(r u Σ)=0

u
dJ
dr
=
1
r Σ

d
dr
(r3ν Σ

dΩ
dr
)

DJ
Dt
=
dJ
dr
⋅u

ur Σ=
1
dJ
dr

d
dr
(r3ν Σ

dΩ
dr
)

∂Σ
∂ t
+
1
r
∂
∂ r
((
dJ
dr
)
−1 d
dr
(r3 νΣ

dΩ
dr
))=0

∂Σ
∂ t
+
1
r
∂
∂ r
((
d (r2Ω)
dr

)

−1
d
dr
(r3 νΣ

dΩ
dr
))=0

J=r2Ω

Ω=√
GM

r 3

∂Σ
∂ t
=
3
r
∂
∂ r
(r1 /2 ∂

∂ r
[ νΣ r1/2])

∂ Σ
∂ t
=
3
r
∂
∂ r
(r1 /2 ∂

∂ r
[ νΣ r1/2])

7)



  

5) Viscous mass accretion rate on the star:
8)

∂Σ
∂ t
+
1
r
∂
∂ r
(r u Σ)=0 ⇒ 2π r ∂Σ

∂ t
=2π ∂

∂r
(−r u Σ)

For the angular momentum:

L=r vϕM=r⋅(rΩ)⋅(2 π r dr Σ)

 Since                                                      we get 
(u is negative ) 

∂

∂ t
(2π r dr Σ⋅r2Ω)=−2 π(r+dr)u(r+dr )Σ(r+dr )(r+dr )2Ω(r+dr )

+2 π r u(r )Σ(r)r2Ω(r )

2π r dr∂
∂ t
(Σ⋅r2Ω)=−2 π∂

∂ r
(r Σu⋅r2Ω)dr

In the change of angular momentum due to the mass flux 
between adjacent rings also the viscous force contributes. 

2π r ∂
∂ t
(Σ⋅(r2Ω))+2π ∂

∂ r
(r Σu⋅r2Ω)=

=2 π ∂
∂ r
(r2ν Σ r

dΩ
dr
)

See pg. 5 
without 
division by 
the mass.

We look for a stationary solution to the differential 
equation where Σ is constant with time. 

∂
∂ t
⇒0

The conservation of mass in an annulus leads to: 

FL=(r M vθdr )
1
dt
=r M vθ⋅u



  

∂
∂r
(r Σu⋅r2Ω)= ∂

∂ r
(r2 νΣr

dΩ
dr
)

˙ =− π Σ/ =− π Σ

The mass accretion rate  from a ring to an inner one is given 
by:

Integrating in r the previous equation we get: 

−∫
rs

r
∂

∂ r
(Ṁ (r ' ) r ' 2Ω(r ' ))dr '=∫

r s

r
∂

∂ r (2 π νΣ(r ') r '
3 dΩ(r ' )
dr ' )dr '

Where r
s 
 is the star radius. It is assumed for simplicity 

that the inner limit of the disk is the star surface. In this 
case: 

−Ṁ r 2Ω=2π νΣr3
dΩ
dr
+const

In the constant all values are computed on the star 
surface where dΩ

dr
=0 ..since the star 

rotates as a rigid 
body (approx…).

const=−Ṁ r s
2
Ω(rs)

9)

− ∂
∂ r
( Ṁ r2Ω)= ∂

∂ r
(2π νΣ r3

dΩ
dr
)



  

At the end 

Ṁ (1−√(
r s
r
))=3 πνΣ

For r >> r
s
  (in the majority of the disk apart very 

close to the inner border)  the following is obtained: 

Ṁ=3π νΣ

This value is derived assuming a stationary state, 
however in general  Σ depends on t.

10)

ν=α csh

The Shakura-Sunayev alpha viscosity:

Alpha is a constant all over the disk and an 
adimensional quantiy. It ranges from  0.1  to 
0.00001.

Ṁ r2√(
GM
r3
)=−2π Σν

3
2
r 2√(

GM
r 3
)+Ṁ r s

2√(
GM
r s
3 )=

−3π Σνr2√(
GM
r3
)+ Ṁ √(

rs
r
)√(

GM
r 3
)r2



  

Observations suggest that the mass accretion 
rate depends on the mass of the central object. 
It implies that the heavier is the star the more 
massive is the disk (higher Σ). Ṁ=3π νΣ



  

Σ(r , t)=
C

3π ν1r
γ T

−(
5
2
−γ)/(2−γ )

exp(− r̄
(2−γ)
T

)

6) Self-similar solutions: 

ν∞ r γ

The equation 

admits self-similar solutions of the type: 

T=
t
t s
+1 dove t s=

1

3(2−γ)2
R1
ν1

ν=α c sh [1/ s ]

t
s
 is the viscous scaling time: for timescales shorter than  

t
s
 the system does not significantly evolve. 

r̄=
r
R1

e ν1=ν(R1)

where R
1
 is a radial scaling factor  (1 AU etc…). The 

constant  C is given from the initial conditions.

Self-similar: it means that they are scalable and do 
not depend on the initial conditions. 

11) 

∂Σ
∂ t
=
3
r
∂
∂ r
(r1 /2 ∂

∂ r
[ νΣ r1/2])

When



  

12)

Ṁ (r , t)=CT
−(
5
2
−γ)/(2−γ)

exp(−r̄
(2−γ)
T

)[1−
2(2−γ)r(2−γ)

T
]

When r=rT=R1[
T

2(2−γ)
]

1
(2−γ)

The mass accretion rate changes sign: positive inside, 
negative outside. 

PROBLEM WITH ACCRETION DISKS: 
the rate of viscous dissipation is too 
slow! In addition, from observations it 
looks like disks are not expanding….



  

..these stars are strongly irradiated by O, B bright stars 
which form in the core of clusters. For these reason, 
core stars lose their disks on a shorter timescale. The 
disk age is then underestimated.  Red line more 
realistic estimate.  (Pfalzner et al 2014). 

Ages of disks 
estimated in stellar 
clusters: fraction of 
stars with disks as a 
function of the 
cluster age.  
However, these ages 
might be too short 
since clusters 
dissipate and only 
core stars  are 
observed for older 
clusters. . 



  

8) Boundary layer (border between the 
star surface and the disk) 

7) Vertical structure of the disk.

T ~ 104



  

∂
∂ t
Σ+
1
r
∂
∂r
(r Σur)=−Σ̇pe

9) Photoevaporation 
13)

At a given radius (about 1-10 au) the mass inflow 
due to viscosity is slower than the mass loss 
due to photoevaporation.  The inner disk is not 
refilled and a hole developes in the inner region 
which propagates outside.  



  

Transition disks.

Planet formation? 
Stellar winds? 
Photoevaporation? 



  

10) Self gravity

Q=
csΩK

πGΣ
Toomre parameter



  

Planet 
formation by 
disk 
gravitational  
instability. 
Only giant 
planets 
without a solid 
core. They 
form in the 
outer parts of 
the disk where 
the 
temperature is 
lower allowing 
gravitational 
instability. 



  

Sound waves in a fluid: 

∂ρ

∂ t
+∇(ρu)=0

∂u
∂ t

+u∇ u=−
1
ρ ∇ P

We apply a small perturbation to the stationary fluid with  
ρ

0
, P

0
 and u

0
 = 0.  

P=P0+ΔP ρ=ρ0+Δρ u=u0+Δ u

∂(ρ0+Δ ρ)

∂ t
+∇ ((ρ0+Δρ)(u0+Δ u))=0⇒

∂Δρ

∂ t
+ρ0∇ (Δu)=0

ρ
0  

can be taken out of the nabla 

since it is constant. 

∂(u0+Δu)

∂ t
+(u0+Δu)∇ (u0+Δu)=−

1
(ρ0+Δ ρ)

(P0+ΔP )⇒

∂Δ u
∂ t

+Δ u∇ (Δu)=−
1
ρ0
∇(Δ P)⇒

∂Δ u
∂ t

=−
1
ρ0
∇(Δ P)

Neglecting 2nd order terms 
in Δu



  

Assuming a barotropic flux with P(ρ) we get: 

∇(Δ P)=∇(
dP
d ρ

Δ ρ)=
dP
dρ

∇ (Δρ)

∂Δ u
∂ t

=−
1
ρ0
dP
d ρ

∇ (Δ ρ)
Both P and ρ are constants so 
the derivative is constant. 

∂

∂ t (
∂Δρ

∂ t )+
∂

∂ t
(ρ0∇(Δ u))=0

−ρ0∇ (∂Δ u∂ t )=−ρ0∇ (−
1
ρ0
dP
dρ

∇ (Δρ))

1st equation derived 
respect to t, third  
multiplied by ρ0∇

ρ0∇ (
∂Δ u
∂ t )=

∂
∂ t

(ρ0∇ (Δ u))

Since we can exchange the derivative order in the first 
term of last equation  

∂
2

∂ t2
Δ ρ=

dP
dρ
∇
2
(Δρ)

We can combine the two equations in a single wave 
equation



  

The solution of the wave equation is a perturbation of the form: 

Δρ=Δρ0e
i(k⋅x−ω⋅t)

Inserting this solution in the wave equation we get 

Δρ0( iω)
2
=
dP
dρ
(i k)2Δρ0

...and then the dispersion relation

dP
dρ
=ω

2

k2
=c s

...where c
s
 is the propagation speed of signals in the fluid 

(sound speed). 



  

T 00=
1

c2
(
1
2
ϵ0E

2
+
1
μ0
B2)

Tμ ν=
E
c2
(UμU ν

)

γ
2 δ (x−x p) For single particle

EM field, 00 component
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